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Abstract

Reports over the last decade of association between levels of particles in outdoor air and daily
mortality counts have raised concern that air pollution shortens life, even at concentrations within
current regulatory limits. Criticisms of these reports have focused on the statistical techniques
used to estimate the pollution/mortality relationship and the inconsistency in findings among
cities. We have developed analytic methods that address these concerns and combine evidence
from multiple locations in order to gain a unified analysis of the data.

This paper presents log-linear regression analyses of daily time-series data from the largest 20
U.S. cities and introduces hierarchical regression models for combining estimates of the pollution-
mortality relationship across cities. We illustrate this method by focusing on mortality effects
of PM, (particulate matter less than 10 microns in aerodynamic diameter), and performing
univariate and bivariate analyses with P M,y and O3 (ozone). In the first stage of the hierarchical
model, we estimate the relative mortality rate associated with P M, for each of the 20 cities
using semiparametric log-linear models. The second stage of the model describes between-city
variation in the true relative rates as a function of selected city-specific covariates. We also
fit two variations of a spatial model with the goal of exploring the spatial correlation of the
pollutant-specific coefficients among cities. Finally, to explore the results of considering the two
pollutants jointly, we fit and compared univariate and bivariate models. All posterior distributions
from Stage Il are estimated using Markov chain Monte Carlo techniques.

In univariate analyses using concurrent day pollution values to predict mortality, we find that
a 10 pg/m? increase of PMi, on average in the U.S. is associated with a 0.48% increase in

mortality (95% interval 0.05,0.92). With adjustment for O3, the PMj, coefficient is slightly



higher.

Results appear to be largely insensitive to the specific choice of vague but proper prior dis-
tribution. The models and estimation methods are general and can be used for any number
of locations and pollutant measurements and have potential application to other environmental
agents.

Key Words: Air Pollution, Longitudinal Data, Hierarchical Models, Markov Chain

Monte Carlo, Log-Linear Regression, Mortality, Relative Rate.



1 Introduction

In spite of improvements in measured air quality indicators in many developed countries, the
health effects of particulate air pollution remain a regulatory and public health concern. This
continued interest is motivated largely by recent epidemiologic studies that have examined both
acute and longer-term effects of exposure to particulate air pollution in different cities in the
United States and elsewhere in the world (Dockery and Pope, 1994; Schwartz, 1995; American
Thoracic Society, 1996a; American Thoracic Society, 1996b; Korrick et al., 1998). Many of
these studies have shown a positive association between measures of particulate air pollution —
primarily total suspended particles (T'SP) or particulate matter less than 104 in aerodynamic
diameter (PMjiy) — and daily mortality and morbidity rates. Their findings suggest that daily
rates of morbidity and mortality from respiratory and cardiovascular diseases increase with levels
of particulate air pollution below the current National Ambient Air Quality Standard (NAAQS) for
particulate matter in the United States. Critics of these studies have questioned the validity of the
data sets used and the statistical techniques applied to them; the critics have noted inconsistencies
in findings among studies and even in independent re-analyses of data from the same city (Lipfert
and Wyzga, 1993; Li and Roth, 1995). The biologic plausibility of the associations between
particulate air pollution and illness and mortality rates has also been questioned (Vedal, 1996).
These controversial associations have been found using Poisson time series regression models
fit to the data using the generalized estimating equations (Liang and Zeger, 1986) or generalized
additive models (Hastie and Tibshirani, 1990). Following Bradford Hill's criterion of temporality,
they have measured the acute health effects, focusing on the shorter-term variations in pollution

and mortality by regressing mortality on pollution over the preceding few days. Model approaches



have been questioned (Smith et al., 1997; Clyde, 1998), although analyses of data from Philadel-
phia (Samet et al., 1997; Kelsall et al., 1997) show that the particle-mortality association is
reasonably robust to the particular choice of analytic methods from among reasonable alterna-
tives. Past studies have not used a set of communities; most have used data from single locations
selected largely on the basis of the data availability on pollution levels. Thus, the extent to which
findings from single cities can be generalized is uncertain and consequently we analyzed data for
the 20 largest US locations the population living within the limits of the counties making up the
cities. These locations were selected to illustrate the methodology and our findings cannot be
generalized to all US with certainty. However, to better represent the nation, in a future appli-
cation of our methods to the largest 90 cities. Statistical power of analyses within a single city
may be limited by the amount of data for any location. Consequently, in comparison to analyses
of data from a single site, pooled analyses can be more informative about whether an association
exists, controlling for possible counfounders. In addition, a pooled analysis can produce estimates
of the parameters at a specific site, which borrow strength from all other locations (DuMouchel
and Harris, 1983; DuMouchel, 1990; Breslow and Clayton, 1993).

One additional limitation of epidemiologic studies of the environment and disease risk is the
measurement error inherent in many exposure variables. When the target is estimation of the
health effects of personal exposure to a pollutant, error is well recognized to be a potential
source of bias (Lioy et al., 1990; Mage and Buckley, 1995; Wallace, 1996; Ozkaynak et al., 1996;
Janssen et al., 1997; Janssen et al., 1998). The degree of bias depends on the correlation of the
personal and ambient pollutant levels. Dominici et al. (2000) have investigated the consequences

of exposure measurement error by developing a statistical model that estimates the association



between personal exposure and mortality concentrations, and evaluates the bias likely to occur
in the air pollution/mortality relationships from using ambient concentration as a surrogate for
personal exposure. Taking into account the heterogeneity across locations in the personal-ambient
exposure relationship, we have quantified the degree to which the exposure measurement error
biases the results toward the null hypothesis of no effect, and estimated the loss of precision
in the estimated health effects due to indirectly estimating personal exposures from ambient
measurements. Qur approach is an example of regression calibration which is widely used for
handling measurement error in non-linear models (Carroll et al., 1995). See also Zidek et al.
(1996), Zidek et al. (1998), Fung and Krewski (1999) and Zeger et al. (2000) for measurement
error methods in Poisson regression.

