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The widely used generalized additive models (GAM) method is a flexible and effective technique for conducting
nonlinear regression analysis in time-series studies of the health effects of air pollution. When the data to which
the GAM are being applied have two characteristics—1) the estimated regression coefficients are small and 2)
there exist confounding factors that are modeled using at least two nonparametric smooth functions—the default
settings in the gam function of the S-Plus software package (version 3.4) do not assure convergence of its
iterative estimation procedure and can provide biased estimates of regression coefficients and standard errors.
This phenomenon has occurred in time-series analyses of contemporary data on air pollution and mortality. To
evaluate the impact of default implementation of the gam software on published analyses, the authors reanalyzed
data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) using three different methods: 1)
Poisson regression with parametric nonlinear adjustments for confounding factors; 2) GAM with default
convergence parameters; and 3) GAM with more stringent convergence parameters than the default settings.
The authors found that pooled NMMAPS estimates were very similar under the first and third methods but were
biased upward under the second method. Am J Epidemiol 2002;156:000–00.

air pollution; algorithms; backfitting; generalized additive models; models, statistical; time series

Abbreviations: GAM, generalized additive model(s); GLM, generalized linear model(s); NMMAPS, National Morbidity, Mortality, 
and Air Pollution Study; PM10, particulate matter <10 µm in diameter.

Since they were originally described, generalized additive
models (GAM) (1, 2) have been effectively applied in a
variety of research areas. A MEDLINE search using the term
“generalized additive models” revealed 128 articles
published in the last 8 years in the fields of genetics, epide-
miology, molecular biology, and medicine. In time-series
studies of air pollution and mortality, GAM has been the

most widely applied method, because it allows for nonpara-
metric adjustments for nonlinear confounding effects of
seasonality, trends, and weather variables (3–10). It is a more
flexible approach than fully parametric alternatives (11–13).
GAM has been widely used in many time-series analyses,
including those of data from the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) (6, 7, 14,
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15). The NMMAPS addresses the relation between daily
mortality counts and air pollution in the 90 largest cities in
the United States.

GAM extends traditional generalized linear models
(GLM) (16) by replacing linear predictors of the form η = Σj
βjxj with η = Σj fj(xj), where fj(xj) are unspecified nonpara-
metric functions. Methods for estimating fj include
smoothing splines (17) or LOESS smoothers (18–20). GLM
with regression splines (to which we refer here as the fully
parametric alternative of the GAM with nonparametric
smoothers) commonly define fj to be regression splines, such
as natural cubic splines or B-splines with a prespecified
number of knots at known locations (21, 22).

Estimation in GAM is based on a combination of the local
scoring algorithm (1) and the backfitting algorithm (23, 24).
The local scoring algorithm is a generalization of the Fisher
scoring procedure for finding maximum likelihood estimates
in GLM (16, 25). The backfitting algorithm is suitable for
fitting any additive model, and in GAM it is used within the
local scoring iteration when several smooth functions are
included in the model.

Unlike linear regression models, which are fitted by using
weighted least squares and have an exact solution, the esti-
mation procedure for a GAM (or a GLM) requires iterative
approximations in order to find the optimal estimates. More
specifically, the backfitting procedure in GAM with
smoothing splines maximizes a penalized log likelihood
defined as lp(η,y) = l(η,y) + P, where y is the vector of the
observations, l(η,y) is the likelihood function of the linear
predictor η, and P is a quadratic penalty term used to account
for smoothness (2, 24). This is equivalent to maximizing a
posterior distribution in a Bayesian analysis using a prior
that favors a smoother relation. From a frequentist stand-
point, this may result in improved mean squared error, but it
may also result in bias, the extent of which depends on P
(26). Asymptotic bias and variance properties of backfitting
estimators have been explored by Opsomer and Rupper (27)
and Opsomer (28).

Convergence of the local scoring algorithm is controlled
by two user-defined parameters: 1) ε, which controls the
convergence precision, and 2) M, which controls the
maximum number of iterations allowed. Convergence of the
backfitting algorithm is controlled by two additional user-
defined parameters: 1) εbf, which controls the convergence
precision, and 2) Mbf, which controls the maximum number
of iterations to be used in backfitting.

In this paper, we discuss the use of GAM for estimating
relative rates of mortality/morbidity associated with expo-
sure to air pollution in time-series analyses of air pollution
and health. Our simulation studies show that when the rela-
tive rates to be estimated are small and at least two nonpara-
metric smooth functions are included in the model
(smoothing splines or LOESS smoothers), as is often done in
time-series studies of air pollution and mortality, the default
convergence parameters in the S-Plus statistical function
gam may be too lax to assure convergence of the backfitting
algorithm and may lead to biased estimates.

Below we provide details on a simulation study to evaluate
the impact of default implementation of the gam function in
S-Plus software on published analyses. We next reanalyze

the NMMAPS data using three different methods: 1) Poisson
regression with natural cubic splines to achieve nonlinear
adjustments for confounding factors; 2) GAM with
smoothing splines and default convergence parameters; and
3) GAM with smoothing splines and more stringent conver-
gence parameters than the default settings. We then discuss
advantages and disadvantages of using GAM as compared
with GLM. Implementation of the GAM estimation proce-
dure for air pollution time-series data is detailed in the
Appendix.

