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1 Introduction

Exposure to environmental pollutants likely contributes to morbidity and mortality around the
world. An important question is how many persons in a given population suffer adverse health
effects from environmental exposures. To address this question and others like it, United States
government agencies, including the National Center for Health Statistics and Environmental
Protection Agency, regularly collect monitoring data on health outcomes and pollutant levels.
These data must be carefully analyzed to appropriately quantify health risks.

One example of a potentially important exposure in United States urban populations is par-
ticulate air pollution (Dockery et al., 1993; Pope et al., 1995a; American Thoracic Society, 1996;
National Research Council, 1998; Pope and Dockery, 1999). The evidence for an association
between particulate pollution concentrations and mortality and morbidity is strong (Lipfert and
Wyzga, 1993; Pope et al., 1995a; Schwartz, 1995). Hence, public health and government officials
seek to determine whether air pollution causes premature illness and death and, if so, to quan-
tify the magnitude of the problem (Environmental Protection Agency, 1995; National Research
Council, 1998).

In this chapter, we discuss statistical approaches for estimating the risk of death as a function
of the concentration of particulate air pollution, a key component of risk analysis. We focus on
multi-stage models of daily mortality data in the 88 largest cities in the U.S.A. to illustrate the
main ideas. These models have been also used to quantify the risks of shorter-term exposure to
particulate pollution and to address key causal questions (Samet et al., 2000a; Dominici et al.,
2000a; Dominici et al., 2002a).

The air pollution mortality association has received substantial attention over the last decade
since the publication of articles by Schwartz and Marcus (1990), Dockery et al. (1993), and
Pope et al (1995b). That high levels of particulate pollution can cause illness and death has
been generally accepted since the 1952 London smog caused thousands of excess deaths in a
short time (Logan and Glasg, 1953; Bell and Davis, 2001). Governments in North America and
Europe initiated large pollution-control programs in the 1970s as a result. However Schwartz and
Marcus (1990) presented evidence from time series studies in selected U.S. cities to support the
hypothesis that daily fluctuations in particulate levels within a population, well within current
federal standards, continue to cause hospitalizations and premature deaths. Dockery, et al.

(1993) and Pope et al (1995b) showed that persons living in cities with higher particulate levels



suffer higher mortality risks than those living in less polluted cities, even after controlling for
many important individual confounding variables such as smoking, socio-economic status and
education.

The evidence for an association between particulate air pollution concentration and mortality
derived from time series and from that derived from cohort studies is different. The time series
studies (Schwartz and Marcus, 1990; Schwartz, 1995; Kelsall et al., 1997; Smith et al., 2000) rely
on variations over time within a population, and compare the number of deaths on more-to-less
polluted days. They depend on statistical control for within-population confounders including
secular trends in mortality attributable to changing health practice and risk behaviors; effects of
weather; and seasonal influenza epidemics. Even the multi-city studies (Katsouyanni et al., 1997,
Samet et al., 2000c; Dominici et al., 2000a; Hwang and Chan, 2001; Dominici et al., 2002a)
rely entirely on within-population comparisons; they increase power and possibly robustness by
pooling relative risks across many cities. Time series models estimate the health risk associated
with shorter-term exposures, on the order of days, weeks or at most months. Thus time series
studies provide little evidence on the health effects of more chronic exposures. Kelsall et al.
(1999), Zeger et al. (1999) , Schwartz (2000) and Dominici et al. (2002d) have discussed how
to estimate pollution relative risks at different time scales using time series data.

The cohort studies (Dockery et al., 1993; Pope et al., 1995b; Krewski et al., 2000) compare
mortality risks across distinct populations rather than over time for a population. They have
shown that persons living in more-polluted cities are at higher risk for mortality than “otherwise
similar” persons in less polluted cities. Here, “otherwise similar” refers to a population in which for
age, gender, socioeconomic factors, smoking, and additional person-level confounding variables
have been adjusted statistically. The cohort studies estimate the association of daily mortality
with longer-term exposure. For example, Pope et al. (1995b) used average concentration for the
past year as the predictor of mortality.