The main objective of this paper is to develop a statistical approach that combines information
about air pollution/mortality relationships across multiple cities. We illustrated this method with

the following two-stage analysis of data from the largest 20 U.S. cities:

1. Given a time series of daily mortality counts in each of three age groups, we used generalized
additive models to estimate the relative change in the rate of mortality associated with
changes in the air pollution variables (relative rate), controlling for age-specific longer-term

trends, weather, and other potential confounding factors, separately for each city;

2. We then combined the pollution-mortality relative rates across the 20 cities using a Bayesian
hierarchical model (Lindley and Smith, 1972; Morris and Normand, 1992) to obtain an over-
all estimate, and to explore whether some of the geographic variation can be explained by

site-specific explanatory variables.

This paper considers two hierarchical regression models — with and without modeling possible



spatial correlations — which we referred to as the “baseline” and the “spatial” models.

In both models, we assumed that the vector of the estimated regression coefficients obtained
from the first-stage analysis, conditional on the vector of the true relative rates, has a multivariate
normal distribution with mean equal to the “true” coefficient and covariance matrix equal to the
sample covariance matrix of the estimates. At the second stage of the baseline model, we assume
that the city-specific coefficients are independent. In contrast, at the second stage of the spatial
model, we allowed for a correlation between all pairs of pollutant and city-specific coefficients;
these correlations were assumed to decay toward zero as the distance between the cities increases.
Two distance measures were explored.

Section 2, describes the database of air pollution, mortality, and meteorological data from 1987
to 1994 for the 20 U.S. cities in this analysis. In section 3, we fit the log-linear generalized additive
models to produce relative-rate estimates for each location. The semiparametric regression is
conducted three times for each pollutant: using the concurrent day’s (lag 0) pollution values,
using the previous day’s (lag 1) pollution levels, and using pollution levels from two days before
(lag 2).

Section 4, presents the baseline and the spatial hierarchical regression models for combining
the estimated regression coefficients and discuss Markov chain Monte Carlo methods for model
fitting. In particular, we used the Gibbs sampler (Geman and Geman, 1993; Gelfand and Smith,
1990) for estimating parameters of the baseline model and a Gibbs sampler with a Metropolis
step (Hastings, 1970; Tierney, 1994) for estimating parameters of the spatial model. Section 5,
summarizes the results, compares between the posterior inferences under the two models, and

assesses the sensitivity of the results to the choice of lag structure and prior distributions.



2 Description of the Databases

The analysis database included mortality, weather, and air pollution data for the 20 largest

metropolitan areas in the U.S. for the 7-year period 1987-1994 (Figure 1 and Table 1).
Table 1

In several locations, we had an high percentage of days with missing values for PM;, because
it is generally measured every six days. The cause-specific mortality data, aggregated at the
level of county, were obtained from the National Center for Health Statistics. We focused on
daily death counts for each site, excluding non-residents who died in the study site and accidental
deaths. Because mortality information was available for counties but not smaller geographic units
to protect confidentiality, all predictor variables were aggregated to the county level.

Hourly temperature and dew point data for each site were obtained from the Earthinfo CD
database. After extensive preliminary analyses that considered various daily summaries of temper-
ature and dew point as predictors, such as daily average, maximum, and eight-hour maximum, we
used the 24-hour mean for each day. If a city has more than one weather station, we took the av-
erage of the measurements from all available stations. The PM;q and O3 data were also averaged
over all monitors in a county. To protect against outliers, a 10% trimmed mean is used to average
across monitors, after correction for yearly averages for each monitor. This yearly correction is
appropriate since long-term trends in mortality are also adjusted in the log-linear regressions. See
Kelsall et al. (1997) for further details. Aggregation strategies based on Bayesian and classical
geostatistical models as suggested by Handcock and Stein, (1993), Cressie, (1993), Kaiser and
Cressie, (1993) and Cressie at al. (1999) , and Bayesian models for spatial interpolation (Le
et al., 1997; Gaudard et al., 1999) are desirable in many contexts because they provide estimates
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of the error associated with exposure at any measured or unmeasured locations. However, they
were not applicable to our data sets because of the limited number of monitoring stations that

are available in the 20 counties.

3 City-Specific Analyses

In this section, we summarize the model used to estimate the air pollution/mortality relative rate
separately for each location, accounting for age-specific longer-term trends, weather, and day of
the week. The core analysis for each city is a log-linear generalized additive model that accounts
for smooth fluctuations in mortality that potentially confound estimates of the pollution effect
and/or introduce autocorrelation in mortality series.

This is a study of the acute health effects of air pollution on mortality. Hence, we modeled
daily expected deaths as a function of the pollution levels on the same or immediately preceding
days not of the average exposure for the preceding month, season, or year as might be done in a
study of chronic effects. We built models which include smooth functions of time as predictors
as well as the pollution measures to avoid confounding by influenza epidemics which are seasonal
and by other longer-term factors.

To specify our approach more completely, let 3¢, be the observed mortality for each age group
a = (< 65,65 —T75,> 75 years) on day ¢ at location ¢, and ¢, be a p x 1 vector of air pollution
variables. Let u, = E(yS,) be the expected number of deaths and v¢, = var(yS,). We used a
log-linear model log 1, = x¢,3° for each city c, allowing the mortality counts to have variances
vS, that may exceed their means (i.e., be overdispersed) with the overdispersion parameter ¢°

also varying by location so that v{, = ¢°ug,.
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To protect the pollution relative rates 3° from confounding by longer-term trends due, for
example, to changes in health status, changes in the sizes and characteristics of populations,
seasonality, and influenza epidemics, and to account for any additional temporal correlation in
the count time-series, we estimated the pollution effect using only shorter-term variations in
mortality and air pollution. To do so, we partial out the smooth fluctuations in the mortality over
time by including arbitrary smooth functions of calendar time S¢(time, \) for each city. Here, A
is a smoothness parameter which we pre-specified, based upon prior epidemiologic knowledge of
the time scale of the major possible counfounders, to have seven degrees of freedom per year of
data so that little information from time-scales longer than approximately two months is included
when estimating 3°. This choice largely eliminates expected confounding from seasonal influenza
epidemics and from longer-term trends due to changing medical practice and health behaviors,
while retaining as much unconfounded information as possible. We also controlled for age-specific
longer-term and seasonal variations in mortality, adding a separate smooth function of time with
eight degrees of freedom for each age-group.

