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Summary. Clinical trials of micronutrient supplementation are aimed at reducing the risk of
infant mortality by increasing birth weight. Because infant mortality is greatest among the low
birth weight (LBW) infants (2500 g or under), an effective intervention increases the birth weight
among the smallest babies. The paper defines population and counterfactual parameters for
estimating the treatment effects on birth weight and on survival as functions of the percen-
tiles of the birth weight distribution. We use a Bayesian approach with data augmentation to
approximate the posterior distributions of the parameters, taking into account uncertainty that
is associated with the imputation of the counterfactuals. This approach is particularly suitable
for exploring the sensitivity of the results to unverifiable modelling assumptions and other prior
beliefs. We estimate that the average causal effect of the treatment on birth weight is 72 g
(95% posterior regions 33–110 g) and that this causal effect is largest among the LBW infants.
Posterior inferences about average causal effects of the treatment on birth weight are robust to
modelling assumptions. However, inferences about causal effects for babies at the tails of the
birth weight distribution can be highly sensitive to the unverifiable assumption about the correl-
ation between the observed and the counterfactuals birth weights. Among the LBW infants who
have a large causal effect of the treatment on birth weight, we estimate that a baby receiving
the treatment has 5% less chance of death than if the same baby had received the control.
Among the LBW infants, we found weak evidence supporting an additional beneficial effect of
the treatment on mortality independent of birth weight.

Keywords: Causal inference; Data augmentation; Direct effects; Mediation; Percentile-specific
effects; Post-treatment variables; Quantile functions

1. Introduction

The reduction of infant mortality remains a major public health goal (Child Health Research
Project, 1996), particularly in developing countries where current rates are an order of magni-
tude higher than in Europe, North America and Japan. In developing countries, higher infant
mortality is partially caused by poor maternal and foetal nutrition as reflected in the distribu-
tion of infant birth weights. One intervention trial has attempted to reduce infant mortality by
improving maternal micronutrient sufficiency (Christian et al., 2003a). The idea is to improve
maternal nutritional status, thereby improving foetal growth and reducing the risk of infant
mortality. Because infant mortality is greatest among low birth weight (LBW) infants (2500 g
or under) and infants whose birth weights are very low (1500 g or under), it is assumed that an

Address for correspondence: Francesca Dominici, Department of Biostatistics, Johns Hopkins University,
Baltimore, MD 21205, USA.
E-mail: fdominic@jhsph.edu



262 F. Dominici, S. L. Zeger, G. Parmigiani, J. Katz and P. Christian

effective intervention must increase birth weight among the smallest babies, i.e. in the left tail of
the birth weight distribution. That maternal nutritional supplementation increases average birth
weight has been demonstrated in replicated randomized trials in several countries (Lechtig et al.,
1975; Ceesay et al., 1997; Caulfield et al., 1999; Christian et al., 2003a). However, to date, there
is limited direct evidence that maternal supplementation causes a reduction in the prevalence
of babies who are born at the smallest weights and that this reduction improves their survival
(Garner et al., 1992; McIntire et al., 2001; West et al., 1999; Katz et al., 2000a; Rasmussen, 2001;
Christian et al., 2003b).

The methods in this paper are motivated by a double-blind randomized community trial in
rural Nepal (Christian et al., 2003a). The intervention programme provided weekly iron, folic
acid and vitamin A whereas the control was weekly vitamin A alone. The 1051 and 947 pregnant
women who were assigned to the control and treatment delivered 866 and 766 live-born infants
respectively. Details on the study designs including the rationale for the selection and exclusion
of the women in the study are provided in Christian et al. (2003a). The team measured the birth
weight within 72 h of delivery and then followed the infants for 1 year to determine whether or
not they survived. However, among the 866 and 766 live-births for the control and treatment,
8% and 7% have missing birth weight and 12% and 10% were weighed after the 72 h respectively.
We developed a random-effects model to impute the missing birth weights and to predict the
‘weights at birth’ conditional on all the available data. In this paper we report the results for one
imputed data set. Details on the imputation model and a summary of the results accounting
for the uncertainty in the imputation are described elsewhere (Katz et al., 2005; Dominici et al.,
2005b). In addition treatments were randomized to 426 communities rather than to individual
women. This can create some correlation between the birth weights and infant deaths within
communities. It is a minor extension of the methods that are discussed in this paper to account
for this clustering which turns out to be of negligible magnitude for the infant mortality outcome.
To simplify the notation and exposition, we shall not address clustering here.

The interesting aspect of this study is that the investigators expect that antenatal iron–folic
acid supplementation may affect birth weight and ultimately survival differently among the
smaller and larger babies, i.e. they hypothesize that there could be an interaction between
the treatment effect and the birth weight percentiles. Cox (1984) referred to this as the most
basic form of interaction. Doksum and Sievers (1976) defined a similar form of interaction by
allowing the treatment effect to vary as a function of the health response. Koenker and Bassett
(1978) introduced quantile regression methods which model the quantile function of an outcome
variable as a function of covariates and applied this approach to survival times where the regres-
sion parameters are allowed to depend on the quantile of interest (Koenker and Geling, 2001).
Dominici et al. (2005a) recently introduced smooth quantile ratio estimation, a method for
estimating the difference in medical expenditures between people with and without a disease as
a function of the medical expenditures percentiles.