To date, the cohort studies have estimated larger relative risk than the time series studies. For
example Pope et al. (1995b) in the American Cancer Society Study (ACS) report a 6.4 percentage
increase in mortality per 10g/m? increase in particulate matter less than 2.5 microns (P M 5)
while Dominici et al. (2002a) in the NMMAPS multi-site time series study report a 0.41 percent
per 10119/m? increase in particulate matter less than 10 microns (PM;g). Recent re-analyses of
the NMMAPS study have lowered this estimate to 0.21 percent per 10ug/m? increase in PM,
(Dominici et al., 2002d; Dominici et al., 2002b).

The difference between time series and cohort studies results likely reflects one or more
factors, including the possibility that longer-term exposures have greater health consequences
than do shorter-term exposures (Zeger et al., 1999; Schwartz, 2000; Dominici et al., 2002c), or
that the cohort study estimates are confounded by unmeasured differences among the populations
compared (Guttorp et al., 2001).



In this chapter, we present an overview of the time series approach to estimating the relative
risk of mortality from particulate air pollution. We discuss how time series models might be used
to partially address the possible difference in the mortality effects from shorter- to moderate-term
variations of exposures.

In Section 2, we review the NMMAPS data base that comprises a time series of daily mortality,
air pollution and weather variables between 1987 and 1994 for the 88 largest cities in the U.S.
In section 3, we present several models for time series data. In Section 3.1, we describe the
time series approach to estimating a pollution relative risk while controlling for likely confounders
for a single city. In section 3.2, we summarize the models used to characterize the variability
in relative risks among cities within and across regions and also to produce a pooled estimate
across all 88 cities. We report the pooled estimate in section 3.3. In Section 4, we decompose
the pollution time series into multiple predictors to estimate the relative risk of acute and more
chronic exposures. We illustrate the difficulty of using time series models to estimate chronic
health effects in 4 cities with daily particulate pollution data over 8 years. Finally, in Section 5

we offer an approach for future analyses that might combine cohort and time series information.

2 National Morbidity and Mortality Air Pollution Study
Data

NMMAPS was a systematic investigation of the dependence of daily hospitalization and mortality
counts on particulate and other air pollutants. Its database includes mortality, weather, and air
pollution data for the 88 largest metropolitan areas in the U.S.A. for 1987 through 1994. Since
its inception, the NMMAPS has contributed knowledge relevant to air quality policy, including:

e national, regional, and city estimates of the relative risk of mortality associated with con-
centrations of PM;, and other pollutants for the 88 urban centers (Samet et al., 2000a;
Samet et al., 2000c; Samet et al., 2000b; Dominici et al., 2000a; Dominici et al., 2002a)

e a critical review of the impact of measurement error on time series estimates of relative
risks and an estimate of the PM;, relative risk that is corrected for measurement error
(Dominici et al., 2000b; Zeger et al., 2000);

e evidence that contradicts the "harvesting” hypothesis that the apparent association is at-
tributable to the frail who die dying days earlier than they would have otherwise, absent air
pollution (Zeger et al., 1999; Dominici et al., 2002c);

e evidence that contradicts the "threshold” hypothesis that particles and mortality except
above a threshold concentration (Daniels et al., 2000; Schwartz, 2000; Dominici et al.,



2002a)

The daily time series of P My, O3, mortality, temperature, and dew point for one NMMAPS
urban center Pittsburgh Pennsylvania is illustrated in Figure 1. The data on mortality, air pol-
lution, and weather, were drawn from public sources. The cause-specific mortality data at the
county level were obtained from the National Center for Health Statistics. The focus was on daily
death counts for each site, excluding accidental deaths and deaths of non-residents. Mortality
information was available at the county level but not at a smaller geographic unit to protect
confidentiality. All predictor variables were therefore also aggregated at the county level.

Hourly temperature and dew point data were obtained from the National Climatic Data
Center, specifically the Earthinfo CD data base (http://www.sni.net/earthinfo/cdroms/).
After extensive preliminary analyses that considered various daily summaries of temperature and
dew point as predictors, we chose the 24-hour mean to characterize each day. If a county had
more than one weather station, the average of the measurements from all stations was used.