To control for weather, we also fit smooth functions of the same day temperature (temp,),
average temperature for the three previous days (temp,_5), each with six degrees of freedom, and
the analogous functions for dew point (dewg, dew;_3), each with three degrees of freedom. In
the US cities, mortality decreases smoothly with increases temperature until reaching a relative
minimun and then increases quite sharply at higher temperature. Six degrees of freedom were
chosen to capture the highly non linear bend near the relative minimum as best as possible. Since
there are missing values of some predictor variables on some days, we restricted analyses to days

with no missing values across the full set of predictors.
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In summary, we fitted the following log-linear generalized additive model (Hastie and Tib-
shirani, 1990) to obtain the estimated pollution log-relative rate ,@c and the sample covariance
matrix V¢ at each location:

logus, = x<,8°+ y°DOW + S¢(time, 7/year)+
+ S5(tempy, 6) + S5(temp;_5,6) + S$(dewg, 3) + SE(dew;_3, 3) O

+ intercept for age group a

+ separate smooth functions of time (8 df) for age group a.

where DOW are indicator variables for day of week. Samet et al. (1995,1997) and Kelsall et
al. (1997) give additional details about choices of functions used to control for longer-term
trends and weather. Alternative modeling approaches that consider different lag structures of
the pollutants and of the meteorological variables have been proposed (Davis et al., 1996; Smith
et al., 1997; Smith et al., 1998). More general approaches that consider non-linear modeling of
the pollutant variables have been discussed by Smith et al. (1997) .

Because the functions S¢(x,\)’s are smoothing splines with fixed )\, the semiparametric
model described above has a finite-dimensional representation. Hence, the analytic challenge was
to make inferences about the joint distribution of the 3°s in the presence of finite-dimensional
nuisance parameters, which we will refer to as n°.

We separately estimated three semi-parametric regressions for each pollutant with the con-
current day (lag 0), prior day (lag 1), and two days prior (lag 2) pollution predicting mortality.
The estimates of the coefficients and their 95% confidence intervals for PM;, alone and for
P My adjusted by O3 are shown in Figures 2 and 3. Cities are presented in decreasing order
by the size of their populations. The pictures show substantial between-location variability in
the estimated relative rates, suggesting that combining evidence across cities would be a natural
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approach to explore possible sources of heterogeneity, and to obtain an overall summary of the
degree of association between pollution and mortality. To add flexibility in modeling the lagged
relationship of air pollution with mortality, we could have used distributed lag models instead of
treating the lags separately. While desirable, this is not easily implemented because many cities
have P M, data available only every sixth day.

To test if the log-linear generalized additive model (1) has taken appropriate account of the
time dependence of the outcome, we calculate, for each city, the autocorrelation function of
the standardized residuals. Figure 4 displays the 20 autocorrelation functions; they are centered
near zero, ranging between -0.05 and 0.05, confirming that the filtering has removed the serial
dependence.

We also examined the sensitivity of the pollution relative rates to the degrees of freedom used
in the smooth functions of time, weather and seasonality by halving and doubling each of them.
The relative rates changed very little as these parameters are varied over this four-fold range

(data not shown).

4 Pooling Results Across Cities

In this section, we present hierarchical regression models designed to pool the city-specific pollu-
tion relative rates across cities to obtain summary value for the 20 largest U.S. cities. Hierarchical
regression models provide a flexible approach to the analysis of multi-level data. In this context,
the hierarchical approach provides a unified framework for making estimates of the city-specific
pollution effects, the overall pollution effect, and of the within- and between- cities variation of

the city-specific pollution effects.
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Results of several applied analyses using hierarchical models have been published. Examples
include models for the analysis of longitudinal data (Gilks et al., 1993), spatial data (Breslow
and Clayton, 1993), and health care utilization data (Normand et al., 1997). Other modeling
strategies for combining information in a Bayesian perspective are provided by Du Mouchel (1990),
Skene and Wakefield (1990), Smith and Spiegelhalter (1995), and Silliman (1997) . Recently,
spatio-temporal statistical models with applications to environmental epidemiology have been
proposed by Wikle et al. (1997), and Wakefield and Morris (1998).

In section 4.1 we present an overview of our modeling strategy. In sections 4.2 and 4.3,
we consider two hierarchical regression models with and without modeling of the possible spa-
tial autocorrelation among the 3° which we refer to as the “baseline” and “spatial” models,

respectively.

4.1 Modeling Approach

The modeling approach comprises two stages. At the first stage, we used the log-linear generalized

additive model (1) described in section 3:

yi | B% m° ~ Poisson [11,(8% m°)]

where yf = (yg%t, yg5_75t,y§75t). The parameters of scientific interest are the mortality relative
rates, (3°s, which for the moment are assumed not to vary across the three age groups within a
city. The vector ¢ of the coefficients for all the adjustment variables, including the splines in
the semi-parametric log-linear model, is a finite-dimensional nuisance parameter.

The second stage of the model describes variation among the 3°s across cities. We regressed
the true relative rates on city-specific covariates, z¢, to obtain an over-all estimate, and to
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explore the extent to which the site-specific explanatory variables explain geographic variation in
the relative risks. In epidemiologic terms, the covariates in stage two are possible effect-modifiers.
More specifically, we assumed:

B°|a, X~ Ny(z°a, X)

where p is the number of pollutant variables that enter simultaneously in model (1). Here the
parameters of scientific interest are the vector of the regression coefficients, «, and the overall
covariance matrix, 2. Unlike the overall air pollution effect «, we are not interested in estimating
overall non-linear adjustments for trend and weather, therefore we assume that the nuisance
parameters 7€ are independent across cities. Our goal is to make inferences about the parameters
of interest, the 3°s, a, and ¥ — in the presence of nuisance parameters 77°s. To estimate an
exact Bayesian solution to this pooling problem, we could analyze the joint posterior distributions
of the parameters of interest, as well as of the nuisance parameters, and then integrate over
the n° dimension to obtain the marginal posterior distributions of the 3. While possible, the
computations become extremely laborious and are not practical for either this analysis or a planned
model with ninety or more cities.