The second interesting question from this study is whether the antenatal iron–folic acid sup-
plementation improves survival largely through its positive effect on birth weight. The hypothesis
is that supplementation will improve intra-uterine growth, lowering the risk of LBW and thus
increasing the chance of survival during the first year. Therefore we are interested in investigating
the relative importance of different pathways for the antenatal iron–folic acid supplementation
on survival. By one pathway, the intervention affects survival only throughout a change in birth
weight (the so-called ‘mediated effect’). A second possible pathway is that intervention affects
survival above its effect on intra-uterine growth, i.e. through other mechanisms that do not
involve birth weight. We refer to this pathway as a ‘direct effect’. This question is synonymous
with whether birth weight is a suitable ‘surrogate’ end point for 1-year survival.
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The statistical literature on surrogate end points and causal inference extensively discusses
post-treatment variables in clinical trials and observational studies. Prentice (1986) first proposed
criteria for a perfect surrogate (e.g. the birth weight), the most important being that the final
response is conditionally independent of treatment given the surrogate. When the assumption
of conditional independence is violated, related approaches have been proposed that compare
results of the regression of the health response on the treatment with and without the adjust-
ment for the intermediate variable (Freedman et al., 1992; Daniels and Hughes, 1997; Buyse
and Molenberghs, 1998; Begg and Leung, 2000; Leung, 2001; Molenberghs et al., 2001; Xu and
Zeger, 2001; Cowles, 2002). Robins (1989), Robins and Greenland (1992) and Pearl (2000) have
developed identifiability results for direct and indirect causal effects under the framework of
potential outcomes and they defined an ‘individual direct effect’ as the counterfactual effect of
a treatment on an outcome when the intermediate variable is set at the value that it would have
had if the individual had not been treated (see also Cole and Hernan (2002)). These identifiabil-
ity results have been recently generalized by van der Laan and Petersen (2004). Frangakis and
Rubin (2002) proposed a novel approach for defining causal effects adjusted for post-treatment
variables. This approach, known as ‘principal stratification’, is based on a comparison of treat-
ment effects on the outcome among subpopulations for whom a causal effect of treatment on
the post-treatment variable did and did not occur.

To explore the association between birth weight and mortality, we fit a logistic regression
model expressing the log-odds of infant death as a separate smooth function of the birth weight
for the control and intervention groups. Fig. 1(a) shows the smoothed histograms of the birth
weights. Fig. 1(b) shows the estimated smooth curves with 95% confidence bands plotted in cor-
respondence to the ranges of the measured birth weights in the two groups. These exploratory
plots suggest that

(a) the probability of death decreases as the birth weight increases and tends to rise again for
the heaviest babies in the control group,

(b) approximately 43% and 34% of the babies in the control and in the intervention groups
are LBW respectively, suggesting that the treatment may reduce the percentage of LBW,
and

(c) the visual inspection of the two smoothed histograms suggests that the treatment increases
birth weight for the smaller babies only, thus indicating that the treatment effect on birth
weight might vary with respect to the percentiles of the birth weight distribution.

The broad objectives of this paper are to develop and apply a statistical model with coun-
terfactual variables for this birth weight–mortality study. We shall refer to parameters from
counterfactual models as ‘causal’. The contributions of this paper are

(a) to define and compare population and causal parameters (Holland, 1986) that measure
the effects of an intervention on a clinical outcome (infant mortality) that are allowed to
vary with the percentiles of the post-treatment variable (birth weight),

(b) to extend and apply a causal statistical framework to compare the causal ‘direct’ effect
of the treatment on mortality, from the causal effect of the treatment on mortality that
is ‘mediated’ by post-treatment changes in birth weight,

(c) to develop a Bayesian approach with data augmentation (Tanner and Wong, 1987; Tanner,
1991; Albert and Chib, 1993; Chib and Greenberg, 1998) for approximating the marginal
posterior distributions of all parameters of interest, accounting for the uncertainty about
the missing counterfactuals, and

(d) to quantify the sensitivity of causal inferences to key assumptions for which there are not
direct observations in the data set.
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Fig. 1. (a) Smoothed histograms of the birth weights for the treated ( ) and control (– – –) groups
and (b) estimated log-odds of death as a smooth function of the birth weight with 95% confidence bands
and plotted in correspondence to the observed range of birth weights in the two groups ( , treatment;
– – –, control)

In Section 2, we introduce notation, specify our model and define the population and causal
parameters. In Section 3, we define the complete likelihood function for the observed data and
the missing counterfactual data. In this section, we also describe our Markov chain Monte Carlo
with-data-augmentation algorithm (Tanner and Wong, 1987; Tanner, 1991) for approximating
the posterior distributions of all the unknown parameters and the unobservable variables. In
Section 4, we summarize the results by comparing causal and population parameter estimates.



Micronutrient Supplementation, Birth Weight and Infant Mortality 265

We explore sensitivity of the causal parameter estimates to the unverifiable assumptions about
counterfactuals, to model specification and to distributional assumptions. In Section 5, we
discuss future research opportunities.

2. Definition of population and causal parameters

In this section, we define population and causal parameters that are of scientific interest in
terms of counterfactual variables. To establish notation, let Zi be the treatment indicator for
live-birth i that takes values 0 or 1 to indicate the control and the treatment groups respectively.
Let Wobs

i be the observed birth weight measurement within 72 h of the delivery, and let Yobs
i

be the observed mortality indicator within 1 year. Let n0 =866 and n1 =766 be the number of
live-births for the control and the treatment groups respectively and let N =n0 +n1 = 1632 be
the total number of live-births.

Adopting a causal model with potential outcomes (Rubin, 1978; Holland, 1986), let Z be
the N-dimensional vector of treatment assignments with ith element Zi, and Wi.Z/ be the
birth weight of baby i given the randomly allocated vector Z. We define Yi.Z, W/ to be the
binary random variable for the mortality indicator for baby i corresponding to the vector of
birth weights W and the vector of treatment assignments Z. We refer to Yi.W, Z/ and Wi.Z/

as potential outcomes. To assure a valid causal interpretation of the causal estimands defined
below, we make the following usual assumptions.

(a) Assumption 1—stable unit treatment value assumption (Rubin, 1978): the potential out-
comes of each baby i are unrelated to the treatment status of other babies, i.e. the birth
weight and the mortality potential outcomes of each baby are not affected by the treat-
ment assignment of others. Therefore we can write Yi.Z, W/ and Wi.Z/ as Yi.Zi, Wi/ and
Wi.Zi/ respectively.

(b) Assumption 2—ignorable assignment: assignment to the supplementation is at random.
(c) Assumption 3—perfect compliance with the treatment: all mothers take the assigned dose

in both treatment groups.

Note that Yi.0/ and Wi.0/ are defined for all N babies, but they are observed only for the n0
babies in the control group of the study. Similarly, Yi.1/ and Wi.1/ are defined for all N babies,
but they are observed only for the n1 babies in the intervention group. Thus we denote the
observed and the missing data as Yobs

i ={Yi.z/, if z=Zi} and Ymis
i ={Yi.z/, if z �=Zi} respec-

tively. Similar definitions apply to Wobs
i and Wmis

i .
Parameters of interest are defined in Tables 1 and 2 for birth weight and mortality respectively.