The daily time series of PM;, and other pollutants for each city were obtained from the Aero-
metric Information Retrieval Service data base maintained by the US Environmental Protection
Agency (http://www.wpa.gov/airs/airs.html). The pollutant data were also averaged over
all monitors in a county. To protect against outlying observations and instrument drift, a 10%
trimmed mean was used to average across monitors after correcting for each monitors yearly aver-
age. Information on several city-specific from the 1990 Census CD (email:info@censuscd.com)
was also collected. A more detailed description of the data base is provided in NMMAPS reports
(Samet et al., 2000c; Samet et al., 2000b).

3 Statistical Models for Time Series Data

3.1 Time Series Model for a Single Location

In this section, we specify the model for estimating air pollution-mortality relative risk separately
for each location, accounting for age-specific longer-term trends, weather, and day of the week
as potential confounding variables. The core analysis for each city is a log-linear generalized
additive model (GAM) (Hastie and Tibshirani, 1990) with smoothing splines or a Poisson re-
gression model with regression splines (GLM) (McCullagh and Nelder, 1989). Smoothing splines
or regression splines, such as natural cubic splines, are included into the model to account for
smooth fluctuations in mortality caused by non-pollution mechanisms that potentially confound
estimates of the pollution effect, introduce autocorrelation in mortality series, or both.

We model daily expected deaths as a function of the pollution levels on the same or immedi-

ately preceding days, and not the average exposure for the preceding month, season, or year as



might be done in a study of chronic effects. We use models that include smooth functions of time
as predictors to control for possible confounding by seasonal influenza epidemics and by other
longer-term changes in the population, demographic composition, personal behaviors (including
smoking), and access to, and quality of, medical services.

To specify our approach, let y¢, be the observed mortality for age group a = (< 65,65 to
75, > 75 years) on day ¢ at location ¢, and ¢, be a p x 1 vector of air pollution variables. Let

XS, = E(yS,) be the expected number of deaths and v¢, = var(y¢,). We use a log-linear model

log\e, = z%,B°+ confounders
ve = @)X, c=1,...,C

at at’

(1)

that allows the mortality counts to have variances v¢, that may exceed their means (i.e., be
overdispersed) with the overdispersion parameter ¢° also varying by location.

To protect the pollution relative risks 8¢ from confounding by longer-term trends, and to
account for any additional temporal correlation in the count time-series, we estimate the pollution
effect using only shorter-term variations in mortality and air pollution. To do so, we partial out the
smooth, i.e. longer-term fluctuations in the mortality over time by including a smooth function
(smoothing splines or natural cubic spline) of the calendar time S¢(time, v) for each city. Here, v
is a smoothness parameter that we specify, from epidemiologic knowledge of the time scale of the
major possible confounders to have 7 degrees of freedom per year of data so that little information
from time-scales longer than approximately 2 months is included when 3° is estimated. We believe
this choice substantially reduces confounding from seasonal influenza epidemics and from longer-
term trends resulting from changing medical practice and health behaviors. We also control for
age-specific longer-term and seasonal variations in mortality by adding a separate smooth function
of time with 1 additional degree of freedom per year (8 total) for each age-group.

.To control for weather, we fit smooth functions of the same-day temperature (temp,), average
temperature for the 3 previous days (temp,_,), each with 6 degrees of freedom, and the analogous
functions for dew point (dew, dew;_3), each with 3 degrees of freedom. In U.S. cities, mortality
decreases smoothly with increasing temperature until reaching a relative minimum and then
increases quite sharply at higher temperature (Curriero et al., 2002). We choose 6 degrees
of freedom to capture this highly non-linear bend near the relative minimum as well as possible.
Because there are missing values in air pollution concentration, and occasionally in other variables,
we restricted analyses to days with no missing values across the full set of predictors.