Given the large sample size at each city, (T ranges from 550 to 2550 days), accurate ap-
proximations to the posterior distribution can be obtained using the normal approximation of the
likelihood (Le Cam and Yang, 1990). If the likelihood function of 3° and 1° is approximated
by a multivariate normal distribution with mean equal to the maximum likelihood estimates BC
and 79)° and covariance matrices V3 and V;,, then by definition the marginal likelihood of 3° has
multivariate normal distribution with mean 3° and covariance matrix V3. We then replaced the

first stage of the model with a normal distribution with mean and variance equal to the maximum
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likelihood estimates of the parameter. Recently it has been shown that, the strategy based on
the normal approximation of the likelihood gives an alternative two-stage model that well approx-
imates the original model and leads to more efficient simulation from the posterior (Daniels and
Kass, 1998).

To check if inferences based on the normal approximation of the likelihood are proper, we
compared our approach with the implementation of the full MCMC approach for a few cities with
sample sizes ranging from 2000 in Pittsburgh to 545 in Riverside. Figure 5 shows the histogram of
samples for Riverside from p(3° | data) — obtained implementing a Gibbs sampler that simulates
from p(B° | n°,data) and p(n° | B¢, data) and approximate p(3° | data) = [ p(B°,n° | data)dn*

— with samples from N(Bc, V¢) (solid line). The two distributions are very similar.

4.2 Baseline model

Let B° = [B%110, 53] be the log relative rate associated with PM;y and Oj at city c. We

considered the following hierarchical model:

¢ c c
B 1B ~ Ny V)
c _ d ¢
Bbamio = ZPumi@PMio T €pprio )
B¢ — zc’ . + €€
03 = 20;%03 T €03
e€|X ~ Ny0,%)
c — c c Y ¢ ! c — c c Ye
where 255110 = [ Byovertys P65 Xbariol's 263 = [1, Provertys Pies: Xisl's apaio and ooy are
4 x 1 vectors, and finally € = [€5,,10:€5s), ¢ = 1,...,20. This model specification allowed

dependence between the relative rates associated with P, and O3, but implied independence

between the relative rates of city ¢ and ¢
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Under this model, the true P M, and O3 log-relative rates in city ¢ were regressed on predictor

variables including the percentage of people in poverty, (P

woverty) and the percentage of people

older than 65 years, (PS4;), and on the average of the daily values of PMj, and O3 over the
period 1987-1994 in location ¢, X%,,10, X&3- If we centered the predictors about their means,
the intercepts o pari0, @o,0, can be interpreted as overall effects for a city with mean predictors.
A simple pooled estimate of the pollution effect is obtained by setting all covariates to zero. To
compare the consequences of considering two pollutants independently and jointly in the model,
we fit a baseline-univariate model, — i.e., ¥ assumed diagonal — and a baseline-bivariate model,
— i.e., X assumed to have non-zero off-diagonal elements.

Inference on the parameters & = [apyr10, @0,] and ¥ represents a synthesis of the infor-
mation from the 20 cities; for example the parameters ay;, [X];; j = PMjo, O3, determine the
overall level and the variability of the relative change in the rate of mortality associated with
changes in the j-th pollutant level on average over all the cities.

The Bayesian formulation was completed by specifying dispersed but proper baseline prior
distributions, and then supplementing the baseline analysis with additional sensitivity analysis. A
priori, we assumed that the joint prior is the product of the marginals for & and 3. The following

baseline prior specifications for the marginals are used:

Overall log-relative rates & = ~  Np(11)(m, Vo)
Overall covariance matrix X ~ IW,(df, D)
where IW,(df, D) denotes the inverse Wishart distribution with df degrees of freedom and

scale matrix D, a p X p positive definite matrix, whose density is proportional to

D(df+p—1)/2 1 »
7|2‘(df+2p)/2 exp {—étrDE } .
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where p denotes the number of pollutant variables entering simultaneously in the model and &
the number of city specific covariates, respectively. We select m equal to a vector of zeros,
V., equal to a diagonal matrix, with diagonal elements equal to 100, df = 3 and D a diagonal
matrix with diagonal elements equal to 3. In the univariate case we denote ¥ by 02. These
prior hyperparameters lend prior 95% support to the overall effect, the city-specific effects, and
the correlation between the PM;, and the O3 log-relative rates equal to (—15,15), (—4,4), and
(—0.85,0.85), respectively. This prior specification was selected because it did not impose too
much shrinkage of the study-specific parameters toward their overall means, while at the same
time specifying a reasonable range for the unknown parameters a priori. A sensitivity analysis is
presented in section 4.

Given these prior assumptions, we can draw inferences on the unknown parameters using the

posterior distribution

A1 ~ 20
p(1317"'7ﬂ207a72|ﬂ7"'7ﬂ :Vla"'7v20)' (3)

To do this, we implemented a Markov chain Monte Carlo algorithm with a block Gibbs Sampler
(Gelfand and Smith, 1990) in which the unknowns are partitioned into the following groups: 3°s,
a, and Y. Each group is sampled in turn, given all others. The full conditional distributions
were available in closed form. Their derivation was routine (Bernardo and Smith, 1994) and
not detailed here. Because of the normality assumptions at the first and second stage of the
hierarchical model, computation of the posterior distributions of all the unknowns under an

univariate model can be performed via direct simulation following the factorization above:
p(B,..., B, 0,0 | data) = p(o? | data)p(a | 0%, data) [ p(8° | o, 07, data)
c
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The first step, simulating o2

, can be performed numerically (using the inverse cdf method, for
example). The second and third steps can be done easily by sampling from normal distributions.