The first two rows of Table 1 indicate population parameters measuring the difference between
the means .∆W / and the percentiles .∆W

p / of the population of birth weights for the two treat-
ments. Note that the parameter ∆W

p is defined as Q1.p/ − Q0.p/ where Q1.p/ and Q0.p/ are
the quantile functions of the marginal distributions of Wi.1/ and Wi′.0/ respectively.

The last two rows of Table 1 define causal parameters measuring the effects of the treatment on
birth weight, on average (τW ) and specific to the percentiles of the birth weight distribution (τW

p ).
Note that ∆W

p is a population parameter, whereas τW
p is a causal parameter: in the definition

of ∆W
p , we consider the difference in percentiles of two different distributions of birth weights.

In the definition of τW
p , we consider the expected difference in birth weights Wi.1/−Wi.0/ for

the same infant (Holland, 1986) whose control value Wi.0/ is at the p-percentile of the control
distribution.

Table 2 summarizes the population and causal parameters for the treatment effect on infant
mortality. Before defining these parameters, we need to specify a functional relationship between
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Table 1. Definition of population and causal parameters for estimating the effects of antenatal
iron–folic acid supplementation on birth weight as a function of birth weight percentiles†

Percentile-specific effects on birth weight

Population parameters
Average ∆W =E[Wi.1/]−E[Wi′ .0/]=E[Wobs

i |Zi =1]−E[Wobs
i′ |Zi′ =0]

Percentile specific ∆W
p =E[Wi.1/|F1{Wi.1/}=p]−E[Wi′ .0/|F0{Wi′ .0/}=p]=Q1.p/−Q0.p/

Causal parameters
Average τW .kρ,ψ/=E[Wi.1/−Wi.0/]
Percentile specific τW

p .kρ,ψ/=E[Wi.1/−Wi.0/|F0{Wi.0/}=p]

†Q1.p/ and Q0.p/ are the quantile functions of Wi.1/ and Wi′ .0/ respectively. The parameters kρ=
mini.ρi/ and ψ measure the minimum of the correlations between Wi.0/ and Wi.1/ and the odds ratio
between Yi.0/ and Yi.1/. The subscripts i and i′ indicate two different infants.

Table 2. Definition of population and causal parameters for estimating the effects of ante-
natal iron–folic acid supplementation on infant mortality as a function of the birth weight
percentiles†

Percentile-specific effects on mortality

Population parameters
Average ∆Y =E[Yi.1/]−E[Yi′ .0/]=E[Yobs

i |Zi =1]−E[Yobs
i′ |Zi′ =0]

Percentile specific ∆Y
p =E[Yi.1/|F1{Wi.1/}=p]−E[Yi′ .0/|F0{Wi′ .0/}=p]

Causal parameters
Average τY .kρ,ψ/=E[Yi.1/−Yi.0/]
Percentile specific τY

p .kρ,ψ/=E[Yi.1/−Yi.0/|F0{Wi.0/}=p]

P-stratification
τY

1 .kρ,ψ/=E[Yi.1/−Yi.0/ given Wi.0/�2500 &|Wi.1/−Wi.0/|�50]
τY

2 .kρ,ψ/=E[Yi.1/−Yi.0/ given Wi.0/�2500 &|Wi.1/−Wi.0/|> 50]
τY

3 .kρ,ψ/=E[Yi.1/−Yi.0/ given Wi.0/> 2500 &|Wi.1/−Wi.0/|�50]
τY

4 .kρ,ψ/=E[Yi.1/−Yi.0/ given Wi.0/> 2500 &|Wi.1/−Wi.0/|> 50]

†The parameters kρ=mini.ρi/ and ψ measure the minimum of the correlations between Wi.0/
and Wi.1/ and the odds ratio between Yi.0/ and Yi.1/. The subscripts i and i′ indicate two
different infants.

infant mortality and birth weight. Substantive knowledge and our exploratory analyses indi-
cate that the following logistic regression model is a reasonable approximation to the actual
mortality process:

logit[Pr{Yi.Zi/=1|Zi, Wi.Zi/}]=β0 +β1Zi + s{Wi.Zi/, 3}, Zi =0, 1, .1/

where s.·/ denotes a natural cubic spline with three knots.
By specifying this parametric model we make two key assumptions.

(a) Assumption 4—conditional independence of survival from the counterfactual birth weight
given the treatment assignment and the observed birth weight: for each baby, we assume
that the probability of death under the treatment depends only on the birth weight under
that treatment, and it does not depend on what the birth weight would have been if the
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same baby had been randomized to the other group, i.e. we assume that

Pr{Yi.Zi/=1|Zi, Wi.Zi/, Wi.1−Zi/}=Pr{Yi.Zi/=1|Zi, Wi.Zi/}:

(b) Assumption 5—no interaction between the direct treatment effect on survival and the birth
weight: we assume that the direct effect of the treatment on mortality is the same for all
babies and does not vary with respect to the birth weight distribution, i.e. we can write

logit[Pr{Yi.1/=1|Zi =1, Wi.1/=w}]− logit[Pr{Yi.0/=1|Zi =0, Wi.0/=w}]=β1:

This assumption can be relaxed by assuming a linear or non-linear interaction between
the treatment and the birth weight, e.g. by replacing β1Zi with β1{Zi ×Wi.Zi/}—or more
generally with Zi × s2{Wi.Zi/, 3}—in model (1).

The first two rows of Table 2 indicate population parameters measuring treatment effect on
mortality, on average (∆Y ) and conditional on a specific percentile of the birth weight distri-
bution (∆Y

p). Note that ∆Y
p defines the difference in the probability of death between treated

and non-treated infants who are at the same percentiles of their respective birth weight distribu-
tion. Thus ∆Y

p is not a causal parameter, because these differences correspond to two different
subpopulations of babies.

The last two rows of Table 2 indicate the causal parameters measuring the effects of treatment
on infant mortality, on average (τY ) and specific to the percentiles of the birth weight distribu-
tion (τY

p ). Thus, for a specific p, τY
p can be interpreted as a causal effect which compares the

probability of death for the same baby i given that the assumption that his or her birth weight
under the control .Wi.0// is at the pth percentile.