In summary, we fit the following log-linear model to obtain the estimated pollution log-relative
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risk @ and the sample covariance matrix V¢ at each location:

x¢,B° + v*DOW, + S¢(t, 7/year)+
S§(tempy,, 6) + S5(temp,_s,, 6) + S$(dewq, 3) + SE(dews_3q, 3)
intercept for age group a

log Ag
(2)

+ + +

separate smooth functions of time 1 df/year for age group a

where DOW; are indicator variables for day of week. Samet et al. (1999) and Kelsall et al.
(1997) have given additional details about functions used to control for longer-term trends and
weather. Alternative modeling approaches that consider different lag structures of the pollutants,
and of the meteorological variables, have also been studied (Smith et al., 1997; Smith et al.,
2000; Zanobetti et al., 2000) More general approaches that consider non-linear modeling of the
pollutant variables have been discussed by Smith et al. (1997) and by Daniels at al. (2000) .

3.2 Model for Multi-Site Time Series Studies

In this section, we present a hierarchical regression model designed to estimate city-specific
pollution relative risks, pooled national relative risk, and within- and between-region variances of
the city-specific values. As we discussed in Section 2, even the pooled time series estimates derive
entirely from within-population comparisons of shorter-term effects. We assume a three-stage
hierarchical model with the following structure:

Stage I: City Given a time series of daily mortality counts at a given city (actually counties
containing the city), the association between air pollution and health within the site is described
using the regression model defined in Section 3.1. Among the output of the stage-l analysis
are the point estimate (53¢) and the statistical variance (v€) of the relative mortality risk (5¢)
associated with each air pollutant within site ¢ belonging to the geographical region 7.

Stage Il: Geographical region The information across cities within a region is combined by
using a linear regression model in which the outcome variable is the log pollution relative risk for
each city, and the explanatory variables (XJ"’) are site-specific characteristics, such as population

density, yearly averages of the pollutants, and temperature. Formally:

p
B¢ = agr + Zan; + error,..
j=1
If the predictors X7 are centered about their means, the intercept (cp,) is interpreted as the
pooled regional effect for a city with mean predictors. The regression coefficients (aj) indicate
the change in the relative risk of mortality associated with a unit change in the corresponding

site-specific variable.



Stage IlI: Country The information across regions is combined by using a linear regression
model in which the outcome variable is g, the true average regional relative mortality risk, and
the explanatory variables (W;,) are the region-specific characteristics (toxic composition of air
pollution, climate variables). Formally:

p
Qo = o + Z a;Wj, + error.
j=1

As in Stage I, if the predictors ¥}, are centered about their means, the intercept « is the pooled
national effect for regions with mean values of the predictors. The regression coefficients («;)
measure the change in true regional relative risk of mortality associated with a unit change in the
corresponding region-specific variable.

The sources of variation in estimating of health effects of air pollution are specified by the
levels of the hierarchical model. Under a three-stage model, the difference between the estimated
site-specific relative risk (3¢) and the true pooled relative risk () can be decomposed as:

(BS — ao) = (BS — BY) + (B — awr) + (o — ).

The variation of 3¢ about 3¢ is measured by the within-site statistical variance (v¢) which depends
on the number of days with air pollution data and on the predictive power of the site-specific
regression model. The variation of 3¢ about «ay, is described by the between-site variance (72)
which measures the heterogeneity of the true air pollution effects across cities within a region.

We assume 72

is constant across regions. Finally, the variance of «y, about o (o) measures
the heterogeneity of the true regional air pollution effects across regions.

A Bayesian hierarchical model is specified by selecting the prior distributions for the parameters
at the top level of the hierarchy. If there is no desire to incorporate prior information into the
analysis, then conjugate priors with large variances are often used. However, sensitivity of the
substantive findings to the prior distributions should be investigated. Complex hierarchical models
can be fit using simulation-based methods (Tierney, 1994; Gilks et al., 1996) that provide samples
from the posterior distributions of all parameters of interest. Several software packages are now

available (see for example http://www.mrc-bsu.cam.ac.uk/bugs/).

3.3 Results for National Mortality Morbidity Air Pollution Study

Dominici et al. (2002a) estimated city-specific air pollution effects by applying a GAM to each
city, and approximated posterior distributions of regional, and national air pollution effects by
applying a Bayesian three-stage hierarchical model to the NMMAPS data-base. Results are
reported for 88 of the largest metropolitan areas in the U.S.A. from 1987 to 1994.