This strategy can be conveniently implemented only for the univariate baseline model.

4.3 Spatial model

The assumption of independence of the city-specific coefficients made in the baseline model can
be relaxed to a more general model in which the correlation between 3¢ and 3¢ decays as either
a smooth or step function to zero as the distance between the two cities, ¢ and ¢/, increases.
In this section, we consider a hierarchical model in which the inferences allow for the possible
spatial correlation among the 3°s. We only considered univariate models given the small number
of cities; extension to multivariate models is straightforward, but requires a larger data set.

At the second stage of the spatial model, we assumed that there is systematic variation in the
air pollution/mortality relationship from pollutant to pollutant as specified in the baseline model
(2). We expressed the degree of similarity of the relative rates in locations ¢ and ¢’ as function of an
(arbitrary) distance between c and ¢, by assuming p(c, ¢') = Corr(3¢, 3¢) = exp (—0 d(c, c')).
We considered two distance measures, the Euclidean distance between the cities ¢ and ¢’ in the
longitude and latitude coordinates, and a step function such that d(c,¢’) = 1 if location ¢ and
¢’ are within a common “region” and d(c,c¢’) = oo if not. To make the results of these two
models comparable we re-scaled the Euclidean distance such that it ranges between 0 and 4 with
median equal to 0.64. The spatial model with (1, 00) distance can also be specified as a three
stage hierarchical model where: the first stage is as the baseline model (2), the second stage

describes the heterogeneity of the estimates across regions, and the third stage describes the
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heterogeneity of the estimates across regions. For this regional model, we have clustered the 20
cities in the following three regions: north-east, south-east, and west coast. Thus, if we indicate
by 72 the variability of the estimates across regions and by o2 the variability of the estimates
within region, then the correlation of the log-relative rates for locations ¢ and ¢ within a common
region is 72/(72+0?). Alternate definitions of distance can be incorporated easily into the model
as appropriate.

The spatial model specification is completed with the elicitation of the prior distribution.
For o and 02 we choose the same prior specified in section 4. For the parameter # under the
spatial model with Euclidean distance, we choose a log-normal prior with mean 0.2 and standard
deviation 0.5. Let d the median of the distribution of all distances, this specification leads to a

prior distribution of the correlation exp(—6 x d) having mean 0.45 (95% interval 0.11,0.74). For

2 under the spatial model with step distance, we chose an inverse gamma prior

the parameter 7
IG(A, B) with parameters A = 5 and B = 8.5. This specification leads to a prior distribution
for 7 having mean 1.35 (95% prior interval 0.9,2.2), and a prior distribution for the correlation
72/(7? 4+ o) having mean 0.45 (95% prior interval 0.13,0.77).

2 are all available in closed form. In

In the spatial model, the full conditional for (%, «, o
contrast, to sample from the full conditional distribution of #, we used a Metropolis-Hastings
algorithm with a Gamma proposal distribution having mean equal to the current value of € and
fixed variance. The spatial model with a step distance can be more efficiently sampled with a

block Gibbs sampler because the full conditional distributions of all the unknown parameters are

available in close form.
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5 Results

We ran the Gibbs Sampler for 3000 iterations for both the baseline and the spatial models,
ignoring the first 100. The autocorrelation, computed from a random sample of the g pario, is
negligible at lag 5 so we sampled every 5th observations for posterior estimation. The acceptance
probabilities for the Metropolis Algorithm averaged between 0.3 and 0.5. Convergence diagnosis
has been performed by implementing Raftery and Lewis (1992) methods in CODA (Best et al.,
1995) which reported the minimum number of iterations, Nmin, needed to estimate the variable
of interest with an accuracy of plus or minus 0.005 and with probability of attaining this degree
of accuracy equal to 0.95. Nmin ~ 2000 are proposed.

Figure 6 summarizes results of the pooled analyses under the univariate-baseline model. This
figure displays the posterior distributions of city-specific regression coefficients 3¢ associated with
changes in PM;, measurements for the 20 cities at the current day, one-day lag, and two-day
lag. The marginal posterior distribution of the overall effect (o pario) is displayed at far right.
Cities are ordered by the decreasing size of their populations. At the current day, the highest
relative rate for the P M, variable occurs in New York with 1.05% increase in mortality (95%
interval: 0.5,1.6) per 10ug/m? increase in PMj,. Overall, we found that a 10ug/m? increase
of PMj is associated with an estimated 0.48% increase in mortality (95% interval: 0.05,0.92).

Figure 7 summarizes results of the pooled analyses under the bivariate-baseline model. When
PM;, and O3 are combined in the same model, we estimated that 10 unit increments in PM;,
adjusted by Oj are associated with mortality increases of 0.52% (95% interval: 0.16,0.85).

The marginal posterior distribution of the overall regression effect combined and synthesized

the information from the 20 locations. Figure 8 shows the marginal posterior distributions of the
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overall pollution relative rates at the current day, one-day, and two-day lags obtained from the
baseline-univariate,the baseline-bivariate, and the spatial models. At the top right are summarized
the posterior probabilities that the overall effects are larger than zero for each lag-specification.
In univariate and bivariate analyses, we found significant effects of PM,.

Results of the adjusted analyses under the univariate-baseline model are shown in Table
2. Here we summarize the posterior means and the 95% posterior support intervals for the
relationship between the mean of the city-specific coefficients and the percentage in poverty, the
percentage of people older than 65, and the mean level of the pollutant. None of these variables
are found to predict the PM, relative rate.