In the last row of Table 2, we use the idea of principal stratification by Frangakis and Ru-
bin (2002) for defining causal parameters of the effects of treatment on infant mortality that
are ‘adjusted’ and ‘mediated’ by post-treatment changes in birth weight. More specifically, τY

1
and τY

2 are the effects of treatment on mortality in the two subpopulations of LBW babies for
whom the treatment effect on birth weight was smaller and larger than 50 g respectively. Thus
a comparison between τY

1 and τY
2 measures the degree to which a causal effect of treatment on

mortality occurs together with a causal effect of treatment on the birth weight among the LBW
babies. The parameters τY

3 and τY
4 are the analogues of τY

1 and τY
2 for the not-LBW infants, i.e.

for the infants with birth weight larger than 2500 g.
All causal parameters .τ ) depend on unverifiable assumptions about the joint distribution of

the counterfactual pairs of variables {Wi.0/ and Wi.1/} and {Yi.0/ and Yi.1/}. To estimate the
average causal effects (τs), we make the following key but unverifiable assumptions about the
correlation between the observed outcomes and their counterfactuals.

(a) Assumption 6—correlation between the observed and the counterfactual birth weight: we
assume that the correlation between Wi.Zi/ and Wi.1 − Zi/, which is denoted by ρi,
depends on the treatment effect and it is allowed to vary between 1 and kρ, where kρ
is a prespecified value. More specifically, we assume that ρi = exp.−α|∆W

pi
|/ where pi

is the percentile of the observed birth weight of baby i and α=− log.kρ/= maxp.∆W
p /.

Under this assumption, when ∆W
pi

= 0, then ρi = 1, Wi.1/ = Wi.0/ and τW
pi

= 0. In con-
trast, when |∆W

pi
| > 0, we assume that the variability in the imputation of Wi.0/|Wi.1/

(or Wi.1/|Wi.0/), which is measured by ρi, increases as the percentile-specific treatment
effect increases. As detailed below, we assume that kρ = mini.ρi/ is equal to 0.4 and
0.9.

(b) Assumption 7—odds ratio between the observed and counterfactual mortality given birth
weight: let µi.11/ be the joint probability that the same baby i would die in both groups
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defined as P{Yi.Zi/=1, Yi.1−Zi/=1|Wi.Zi/, Wi.1−Zi/}. As detailed below, we assume
that the odds ratio ψ=µ.11/µ.00/=µ.10/µ.01/ is equal to 1.5 and 25.

Neither parameters kρ and ψ are identified by the data and need to be prespecified. As a guide
for reasonable choices of kρ, we have used data from this randomized trial and from other data
sources (Rahmathullah et al., 2003; Katz et al., 2000b, 2001) to estimate the correlations of
birth weights for two successive children who were born to the same mother and birth weights
for twins. We found that these correlations range from 0.45 to 0.7. Therefore we set kρ=0:4 and
kρ=0:9 so that we allow ρi to vary between 1, when the treatment effect is zero, and 0.9 (or 0.4),
when the treatment effect achieves its maximum.

The analogous odds ratios for mortality were estimated to be 1.8 and 52 respectively. For ψ,
we use the values 1.5 and 25. We think that choosing 25 as un upper bound rather than the
twin value 52 is reasonable. The rationale is that twins share a womb and compete for resources.
They therefore tend to be smaller and at higher risk of death. In Section 4, we shall study the
dependence of our causal inferences on our choices for kρ and ψ.

3. A Bayesian implementation of ‘causal’ inference

In this section, we define a Bayesian approach for approximating the marginal posterior distribu-
tions of the population and of the ‘causal parameters’ (e.g. the parameters in the counterfactual
models) that were defined in Section 2. We start by defining the likelihood function for the
complete data as

L.η1, η2/=
N∏

i=1
Pr{Yi.1/, Yi.0/|Wi.1/, Wi.0/, η1}f{Wi.1/, Wi.0/|η2}: .2/

In Section 3.1, we specify f{Wi.1/, Wi.0/|η2} as a mixture of normal distributions. In Sec-
tion 3.2, we specify an odds ratio association model for bivariate binary variables P{Yi.1/, Yi.0/|
Wi.1/, Wi.0/, η1} (Liang et al., 1992). This model will be consistent with equation (1). In Sec-
tion 3.3, we then detail the elicitation of the prior distributions and the implementation of the
Markov chain Monte Carlo methods with data augmentation to obtain posterior samples of
all the unknown parameters and the missing counterfactuals variables.

3.1. Statistical model for birth weight
We begin our specification of the joint distribution in equation (2), by assuming that the mar-
ginal distributions of the random variables Wi.z/, z=0, 1, i=1, . . . , N, are a mixture of J .=3/

normal distributions:

fz{Wi.z/|µz, σ2
z , γz}=

J∏

j=1
γzj φ{Wi.z/;µzj,σ2

zj}, z=0, 1, .3/

where φ.x;µ,σ2/ is the density of a normal distribution with mean µ and variance σ2, µz =
.µ1z,µ2z,µ3z/, σz = .σ1z,σ2z,σ3z/ and γz = .γ1z,γ2z,γ3z/, where γjz are the mixing probabilities
with ΣJ

j=1γjz =1. To identify the mixture we set the constraint µ1z <µ2z <µ3z (Kadane, 1975).
We further assume that σ1z =σ3z =σ2z

√
2: assigning a larger variance to the outside compo-

nents of the mixture is designed to capture heavy-tailed distributions while achieving greater
parsimony. For ease of notation, we shall set σz =σ2z. These choices were guided by exploratory
analyses which used a clustering algorithm for parameterized Gaussian mixtures (Fraley and
Raftery, 2002). This algorithm estimates the number of the components in a mixture and the
corresponding parameters.
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This distributional assumption allows the parameters ∆W
p and τW

p to vary flexibly as func-
tions of the percentiles p of the birth weight distribution. If instead of the mixture model (3) we
assumed that Wi.z/∼N.µz,σz/, then

∆W
p =µ1 −µ0 + .σ1 −σ0/Φ−1.p/:

Therefore, the simpler assumption of normality for the marginal distributions of Wi.0/ and
Wi.1/ imposes a specific parametric form for ∆W

p which does not depend on p for σ1 = σ0.
In Section 4, we shall calculate the posterior probability of σ0 �= σ1 to provide evidence in
favour of the assumption that ∆W

p depends on p, and we shall explore the sensitivity of the
posterior distribution of ∆W

p as a function of p, under the mixture model, under the assump-
tion of normality with unequal variances and under the simpler assumption of normality with
σ0 =σ1.