Recently, Dominici et al. (2002c) discovered that when GAM is applied to time-series analyses
of contemporary data on air pollution and mortality, the defaults in the S-PLUS software (Version
3.4) package gam do not assure convergence of its iterative estimation procedure, and can provide
biased estimates of the regression coefficients and standard errors. Thus the NMMAPS data
base has been recently re-analyzed by using Poisson regression models with parametric non-linear
adjustments for confounding factors (natural cubic splines) (Dominici et al., 2002b; Dominici
et al., 2002d). The revised maximum likelihood estimates and 95% confidence intervals (Cl) of
the log-relative risks of mortality per 10 11g/m? increase in P M, for each location are shown in
Figure 2.

The estimate of the national pooled relative risk was a 0.22% increase in mortality per 10ug/
m? increase in PM,,, with a 95% posterior interval between 0.03 and 0.42. The pooled regional
estimates of the P M, effects vary across the regions; the estimated relative risk was greatest in
the Northeast, with a value of 0.41% per 10ug/m? (95% Cl 0.12, 0.85).

Figure 3 shows the maximum likelihood estimates (bottom) and the Bayesian estimates (top)
of the relative risks of mortality for the largest 88 cities. Sizes of the circles are proportional to the
statistical precisions. The Bayesian estimates of the city specific air pollution effects are shrunk
toward the pooled estimate. The shrinkage factor is proportional to the statistical uncertainty of
the maximum likelihood estimates, but inversely proportional to the degree of heterogeneity of the
city-specific relative risks. In other words, imprecise maximum likelihood estimates (smaller dots)
are shrunk toward the pooled estimate more heavily than precise maximum likelihood estimates
(larger dots), and the shrinkage is more substantial when the between-city variance of the true

relative risks is small.

4 Health Effects of Exposure over Different Time Periods

In previous section we discussed the use of time series data to quantify the association of mortality
with short-term exposure to particulate pollution. As mentioned in the Introduction, short-term
effects from time series studies appear to be smaller than long-term effects from chronic studies.
In this section we discuss how within-city time series comparisons might be used to estimate
the effects of exposures of different periods ranging from 1 day to 1 month. The effects of
exposures on longer time scales are confounded in time series studies by other causes of seasonal
and long-term fluctuations in mortality.

To start, we consider the log-linear distributed lags model for one city:

U
E(y;) = exp (77 +) euxt—u) :

u=0

where x; , is the pollution concentration u days before day ¢ (lag u). Under this model, a unit
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increase in exposure on day ¢ produces an increase of 6, in the linear predictor; an increase of
1 unit for 3 consecutive days ¢, — 1, and £ — 2 causes an increase of 6y + 6; + 6, and so
forth. The lagged exposure series are highly co-linear, so it is desirable to constrain 6, to a
lower-dimensional sub-space. It is common to assume the 6, form a polynomial or spline function

of u (Judge, 1985; Davidson and MacKinnon, 1993; Zanobetti et al., 2000). More generally, we

P

can let 0, = > 7, A;(u)B;, so that the distributed lag models above become

Ey, = exp(n+ Zgzo Oyt )
= exp {1+ 20 B0 A (W) } 3)
= exp {77 + Z?:l ,Bjxjt}

where z;, = S0 A;(u)x;_y, is a linear combination of past exposures.

Kelsall et al. (1999), Zeger et al. (1999), Schwartz (2000), and Dominici et al. (2002d)
defined the A;(u) to obtain a Fourier decomposition or moving average of the exposure time
series, so that each z;;, j = 1,...,p represents exposures at different time scales.

Here we define the x; as follows:

Ty = Ty Tyt = (.’Et,'y +...+ $t729)/23
Tor = (xt_l + l't_z)/Q Tyt = (.It_g() 4+ ...+ xt_5g)/30
I3t = (th_g + ...+ xt_ﬁ)/él

The S, is the log relative rate of mortality of current-day exposure; [3; + (35 is the log relative
rate of mortality of exposure over the last 3 days, and 3, + B> + B3 is the log relative rate of
mortality for the past week exposure.