An interaction of the pollution effects and age could be detected by the coefficient of the
variable P.g45 in the second-stage regression model. A more direct approach was to estimate a
separate pollution relative rate for each age stratum in the first-stage log-linear models and then
to pool the trivariate vector (B<65, ﬁ65_75,3>75) across cities. When we did so, the estimate
of the overall effect of PMjq for the three age groups have posterior means 0.63 (95% interval
0.24,1.05), 0.26 (95% interval —0.14,0.67), and 0.46 (95% interval 0.04,0.83). These results
suggest that no a trend was evident in the pollution relative rates with age as is suggested by the
second stage regression results in Table 2.

The variability of the regression coefficients, on average, over all the locations was captured
by the matrix ¥. Marginal posterior means and 95% posterior support intervals are summarized
in Table 4. A large diagonal element signified large variability over cities in the corresponding
coefficient, while a large off-diagonal element signifies strong correlation between the P M, and

ozone coefficients. Table 4 shows the results. Under the baseline univariate model, the standard
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deviation of the true coefficients across cities was estimated to be 0.76 (95% interval 0.41,1.37)
which is about twice as large as the overall estimate of the pollution effect. Hence, in univariate
analyses, the variability in PM, coefficient is non-negligible. The posterior distribution of the
off-diagonal elements of X indicates a negative mean correlation between the effects of the two
pollutants, but with a large standard deviation.

From the posterior samples of # in the spatial model, we could easily calculate the marginal
posterior distributions of the correlation coefficient p(c, ¢’) = exp(—0 d(c, ') for each distance
d(c,c). For the cities having median distance, the posterior mean correlation between 3¢ and
B¢ was 0.61 (95% interval 0.3,0.8). Consider the 25% and 75% quantiles of the distribution of
all distances. Each of these quantiles has an associated correlation coefficient. The prior mean
of these two correlation coefficients were 0.86 (95% interval 0.68,0.93) and 0.3 (95% interval
0.05,0.58), all larger than the corresponding prior means.

Under the regional model, with distance equal to a step function, the posterior mean of
the within-region correlation of the city-specific relative rates 72/(tau® + 02), was 0.68 (95%
interval 0.42,0.86). Results for the PMj, effects under the two spatial models were similar
qualitatively. The posterior means and IQR for the regional effects 3F45T  gSOUTH gnd gWEST
are 0.40, (—0.22,1.03), —0.06, (—0.96,0.93) and 0.69, (0.07,1.35) revealing that the adverse
health effects of PM;j, on mortality in the West US is larger than in the East and South US.

We have assessed the robustness of the results with respect to choices of the model (univariate,
bivariate, spatial), of the lag-structure (lag 0, lag 1, lag 2) and of the prior distributions. Our sen-
sitivity analysis compared 27 alternative scenarios (three for model-choice, three for lag-structures,

and three for prior distributions). For these scenarios we compare the posterior probability that

23



the overall effect of the P M is larger than zero. The consequences of these choices are shown
in Table 5. Significant effects of PM;, on total daily mortality are observed in all three mod-
els (weaker under a spatial model with current day pollution predicting mortality). When both
pollutants are included in the model, adverse effects of PM;, became stronger. Spatial analyses

attenuate the effects.

6 Discussion

We have developed a statistical model for obtaining a national estimate of the effect of urban
air pollution on daily mortality using data for the 20 largest US cities. The raw data comprised
publicly available listings of individual deaths by day and location, and hourly measurements
of pollutants and weather variables. Substantial pre-processing of the nearly one gigabyte of
information is necessary to create daily time series of mortality, pollutants, and weather for each
of the 20 cities.

Because estimation of a national pollution-relative rate is the primary objective of this study,
a two-stage approach is developed that allowed the modeling effort to focus on the combining
of information across cities. In the first stage, a log-linear regression is used to estimate a
pollution-relative rate for each city while controlling for the city-specific longer-term time trends
and weather effects. Because we had no specific scientific interest in the time or weather effects,
no effort is made to impose modeling assumptions to enable our borrow strength across cities
when estimating the effects on mortality of these variables.

In the second stage, we regressed the true relative rates on city-specific covariates to obtain

an overall estimate, and to estimate the variation among the coefficients across cities. We then
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generated posterior estimates of the overall pollution effect and of the city-specific effects using
Markov Chain Monte Carlo methods. Four models for combining relative rates of mortality
for PM;, across cities are used. In the first, relative rates from different cities are treated
as independent of one another. In the second, relative rates from different cities are treated as
independent of one another, but are adjusted by Os. In the third and fourth models the possibility
of geographic correlation among the true coefficients is allowed. Results under the four models
are similar, bivariate analyses gives slightly higher effects, and spatial analyses slightly attenuate
the effects. Results under different models, lag specifications and prior are summarized in Figure
8 and Table 4. Note that the variance of the posterior distribution of the overall relative rate in
the spatial models is somewhat sensitive to the prior specification for the between-region variance
or equivalently within-region correlation since, with our 20 cities, we have only 3 regions and
hence limited information. A similar analyses of the 90 larger cities will provide more precise
information about variation across regions.

These analyses demonstrated that there was a consistent association of particulate air pol-
lution PM,, with daily mortality across the 20 largest US cities leading to an overall effect,
which was positive with high probability. Our overall estimate was that a 10ug/m? increase in
particulate level is associated with a roughly 0.48% increase in daily mortality on that day or the
next day.

Another multi-city study air pollution and mortality is the multi-center European study, Air
Pollution and Health: A European Approach (APHEA), (Katsoyanni et al., 1997; Toulomi et al.,
1997). The cities are selected from across Europe, although not on a systematic basis. Data

on particulate air pollution and daily mortality are analyzed from 12 cities from western and
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central Europe according to a standardized protocol. Model estimates from the individual cities
are pooled as the weighted means of the regression coefficients and heterogeneity among cities is
explored using a random effects model. For particulate matter, the findings differed between the
western and central Europe cities, with a five-old greater effect in the western cities (Katsoyanni
et al., 1997). A similar approach is applied to the six selected cities with data available on
Os. A significant effect of O3 is found, after controlling for levels of black smoke, and index of
particulate matter (Toulomi et al., 1997).