To allow for a correlation between Wi.0/ and Wi.1/, we assume that the standardized vari-
ables Φ−1[Fz{Wi.z/}], z=0, 1, have a bivariate normal distribution with mean 0, variance 1 and
correlation ρi, where Φ is the cumulative distribution function of a standard normal distribution
and Fz is the cumulative distribution function of Wi.z/. As stated in assumption 6, we assume
that the parameters ρi depend on the treatment effect:

ρi = corr.Φ−1[F0{Wi.0/}], Φ−1[F1{Wi.1/}]/= exp.−α|∆W
pi

|/:
To implement this approach, we replace ∆W

p with its estimate obtained by smoothing across
percentiles the empirical quantile functions.

In this formulation for the joint distribution of .Wi.0/, Wi.1//, letting ρi =1 for all babies cor-
responds to the rank preservation assumption that was used by Efron and Feldman (1991). Our
specification allows for an interpretable parameter ρi for each baby capturing the correlation
between Wi.0/ and Wi.1/, while allowing for a flexible representation of the two marginal distri-
butions. An alternative stochastic generalization of the rank preservation assumption, obtained
by specifying a probabilistic distribution on the ranks, has also been developed by Dobbin and
Louis (2003).

3.2. Statistical model for infant mortality given birth weight
We specify the counterfactual model for the joint distribution of the two outcome indicators
conditional on the birth weights. Following Liang et al. (1992), we parameterize the 2×2 joint
distribution [Yi.0/, Yi.1/|Wi.0/, Wi.1/] in terms of the margins and the odds ratio. Specifically,
we assume that

P{Yi.0/=yi.0/, Yi.1/=yi.1/|Wi.0/, Wi.1/, η1}
=µi.0/yi.0/{1−µi.0/}1−yi.0/ µi.1/yi.1/{1−µi.1/}1−yi.1/

+ .−1/yi.0/−yi.1/{µi.11/−µi.0/µi.1/} .4/

where µi.1/ = Pr{Yi.Zi/ = 1|Zi, Wi.Zi/} is defined in equation (1). The parameter µi.11/ =
Pr{Yi.0/=Yi.1/= 1|Wi.0/, Wi.1/} is a known function of the marginal probabilities µi.1/ and
µi.0/ and of the prespecified odds ratio ψ.

3.3. Prior distributions and computation
The distributional assumptions in Sections 3.1 and 3.2 involve the following vectors of unknown
parameters:
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Table 3. Prior distributions on the unknown
parameters of the mixture†

Parameter Prior distribution

β Flat
µ0 N3{.1500, 2500, 3500/, 5002I}
µ1 N3{.2000, 3000, 3500/, 5002I}
σ2

0 LN{log.4002/, 0:8}
σ2

1 LN{log.4002/, 0:8}
γ0 Dirichlet .10, 1

3 , 1
3 , 1

3 /

γ1 Dirichlet .10, 1
3 , 1

3 , 1
3 /

†I denotes a 3×3 identity matrix, 5002 denotes
the prior variance, LN denotes the log-normal
distribution with prior mean 400 and prior stan-
dard deviation 0.8.

(a) η1 = .β,ψ/ where β includes β0, β1 and the spline coefficients that are defined in the
regression model (1);

(b) η2 = .µ0, µ1,σ0,σ1, γ0, γ1, kρ/, denoting all the unknown parameters of the mixture (3).

As stated in assumptions 6 and 7, the parameters kρ and ψ measure the association between the
observed outcomes and their counterfactuals and they cannot be identified from the observed
data. Thus, kρ and ψ are prespecified fixed values. In Section 4 we shall present the results for
.kρ,ψ/ = (0.4,1.5), (0.4,25), (0.9,1.5), (0.9,25). We specify prior distributions on all the other
parameters of the mixture that are proper but sufficiently vague to achieve goodness of fit to
the observed birth weights. These choices are summarized in Table 3.

To investigate the posterior distributions of all the parameters of interest we implement
Markov chain Monte Carlo methods with data augmentation for imputing the missing data
(Tanner, 1991; Gelman et al., 1995). Bayesian sampling of parameters of normal mixture dis-
tributions is typically handled by introducing auxiliary variables representing mixture com-
ponent indicators, which results in closed form full conditionals (Diebolt and Robert, 1994).
In our case, this option was not practical because of the special correlation structure that
we used, and because the unobserved birth weight variables enter the logistic component
of the likelihood as well. We thus implemented a Metropolis-within-Gibbs (Tierney, 1994)
approach, in which both the parameters and the counterfactual variables are sampled by using a
random-walk proposal, truncated to the region that is defined by the constraints wherever ap-
plicable.

For each posterior sample of the unknown parameters and counterfactuals, we obtain a pos-
terior sample of the percentile-specific parameters as follows. To obtain a posterior sample of
∆W

p , we sort Wi.0/ and Wi′.1/ within the two groups of treated and untreated babies separately
and then take their difference. To calculate a posterior sample of τW

p , we sort by Wi.0/ and then
take the difference between the sorted Wi.0/ and its matched Wi.1/ for the same infant i. To
calculate a posterior sample of ∆Y

p , we first sort Yi.0/ with respect to Wi.0/ and Yi′.1/ with respect
to Wi′.1/ within each of the two groups separately, and then we take the difference. Finally, to
calculate a posterior sample of τY

p , we sort Yi.0/ with respect to Wi.0/, and then we take the
difference between the sorted Yi.0/ and its matched Yi.1/ for the same baby i. We smoothed the
posterior samples of these percentile-specific parameters to reduce Monte Carlo variability in
the posterior probability bounds.
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4. Results