Figure 4 shows the decomposition of the P M;, and the temperature time series for Pittsburgh.
The component series become smoother at the longer time scales, Also, the PM;, series at the
longer time scales (30 to 60 days) and the temperature are highly correlated. This correlation
reveals the potential for weather and or seasonality to confound the estimates of the chronic
exposure effects.

Setting aside this concern temporarily, we estimated model 2 including all of the component
P M, series. Figure 5 displays the estimated relative risk of mortality associated with a 10 1g/m?
increase in P Mg, for each of the 4 cities with daily PM;, data, for the time period indicated
on the abscissa for each city (left top panel) and pooled across cities (right top panel). These
estimates are just the cumulative sum of the regression coefficients for the components at time
scales up to and including the indicated period.

Note that the Seattle results are distinct from those for Pittsburgh, Minneapolis, and Chicago.
In Seattle, the relative risk depends on length of exposure: longer exposure has a greater estimated
effect on mortality. Instead, in Chicago and Pittsburgh, longer exposure to increased levels of

P M is associated with lower mortality.



These divergent patterns indicate that, at longer time scales, weather and/or seasonality
might confound the air pollution mortality association. In Pittsburgh, Minneapolis, and Chicago,
PM;iy has a summer maximum, as does temperature. But mortality is highest in the winter
because of weather and influenza epidemics. Hence, both temperature and the slowly varying
components of PM;, are negatively correlated with mortality. Failure to completely control for
weather, season, or both, would therefore bias the coefficients for longer-term components of
P M, to more negative values.

Because of use of wood stoves, in Seattle PM;y has a winter maximum instead. Hence, it
has the opposite relationship to temperature. Here, failure to completely control for weather and
season will tend to bias the coefficients at the longer time scales to more positive values. In
summary, it is expected that confounding would produce the pattern seen here. In addition, the
degree of separation in patterns between Seattle and the other cities changes with the numbers
degrees of freedom in the spline function of time, further indicating that the pattern it is the
result of confounding.

To simplify the problem of completely controlling for weather and seasonality, we repeated the
analysis above restricting our attention to the non-winter days with temperatures in the temperate
range 40-70 degrees Fahrenheit. Figure 5 shows the new estimates of the period-specific relative
risks for the 4 cities and pooled across cities. The difference between Seattle and the other
cities has been reduces but not entirely eliminated. This analysis demonstrates the difficulty of
using time series data to estimate health effects of chronic exposures in the presence of other
confounding variables at longer time scales.

5 Joint Analysis of Cohort and Time series Data

As we discussed in Section 4, the health effects of long-term exposure to air pollution cannot be
estimated unless risks are compared across populations, in this case cities. This problem arises
because long-term exposure varies a little within a city in long-term exposure and because of
confounding by influenza and other trends represented by S¢(time) in model 2.

In this section, we briefly discuss a model for simultaneously estimating the effects of chronic
and acute exposures on mortality. We envision a data set that consists of the mortality data,
daily pollution concentrations, and personal risk factors for a population living in a large number
of distinct geographic regions. Such data are available for the Medicare and veteran populations.

The basic model for A, the risk for an individual ¢ living in county c on day ¢, is

P
Ajt = Agit €Xp (Z "'E;tﬁ‘]c + Zz'ctac) )

j=0

where AG;; is the baseline risk without pollution exposure, x5, is the j-th exposure variable in city
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c on day ¢, as discussed in Section 4, and z{, is a vector of personal characteristics centered at
their average value. To combine the cohort and time series analyses under a common umbrella,
we define the first exposure z§, = z°¢ to be the average exposure values for a prior extended
period and center the remaining exposure variables about 7 that is. replace 5, by 5, — 2. To
compare persons across cities, we must further assume that z{;, includes all relevant persons and

city-level confounders so that A\g;; = Ag;. Then, we have

p
Aft = Aot exp | 7°Fc + Z 5,81, + 20 | (4)
j=1
This model is the basis for simultaneous inference about both the “cohort” - and the “time
series” B%j relative risks. As discussed in Section 4, the zf, that represent longer-term exposures
are confounded by components in z{, at similar time scales (e.g., seasonality), necessitating
comparisons across cities. We would again use ,prj in a two- or three-level hierarchical model
to pool the time series relative risks for different exposure periods across cites and regions. By
formulating the model to include both ¢ and B%j, we can estimate and test the difference
between B¢ and the 27:1 B,