While only a first step, the modeling described here establishes a basis for carrying out
national surveillance for effects of air pollution and weather on public health. The analyses
could be easily extended to studies of cause-specific mortality and other pollutants. Monitoring
efforts using models like the one described here would be appropriate given the important public
health questions that they can address and the considerable expense to government agencies for
collecting the information that forms the basis for this work.

An alternative modeling strategy would have been to use one large Markov chain Monte Carlo
method to simultaneously estimate the parameters in the log-linear models within each city, the
overall estimate of the pollutant, and all of the nuisance parameters, borrowing strength across
cities to obtain more precise estimates of the nuisance functions for each city. This type of
approach would be necessary if there were limited information about the nuisance parameters
within each city as, for example, in the Neyman and Scott problem (Neyman and Scott, 1960).
As this is not the case in our investigation, we focused the modeling and computing effort on
combining city-specific relative rate estimates to obtain a national average relative rate.

If the likelihood function for the pollution relative rate and the nuisance parameters is well
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approximated by a Gaussian distribution, then our approach will give a close approximation to
the posterior distribution from a Markov chain Monte Carlo that simulated both the parameters
of interest and the nuisance parameters. We compared the marginal posterior of the 3¢ obtained
using a full MCMC with our normal approximation for a few cities; they are indistinguishable.

The approach of taking a weighted average of the city-specific estimates to obtain an estimate
of the overall effect, as for example suggested by DerSimonian and Laird, (1986), is a simplified
version or approximation to the use of hierarchical models with a Gibbs Sampler. Under the
weighted average approach for a random effect model, the weights of the city-specific estimates are
modified to take into account of the variability between locations, say o2, and an estimate of this
variance is included. Rather then including a single estimate of 02, the Bayesian method permits
incorporating the whole posterior distribution of 2. In this way, all the information about the
variability among studies is considered. In addition, the Bayesian method provide estimates of the
posterior distribution of the city-specific relative rates, of the national estimate and it easily lend
itself to generating ranking probabilities as, for example, P(overall log relative rate > 0 | data).
In addition, the Gibbs Sampler is necessary for approximating the posterior distributions under
the spatial model

These analyses alone cannot establish that increased levels of particulate air pollution as
measured by PMiq cause an increase in mortality. They do, however, establish that there is
a consistent association between shorter-term variations in PM;, and shorter-term variations
in mortality, and that this association is very unlikely explained by the effects of longer-term
confounders such as change in medical practice, influenza epidemics, or seasonality, which have

been controlled for using city-specific adjustment for longer-term trends. Neither can these
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associations be explained by confounding effects of temperature or dew point temperature, which

again have been controlled for using city-specific adjustment methods.
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Tables Captions

e Table 1. Summary by location of the county population (Pop), percentage days with
missing values (Piss03, Pmisspario), percentage of people in poverty (Ppoverty), percent-
age of people older than 65 years (Psg5), average of pollutant levels for O3 and P My

(Xo3, Xpar10), and average daily of deaths (V).

e Table 2. Results of the adjusted second-stage analyses under the baseline-univariate model.
(P Mj, entered independently in the model). Posterior means and 95% posterior support
intervals (,) of the coefficients for the relationship between the true relative rate, (3¢, the
percentage in poverty, Ppo.er1y, the percentage of people older than 65, P.g5, and the mean
level of the pollutant Xpar10. The results are reported using the concurrent day (lag 0)
pollution values to predict mortality, using the previous day's (lag 1) pollution levels, and

using pollution levels from two days before (lag 2).

e Table 3. Posterior means and 95% support intervals of the elements of ¥ (std of P M,
effects = standard deviation across locations of the 3%,,,, std of Os effects = standard
deviation across locations of the (35, corr of PM,y and O3 effects = correlation between

the 85,10 and (5,) under the three models (univariate, bivariate, spatial).

e Table 4. Posterior probabilities that the overall effects of PM;, are larger than 0 by
lag, by three prior distributions under the three models (univariate, bivariate, spatial).
The three prior specifications consist in the following 95% support intervals of the over-
all effects, the city-specific effects, and of the spatial correlation for the relative rates

of the two closets cities having median distance: a: (—15,15),(—4,4),(0.11,0.74); b:
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(—4,4), (—4,4), (0.11,0.74); ¢: (—4,4), (—=7,7), (0,0.9).
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Figure Captions

Figure 1. Map of the 20 cities with largest population including the surrounding country.
The dimensions of the circles are proportional to the county populations. The cities are

numbered from 1 to 20 following the order of Table 1.

Figure 2. Results of regression models for the twenty cities by selected lag: BC, and 95
% confidence intervals of BC x 1000 for P M. Cities are presented in decreasing order by
population living within their county limits. The vertical scale can be interpreted as the
percentage increase in mortality per 10 pg/m? increase in PMy. The results are reported
using the concurrent day (lag 0) pollution values to predict mortality, using the previous

day’s (lag 1) pollution levels, and using pollution levels from two days before (lag 2).

Figure 3. Results of Regression Models for the twenty cities by selected lag: Bc, and 95
% Confidence Intervals of 3¢ x 1000 for PMj, adjusted by Oj. Cities are presented in
decreasing order by population living within their county limits. The empty circle placed at
Minneapolis represents the missingness of the ozone data in this city. The vertical scale can
be interpreted as the percentage increase in mortality per 10 1g/m? increase in PMqy. The
results are reported using the concurrent day (lag 0) pollution values to predict mortality,
using the previous day’s (lag 1) pollution levels, and using pollution levels from two days

before (lag 2).

Figure 4. Plots of city-specific autocorrelation functions of standardized residuals r;, where

T = (Yt—fft)/\ﬂfft) and Y} are the fitted values from log-linear generalized additive model
(1).
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Figure 5. Comparison between the normal approximation of the likelihood of 3° and
the marginal posterior distribution of 3°. The solid line represents the normal density
N(BC, V¢) where Bc and V¢ are the MLEs of a semiparametric Poisson regression model.
The histogram represents the marginal posterior distribution of 3° obtained by implementing
a full Gibbs Sampler for the parameter of interest 3 and for the coefficients of the natural

cubic splines n°.