Fig. 2 shows the posterior means and 95% posterior regions for the population percentile-
specific treatment differences in birth weight (∆W

p ) under the three modelling assumptions for
.Wi.0/, Wi.1//. In Fig. 2(a) .Wi.0/, Wi.1// is assumed to have a bivariate normal distribution
with equal variances. In Fig. 2(b) it has bivariate normal distribution with unequal variances.
In Fig. 2(c) it has a mixture of normal distributions with correlation ρi as defined in Section 2.
The triangles denote the difference between the empirical quantile functions for the observed
data. The dots denote the differences between the posterior means of the birth weights for
the two treatment groups. The lines denote the posterior means and 95% posterior regions of
the theoretical functions Q1.p/ − Q0.p/. These theoretical functions are equal to µ1 −µ0 in
Fig. 2(a), µ1 −µ0 + .σ1 −σ0/Φ−1.p/ in Fig. 2(b) and F−1

1 .w;θ1/ − F−1
0 .w;θ0/ where F0 and
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Fig. 2. Posterior means and 95% posterior regions of the percentile-specific effects of treatment on birth
weight (∆W

p ) under the following modelling assumptions for .Wi .0/,Wi .1//: (a) bivariate normal distribution
with equal variances; (b) bivariate normal distribution with unequal variances; (c) mixture of three normal
distributions with correlation ρi as defined in Section 2 (results are shown for mini .ρi /DkρD0:9 and ψD25)
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F1 are the cumulative distribution functions of the mixture normal distributions in Fig. 2(c)
respectively.

Under the three modelling assumptions for the birth weights, the difference in posterior means
for the two treatment groups (dots) are roughly the same and are close to the observed differ-
ence (triangles). However, the percentile-specific treatment effects differ substantially from one
another in the tails. In Fig. 2(a), ∆W

p is a constant function of p as is reflected in the flat line
relationship. If we fit a bivariate normal distribution without the constraint of equal variances
as is done in Fig. 2(b), the treatment effect is estimated to decrease from more than 100 g in the
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Fig. 3. (a) Posterior means and 95% posterior regions of the percentile-specific causal effect of treatment
on birth weight (τW

p ) for kρ D 0:4 ( ) and kρ D 0:9 ( ) and (b) sensitivity analysis of the posterior distribu-
tions of the causal effect of treatment on birth weight .τW

p / separately for three subpopulations of babies
Wi .0/<1500 g, 1500<Wi .0/�2500 g and Wi .0/<2500 g and overall for all babies
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left-hand tail to 0 g in the right-hand tail. The posterior probability that log.σ2
1/− log.σ2

0/ is less
than 0 is 95%, thus providing strong evidence that ∆W

p varies with respect to p. Fig. 2(c) shows
that, when a more flexible mixture model is used, the effect of the intervention on the birth
weight appears to vary by percentiles similarly to what is estimated in Fig. 2(b). Estimating the
posterior means of ∆W

p by use of summaries of the posterior samples of Ws without imposing
the bivariate normality assumption provides a useful diagnostic tool for the performance of the
algorithm. Under the mixture model, we estimated a difference in birth weight quantiles between
groups equal to 120 g (95% posterior interval, 23–217 g) for the smallest babies (p�0:05) and
that the treatment difference was close to zero for the largest babies (p�0:95). This is an ideal
improvement as it has its greatest effect where the need is greatest. Results below relate to the
mixture model from Fig. 2(c).

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

p
(a)

(c)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

p

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.90.40.90.40.90.40.90.40.90.40.90.40.90.40.90.40.90.40.90.4
25 25 1.51.5 25 25 1.51.5 25 25 1.51.5 25 25 1.51.5 25 25 1.51.5

W0<2500 W0<2500
|W1−W0|<50 |W1−W0|>50

W0>2500 W0>2500
|W1−W0|<50 |W1−W0|>50

overall

∆W p
tW p

tW p

Fig. 4. (a) Posterior means and 95% posterior regions of the percentile-specific effect of treatment on
mortality (∆Y

p ), (b) posterior means and 95% posterior regions of the percentile-specific causal effect of
treatment on mortality (τY

p ) for kρD0:9 ( ) and for kρD0:4 ( ) and (c) posterior distributions of the
causal effects of treatment on mortality (τY

p ) for various values of .kρ; ψ/ (the posterior distributions are shown
separately for the four subpopulations of infants that are defined in Table 2 and overall for all infants; the two
rows on top of the figure denote the values of ψ (top row) and kρ (bottom row) that were used in the analysis)
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Fig. 3 (a) shows the posterior means and 95% posterior regions of the p-specific causal effects
of treatment on birth weight (τW

p ) under the mixture model, for kρ = 0:9 (shaded area) and
kρ=0:4 (hatched area). The vertical line is placed at the 0.42-percentile corresponding to 2500 g
in the control sample. Note that, when kρ becomes smaller, then population and causal param-
eter inferences differ little in the middle of the distribution, but substantially towards the tails
of the birth weight distribution. Among LBW infants, we found that the average causal effects
of the intervention on the birth weight are equal to 143 g (95% posterior regions, 83–270 g) and
to 337 g (95% posterior regions, 211–631 g) for kρ=0:9 and kρ=0:4 respectively.

Fig. 3(b) shows the sensitivity of the posterior distributions of the causal effect of treatment on
birth weight .τW

p / separately for three subpopulations of babies .Wi.0/�1500, 1500 < Wi.0/�
2500 and Wi.0/<2500/, and overall for all babies, with respect to .kρ,ψ/. The horizontal broken
line is placed at the sample mean difference .∆W /. The two rows on top of Fig. 3(b) denote the
values of ψ (top row) and kρ (bottom row) that were used in the analysis. Within each subpop-
ulation, these causal effects are very sensitive to kρ but not to ψ. However, the average causal
effect of supplementation on birth weight (τW /—which was estimated to be 72 g (95% posterior
regions, 33–110 g)—is robust to the values that were assigned for kρ and ψ.

Fig. 4(a) shows the posterior means and 95% posterior regions of the percentile-specific differ-
ence in infant mortality rates between the treatment and control populations (∆Y

p) plotted with
respect to the percentiles of the birth weight distributions. For a specific p, ∆Y

p is the difference
in the probability of death between the babies with birth weights Wi.1/ and Wi′.0/, each at the
p-percentile of their respective birth weight distributions. The vertical dotted line is placed at
the 0.42-percentiles corresponding to 2500 g in the control sample. There is suggestive evidence
that the treatment reduces mortality among the smallest babies but has no benefit for the babies
above the median birth weight.