Estimating the parameters in Eq.4 is computationally intensive. At one extreme, this estima-
tion can be treated as a very large parametric survival analysis with possibly millions of persons
at risk and many time-varying predictor variables. But, the analyses can be simplified because z,
contains two kinds of predictor variables: those such as smoking or socioeconomic factors that
vary across individuals but not across time (zy;); and others such as temperature and season, that
vary across time but not across individuals within a city (25,). We write z5,a = 21,0 + 25,05.

Then, if we sum Eq.4 across individuals within a city, we have

p
E(y;) = exp|S(t)+ ) 25,57, + 25,05 |,

j=1
where S¢(t) = log Aot + Z°B¢ + z1a5. This is the usual time series model discussed in Section 3.
The likelihood function for S¢(t), Ao, B, of, B%j, and o§ can be jointly maximized. Al-
ternatively, a simpler algorithm might involve two steps: use standard semi-parametric log-linear
regression to estimate 7. and a5, removing information about S°(?), and regressing S¢(t) on a
smooth function of time common to all cities to estimate log A\o;, and on z¢ and Z; to estimate
B¢ and af. Interesting methodological questions include how to formulate the joint estimation of
B¢ and 5%]-: in the hierarchical extension of Eq. 4; whether the simpler two-stage algorithm is as
nearly efficient; and how to extend Eq. 4 to use cohort and time series information to estimate

some of the ﬂ%js for z;;s that vary at longer time scales.

11



6 Discussion

In this chapter we illustrated the use of log-linear regression and hierarchical models to estimate
the association of daily mortality with acute exposure to particulate air pollution. We used daily
time series data for the 88 largest cities in the U.S.A. from 1987 to 1994 obtained from NMMAPS.
Time series analyses such as those ones illustrated here rely entirely on comparisons of mortality
across days within a population. They therefore have the advantage of avoiding confounding
by unmeasured differences among populations, as may occur in cohort studies. They have the
disadvantage of only providing evidence about the health effects of shorter-term acute exposures.
The reason is that longer-term exposures vary a little within a population. Also processes such
as influenza epidemics or changes in health behaviors are difficult to quantify, they occur at
these longer time scales, and they will likely confound estimates of the health effects of chronic
exposures. We chose to control for longer-term confounders by using models that partial out the
variation in exposure and mortality at longer time scales. We achieved this control by including
spline functions of time with 7 degrees of freedom per year and spline functions of temperature
and dew point temperature to control for weather (smoothing splines or natural cubic splines). We
checked whether using half or twice as many degrees of freedom quantitatively change the results
and found that it does not. The possibility remains, however, that the effects of confounders are
not totally controlled by these statistical adjustments.

We fit a separate log-linear regression for each of the 88 cities and conducted a second-stage
analysis to estimate the variability in the pollution relative risk among cities within a region and
among regions; to obtain empirical Bayes estimates of each city’s relative risk, and to estimate
the average relative risk across the 88 cities. As did others (Smith et al., 1997; Smith et al.,
2000; Clyde, 2000), we found that the exact specification of the log-linear regression (e.g. the
choice of the number of degrees of freedom in the smoothing splines or the number and location
of knots in the regression splines), can substantially affect the estimated pollution relative risk
for a particular city. However, we found that variations in the specification tend to have little
effect on the pooled estimate or on the empirical Bayes estimates for that city. Hence, pooling
information across a large number of cities provides a more robust model. The details of such
investigations have been provided by Dominici et al. (2000a) .