Figure 6. Results of pooled analyses under the univariate baseline model (P M, entered
independently in the model). Boxplots of samples from the posterior distributions of city-
specific regression coefficients, (3¢, associated with changes in PM;, measurements. For
comparison, samples from the marginal posterior distribution of the corresponding overall
effects are displayed at far right. The vertical scale can be interpreted as the percentage
increase in mortality per 10 g/m? increase in PMy,. The results are reported using the
concurrent day (lag 0) pollution values to predict mortality, using the previous day's (lag

1) pollution levels, and using pollution levels from two days before (lag 2).

Figure 7. Results of pooled analyses under the bivariate baseline model (PM;y and O;
entered simultaneously in the model). Boxplots of samples from the posterior distributions
of city-specific regression coefficients, 3¢, associated with changes in PM;, adjusted by
O3 measurements. For comparison, samples from the marginal posterior distribution of the
corresponding overall effects, are displayed at far right. The vertical scale can be interpreted
as the percentage increase in mortality per 10 ug/m? increase in P M, respectively. The
results are reported using the concurrent day (lag 0) pollution values to predict mortality,

using the previous day’s (lag 1) pollution levels, and using pollution levels from two days
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before (lag 2).

Figure 8. Results of pooled analyses under the univariate baseline, bivariate-baseline, and
spatial models. Marginal posterior distributions of the overall effects, o pm10 for different
lags. At the top right are specified the posterior probabilities that the overall effects are

larger than zero.
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Table 1:

P, poverty (%)

Ps¢5 (%)

XIC-"Mlo (Hg/mg)

-0.005 (-0.17,0.07)
-0.03 (-0.20,0.15)

0.01 (-0.05,0.07)

0.00 (-0.11,0.13)

0.02 (-0.15,0.2)

-0.01 (-0.07,0.05)

0.03 ( -0.10,0.14)
0.00 (-0.17,0.17)

0.00 (-0.07,0.06)

41

Locations (State) | Label Pop Priss03 | Prisspm | Ppoverty(%) | Pses(%) | Xos(ppb) | Xpm(pg/m?) | Y
LosAngeles la 8863164 0 80.2 14.8 9.7 22.84 45.98 148
NewYork ny 7510646 0 83.3 17.6 13.2 19.64 28.84 191
Chicago chic | 5105067 0 8.2 14.0 12,5 18.61 35.55 114
Dallas-Fortworth dift | 3312553 0 78.6 117 8.0 25.25 23.84 49
Houston hous | 2818199 0 72.9 155 7.0 20.47 29.96 40
SanDiego sand | 2498016 0 82.2 10.9 10.9 31.64 33.63 42
SantaAna-Ana. staa | 2410556 0 83.6 8.3 9.1 22.97 37.37 32
Phoenix phoe | 2122101 0.1 85.1 12.1 125 22.86 39.75 38
Detroit det | 2111687 36.3 53.9 19.8 12.5 22.62 40.90 47
Miami miam | 1937094 1.4 83.4 17.6 14.0 25.93 25.65 44
Philadelphia phil 1585577 0.7 83.1 19.8 15.2 20.49 35.41 42
Minneapolis minn | 1518196 100 54 9.7 11.6 NA 26.86 26
Seattle seat | 1507319 37.3 24.5 7.8 11.1 19.37 25.25 26
SanJose sanj | 1497577 0 67.7 7.3 8.6 17.87 30.35 20
Cleveland clev | 1412141 41.4 55.6 135 15.6 27.45 45.15 36
SanBernardino sanb | 1412140 0 81.6 12.3 8.7 35.88 36.96 20
Pittsburgh pitt | 1336449 1.3 0.8 11.3 17.4 20.73 31.61 38
Oakland oakl | 1279182 0 82.6 10.3 10.6 17.24 26.31 22
SanAntonio sana | 1185394 0.1 77.1 19.4 9.8 22.16 23.83 20
Riverside river | 1170413 0 81.3 14.8 11.3 33.41 51.99 20
Table 2:
City-Specific covariates Lag 0 Lag 1 Lag 2
Overall-P M, 0.48 (0.02,0.91) 0.55 (0.11,1) 0.44 (0.00,0.9)




Table 3:

euclidean distance model

25 % 50 % 75%
distance quantiles 0.2 0.67 1.57
prior correlation e~ 0.8 (0.53,0.93) | 0.45 (0.11,0.74) | 0.16 (0.06,0.5)
posterior correlation e~%¢ | 0.86 ( 0.68,0.93) | 0.61 (0.30,0.80) | 0.30 (0.05,0.58)

Ta

ble 4:

Model

std of PM, effects

std of O3 effects

corr.of PMy, and Oz effects

Baseline-Bivariate

0.36 (0.17,0.75)

0.91 (0.33,2.01)

-0.09 (-0.5,0.22)

Baseline-Univariate

0.76 (0.41,1.37)

1.28 (0.69,2.28)

Spatial 0.71 (0.38,1.27) | 1.21 (0.61,2.32)
Table b:
PMq (pg/m?)
Model Prior 12 Prior 2P Prior 3¢

Lag 0 | Lag1 | Lag 2

Lag0 | Lag1l | Lag?2 | Lag 0| Lag 1l | Lag 2

Baseline-Univariate

Baseline-Bivariate

Spatial

098 | 0.98 | 0.99

1 1 0.97

083 | 095 | 0.92

098 | 096 | 098 | 095 | 0.96 | 0.93

1 099 | 099 | 0.98 1 0.93

083 | 093 | 091 | 0.78 | 0.89 | 0.85
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te Model for PM;,
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Bivariate Model for PM;, adjusted by O;
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hist = Full Gibbs
line = Normal approx
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Univariate Model for P\,
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Bivariate Model for PM;, adjusted by O;
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Univariate Model for P\,
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