Fig. 4(b) shows the posterior means and 95% posterior regions of the p-specific causal effect
of the treatment on infant mortality (τY

p ) plotted with respect to the percentiles of Wi.0/ for
kρ=0:9 and kρ=0:4 (bold curve). For a specific p, τY

p is defined as the difference in the proba-
bility of death for the same baby i whose control birth weight {Wi.0/} is at the pth percentile.
For kρ=0:9, we found that the causal effect of supplementation on mortality adjusted by birth
weight is negative (intervention is better) for the smaller babies and that this effect diminished for
the larger babies, although with wide posterior regions. Posterior inferences on τY

p are quanti-
tatively but not qualitatively sensitive to kρ at the smallest percentiles. For kρ=0:4 (bold curve),
there is stronger support for a beneficial ‘direct’ effect of the supplementation on mortality
among the very small babies only.

Fig. 4(c) shows the estimated posterior distributions of the causal effects of treatment on
mortality for different values of .kρ,ψ/ among four subpopulations of babies:

(a) LBW infants for whom there is a causal effect of treatment on birth weight that is smaller
than 50 g .τY

1 /;
(b) LBW infants for whom there is a causal effect of treatment on birth weight that is larger

than 50 g .τY
2 /;

(c) not-LBW infants for whom there is a causal effect of treatment on birth weight that is
smaller than 50 g .τY

3 /;
(d) not-LBW infants for whom there is a causal effect of treatment on birth weight that is

larger than 50 g .τY
4 /.

The four box plots at the far right-hand side show the estimated posterior distributions of the
total (direct plus mediated) causal effect of supplementation on mortality on average for all
babies .τY /.
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The four box plots on the left-hand side (posterior distributions of τY
1 ) indicate that, among

the LBW babies with little change in birth weight after the supplementation, there is only
weak evidence that antenatal iron–folic acid supplementation affects survival. The second set
of four box plots (posterior distributions of τY

2 ) suggest that, among the LBW babies with
absolute changes in birth weight after the supplementation larger than 50 g, there is much
stronger evidence that the antenatal iron–folic acid supplementation affects survival. The pos-
terior means of these ‘mediated’ causal effects for kρ=0:9 and kρ=0:4 are equal to −0.04 and
−0.052 (95% posterior regions, −0.077–0 and −0.085–0.004) respectively. These results indi-
cate that an LBW infant receiving the intervention has a roughly 5% smaller chance of death
than if the same baby had received the control intervention. This higher chance of death is
due to changes in birth weight from the control to the treatment larger than 50 g. The pos-
terior distributions of the parameters τY

3 and τY
4 indicate that there is no evidence of a ben-

eficial effect for the infants who are not LBW. The average causal effect of supplementation
on mortality that is shown on the right-hand side is robust to modelling assumptions and to
.kρ,ψ/.

Finally, we evaluate the consistency of the model predictions and prior distributions with the
patterns in the observed data. Fig. 5 shows 95% posterior regions of Fz{Wi.z/, θ.j/

z }, z = 0, 1,
where Fz are the cumulative distribution functions from the mixture model that is defined in
equation (3) and θ.j/

z are the jth posterior samples of the parameters of the mixture. The curves
are the corresponding empirical cumulative distribution functions, estimated directly from the
observed birth weights. We see that the model assumed is reasonably consistent with the data.

5. Discussion

A micronutrient supplementation trial is considered effective if the treatment reduces the risk
of infant mortality either directly or through increases in birth weight. Because infant mortal-
ity is greatest among LBW infants, an effective intervention must increase birth weight mainly
among the smallest babies. In addition, it has been hypothesized that the supplementation could
be harmful if it increases birth weight among the largest babies. A community-based trial in
Nepal has shown that a multiple micronutrient supplementation increases birth weight but the
limitations in the study size have to date prevented us from unambiguously establishing that
this translates into a mortality benefit (Christian et al., 2003b).

In this paper, we have developed a counterfactual model to evaluate the efficacy of micronutri-
ent supplementation trials in developing countries. We focus on whether the supplementation
increases birth weight and ultimately survival differently among the smaller and the larger
babies, and whether the supplementation improves survival largely through its positive effect
on birth weight (mediated effect) or it improves survival even without affecting the birth weight
(direct effect). Addressing these scientific questions is challenging because birth weight is a post-
treatment variable (i.e. intermediate variable) that is in the causal pathway between nutritional
supplementation and infant mortality.

This analysis demonstrates that inference about counterfactual treatment effects in the middle
of the birth weight distribution is relatively robust to unverifiable assumptions about the joint
distribution of the counterfactuals. However, posterior inferences on causal effects towards
the tails of the birth weight distribution (e.g. among LBW infants) are not robust under the
class of joint distributions that we considered. More specifically we found that, among LBW
infants, the effect of micronutrient supplementation on birth weight is greatest and its estimate’s
size is highly sensitive to kρ; lower values of kρ correspond to a larger causal increase in birth
weight.
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Fig. 5. 95% posterior regions of F0.Wobs
i , θj

0/ and F1.Wobs
i , θj

1/ where F0 and F1 are the CDFs of the mix-
ture of three normal distributions and θ.j /

0 and θ.j /
1 are the j th posterior sample of the vector of param-

eters of the mixture ( , corresponding empirical CDF): (a) control; (b) treatment