We used a Bayesian hierarchical model to pool information across 88 cities. This model
requires specifying prior distributions. Here, the key priors are for the within- and among-region
variances of the true relative risks. We assumed half-normal priors with large variances instead
of the more traditional conjugate inverse gamma prior. In our experience, the inverse gamma
prior implicitly rules out the possibility of no variability in the relative risks and produces posterior
distributions with more mass at larger values. The result is to borrow less strength across cities

when estimating the risk for one city and wider confidence intervals for the estimated average
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coefficient across cities. The posterior distribution obtained, assuming a half-normal prior, is more
similar to the likelihood function and hence we prefer it in this application. Sensitivity analyses
of the posterior distribution of the pooled air pollution effect, under 4 specifications of the prior
distributions for the within- and among-region variances of the true relative risks in alternative
to the half-normal, have been discussed by Dominici et al.(2002a) .

In Section 4, we used the time series data from 4 cities with more complete particulate
pollution records to estimate a distributed lags model. We then estimated the mortality relative
risk associated with a 10 ug/m? increase in PMy, for 1, 3, 7, 30, and 60 days. We found
evidence of possibly substantial confounding by seasonality and weather at the longer time scales.
In fact, the longer-term variation in P M is highly correlated with temperature. To overcome this
problem, we restricted the analyses to non-winter days with moderate temperature. In this sub-
set of the data, we found that the mortality relative risk increases with the duration of exposure
up to roughly 7 to 14 days but not beyond. The total effect sizes are still much smaller than
those seen in the cohort studies. The evidence of confounding of the longer-term components
of PMq shows the limitations of time series models for estimating the health effects of chronic
exposure to pollutants.

Finally, we briefly outlined an approach to jointly estimating the cohort and time series relative
risks from a single, large database. Several such databases exist, including the Medicare Cohort
from the National Claims History File. This database includes all mortality, morbidity, and basic
demographic information on more than 2 million persons per year. In addition, the Medicare
Current Beneficiary Survey provides detailed personal information on a representative sub-sample
of roughly 13,000 persons per year. If these data were merged with weather and pollution time
series for each person, chronic and acute effects could be estimated from a common data source.
The differences in the current estimates of the particulate air pollution relative risks deriving from
cohort and time series studies must be better understood. When these are obtained from different
sources of data with different protocols, it is unclear whether the differences reflect greater effects
of chronic exposure or biases from one or both of the studies. The proposed approach can address

some of these issues using a refined version of the analyses discussed here.
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Figure 1: Total, cardiovascular respiratory (CVDRESP), and other causes mortality daily counts. Tem-

perature (Temp) and PMiy pg/m? daily time series.

through 1994.
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Figure 2: Maximum likelihood estimates and 95% confidence intervals of the log-relative risks of
mortality per 10ug/m3 increase in P My for each location. The solid circles with the bold segments
denote the posterior means and 95% posterior intervals of the pooled regional effects. At the bottom,
marked with a triangle and a bold segment, is the overall effects for P M1y for all the cities.
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Bayesian Estimates

Maximum Likelihood Estimates

Figure 3: Maximum Likelihood (bottom) and Bayesian posterior estimates (top) of the relative risks of
mortality for the 88 U.S. largest cities. Size of the circle is proportional to the statistical precisions.
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Figure 4: Decomposition of the daily PMy ug/m? time series for Pittsburgh, Pennsylvania for 1987
through 1994 into 6 average past exposures, as defined in Section 4. Numbers on the left indicate past
days included in each average. Numbers on the right the 10 and 90 percentiles of PMjy.
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Figure 5: Left panels: at the top estimates of the log relative risks of mortality per 10ug/m? change

in average PM;y exposure for the period indicated on the horizontal axis (logarithm scale); at the

bottom, estimates of the log relative risks of mortality are obtained by including days with moderate

temperatures (e.g., days in the winter season and days with temperatures lower than 40 degrees and

higher than 70 degrees Fahrenheit are excluded). Right panels: pooled estimates of the log relative

risk of mortality per 10ug/m? change in average exposure for the period indicated on the horizontal

axis (logarithm scale). These results combine the results in the left panels for four cities (Pittsburgh,

Minneapolis, Chicago, and Seattle) by taking weighted averages. The shading indicates + standard

errors of the pooled estimates.