The posterior distributions of the population and causal parameters are evaluated by using
Bayesian inferences with data augmentation methods (Tanner and Wong, 1987; Tanner, 1991;
Albert and Chib, 1993; Chib and Greenberg, 1998). A nice feature of this approach is that
we can evaluate the posterior distributions of the quantities of interest, taking into account
uncertainty in the imputation of the missing counterfactuals. In addition, we can easily explore
the sensitivity of the posterior inferences to unverifiable assumptions about the joint distribution
between the observed and the counterfactual variables.
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To implement our approach we make several important assumptions. The first two (the stable
unit treatment value assumption and random assignment) are justified by the randomization of
the treatment assignment and the independence of the sampling units. Third we assume perfect
compliance. The compliance for this trial was very good and did not depend on the treatment
(Christian et al., 2003a). The fourth and the fifth assumptions are in the logistic regression
model for the probability of infant mortality as a function of the treatment indicator and the
birth weight for the treatment received. Under the fourth assumption, we expect that the risk
of mortality under the treatment would depend only on the actual birth weight and not on the
birth weight for the intervention that is not received. This would be violated if there is a latent
‘growth potential’ for each child about which both Wi.0/ and Wi.1/ are informative and which is
associated with mortality. This assumption is an avenue for further study. The fifth assumption,
that the direct effect of the intervention on mortality is common to babies of all sizes, is con-
sistent with the patterns in Fig. 1 but there is little statistical power to show otherwise. Finally
the sixth and the seventh assumptions are about the associations between the observed and the
missing counterfactuals and these associations cannot be estimated from the data. To deal with
this unidentified problem we

(a) use data on siblings to estimate lower bounds for kρ and ψ and use those as a guide for
our prior choices and sensitivity analyses,

(b) explore the sensitivity of estimated causal parameters with respect to choices for kρ and
ψ and

(c) compare inferences on causal parameters versus inferences on population parameters
which are not affected by kρ and ψ.

The methodological development of this paper cuts across several contributions in quantile
regression and counterfactual models. For example, we could have estimated the percentile-
specific parameter ∆W

p by use of a quantile regression model of the form Q.p/ =αp +∆W
p Zi

(Koenker and Bassett, 1978) where Q.p/ is the quantile function of Wobs
i and Zi represents

the treatment assignment. However, in this paper we extended the traditional definition of
percentile-specific regression coefficients in two ways:

(a) we introduce percentile-specific regression coefficients in the presence of post-treatment
variables where the treatment effect on the dependent variable is allowed to vary with
respect to the percentiles of an intermediate variable (∆Y

p/;
(b) we introduce causal analogues of percentile-specific regression coefficients which vary

with respect to the percentile of the counterfactual Wi.0/ (τW
p , τY

p /.

Estimation methods in quantile regression are based on finding the solution of a
quantile regression minimization problem with a prespecified loss function (Koenker and
Bassett, 1978). Bayesian analogues are described by Yu and Moyeed (2001). Our estimation
approach for the percentile-specific parameters is simply based on transformations of the pos-
terior samples of .Wi.0/, Wi.1//. By modelling the marginal distributions of Wi.0/ and Wi.1/ as
a mixture of normal distributions instead of a single normal distribution, we allow very flexible
shapes for the percentile-specific treatment effects. The modest gain in goodness of fit, especially
at the tails of the birth weight distribution, is shown in Fig. 2 and is supported by the posterior
inferences on the variance components of the mixture model.

In the counterfactual model literature, Angrist et al. (1996) showed how instrumental vari-
ables can be embedded within the Rubin causal model for estimating an average causal effect
in the presence of a binary post-treatment variable. They introduced five assumptions under
which an instrumental variables estimator (Durbin, 1954) can be interpreted as the average
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causal effect. The first two assumptions are the stable unit treatment value and the random
assignment assumptions. The third assumption, which is called exclusion restriction, assumes
that any effect of the treatment on the health outcome must be via an effect of the treatment on
the post-treatment variable, i.e. there is no direct effect. We are not making this assumption: we
use principal stratification to compare the different causal pathways on how the supplementation
affects survival. In addition Angrist et al. (1996) assumed monotonicity in the post-treatment
variable, i.e. that Wi.1/�Wi.0/; we instead define a joint model for .Wi.0/, Wi.1//.

By specifying a joint model for .Wi.0/, Wi.1// which allows for the correlation ρ between
the normalized percentiles of Wi.0/ and Wi.1/, we provide a stochastic generalization of the
rank preservation assumption (Efron and Feldman, 1991) which is similar to the assumption
that was recently proposed by Dobbin and Louis (2003). More specifically, the hypothesis of
rank preservation (also called percentiles invariance) implies that, for any group of participants,
the birth weight percentiles would not be permuted if the group had been assigned to another
treatment. In our model specification for the birth weights, the percentile invariance assumption
leads to ρi =1 for all infants, which also implies that all the population parameters ∆ are equal
to the causal parameters τ .

The methodology that we described has broad applicability to a variety of situations in which
one investigates a continuous post-treatment variable that potentially mediates a binary response
of interest. For example, similar issues arise in cancer trials that evaluate both tumour growth
and survival. In these studies it is likely that there are both mediated and direct effects of treat-
ments, and that these effects may vary across the distribution of tumour growths. In summary, we
have provided an inferential framework for estimating treatment effects in counterfactual mod-
els in a randomized trial with a continuous post-treatment variable. By comparing population
with counterfactual parameter estimates, carrying out sensitivity analyses and implementing
principal stratification, we have characterized the amount of evidence supporting the scientific
questions of interest and their sources of uncertainty.

The estimation of treatment effects by percentile of the birth weight distribution has public
health significance. In the case-study that was presented here, the treatment increased the birth
weight of smaller babies and had no apparent effect on larger babies. If it had increased the
size of the larger infants, both the infants and their mothers might have been at higher risk of
mortality given the absence of obstetrical care in rural communities. In such a situation, it would
be necessary to predict those mothers who are likely to have larger infants and to exclude them
from intervention programmes. However, although maternal prepregnancy nutritional status,
weight gain during pregnancy and other factors are strong determinants of LBW, their ability
to predict infants who are likely to be born with LBW is still uncertain.

Currently recommendations exist for supplementing women with iron–folic acid during preg-
nancy in developing countries. The Nepal study (Christian et al., 2003a) demonstrated that,
beyond reducing anaemia, iron can result in an improvement in birth weight primarily through
moving the lower tail of the birth weight distribution to the right. Presumably, this effect is
mediated through improving the iron status of those pregnant women who are the most iron
deficient. These data from Nepal reveal that when evaluating public health interventions it is
important to be, at the very least, cognizant of the differential beneficial effects of an interven-
tion depending on where in the distribution the programme participants fall and that an overall
effect size may

(a) underestimate the maximum likely benefit in the most malnourished individuals and
(b) incorrectly assume benefits where none exist and potentially mask harm in the better

nourished individuals.
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