SIMULATION STUDY FOR CITY-SPECIFIC ANALYSES

To assess the effects of convergence parameters on city-
specific relative rate estimates in time-series studies of air
pollution and health, we conducted a simulation study. First,
we fitted the following GAM with default convergence
parameters to the Pittsburgh, Pennsylvania, NMMAPS data-
base (1987–1994):
Y ∼  Poisson (µt)
log µt = α + βPM10t + s1(temperature, 6) + s2(time, 7/year)

+ ηIdow, (1)
where Yt denotes the daily number of deaths among people
older than 75 years, β denotes the log relative rate of
mortality associated with a 10-unit increase in particulate
matter less than 10 µm in diameter (PM10), s1(temperature, 6)
and s2(time, 7/year) are smooth functions (smoothing
splines) of temperature and calendar time designed to control
for trend, seasonality, and weather, and Idow are indicator
variables for day of the week. This is a simplified version of
the GAM originally used in the published NMMAPS anal-
yses (4, 7), with only two smooth functions and no overdis-
persion. In the simulation, the true β was set to a 0.51 percent
increase in mortality per 10-µg/m3 increase in PM10, the
value estimated from the actual Pittsburgh data.

We then simulated 1,000 mortality time series from a
Poisson distribution with mean equal to the predictive values
( t) from model 1, also shown in figure 1 (top left). Each of
the simulated data sets was analyzed using three methods: 1)
gam with smoothing splines s and default parameters (gam +
s + default); 2) gam with smoothing splines s and more
stringent convergence parameters (gam + s); and 3) Poisson
regression with natural cubic splines ns, with equally spaced
knots and more stringent convergence parameters (glm +
ns). The default settings in version 3.4 of the S-Plus soft-
ware package (Insightful Corporation, Seattle, Washington)
and our suggested, more stringent parameter values for the
S-Plus function gam convergence control are summarized in
table 1.

In the top left panel of figure 2, we plot the 1,000 estimates
of β obtained under glm + ns (x-axis) versus the 1,000 esti-
mates of β obtained under gam + s + default (y-axis).
The horizontal and vertical lines are placed at the true values
(0.51). The distribution of glm + ns estimates is centered at
the true value, while the distribution of gam + s +
default estimates is displaced upwards. In the top right
panel of figure 2, we plot the 1,000 estimates of β obtained
under glm + ns (x-axis) versus the 1,000 estimates of β
obtained under gam + s with more stringent convergence
criteria (y-axis). Here the two sets of estimates are much

µ̂



GAM in Time-Series Studies of Air Pollution   3

Am J Epidemiol    Vol. 156, No. 3, 2002 

more similar and are closer to the true value, suggesting that
GAMs with more stringent convergence parameters provide
relative rate estimates closer to the true rate.

We then repeated this simulation study, replacing
smoothing splines with LOESS smoothers. We fitted the
following GAM with LOESS smoothers with default
convergence parameters to the Pittsburgh database (1987–
1994):
log µt = α + βPM10t + lo(temperature, 0.024) + lo(time, 0.4)
+ ηIdow. (2)

In model 2, we chose the spans in the LOESS smoothers to
obtain a correlation of 0.99 between fitted values of model 1
and model 2. The estimated β was a 0.53 percent increase in
mortality per 10-µg/m3 increase in PM10. We then simulated
1,000 mortality time series from a Poisson distribution with
mean equal to the predictive values ( t) from model 2, also
shown in figure 1 (top right). Each of the simulated data sets
was analyzed using three methods: 1) gam with LOESS
smoother lo and default parameters (gam + lo +
default); 2) gam with LOESS smoother lo and more strin-

FIGURE 1. Fitted values for daily mortality (number of deaths) under generalized additive models with smoothing splines (left) and LOESS
smoothers (right). Black dots are the observed mortality counts for the Pittsburgh, Pennsylvania, database (1987–1994) of the National Morbidity,
Mortality, and Air Pollution Study. Time is given in days.

TABLE 1.   Default settings and more stringent convergence parameters in the gam 
function of the S-Plus* statistical software package (version 3.4)

* Insightful Corporation, Seattle, Washington.

Parameter gam + s + default gam + s glm + ns
ε 10–3 10–15 10–15

M 10 1,000 1,000

εbf 10–3 10–15 10–15

Mbf 10 1,000 1,000

µ̂
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gent convergence parameters (gam + lo); and 3) Poisson
regression with natural cubic splines ns (glm + ns) and
more stringent convergence parameters.

In the bottom panels of figure 2, we plot the 1,000 esti-
mates of β obtained under glm + ns (x-axis) versus the
1,000 estimates of β obtained under gam + lo + default
and versus the 1,000 estimates of β obtained under gam +
lo. The horizontal and vertical lines are placed at the true

values (0.50). Smoothing splines and LOESS smoothers
show similar bias in the relative rate estimates.

To further investigate the relations among bias, size of the
true coefficient, and amount of control from trend and
seasonality in models 1 and 2, we repeated the simulation
study by lowering the number of degrees of freedom in the
smoothing splines from 7 to 3 per year or, equivalently, by
increasing the span in the LOESS smoother from 0.024 to

FIGURE 2. Top: estimates of β obtained by fitting a Poisson regression model with parametric nonlinear adjustments for confounding factors glm
+ ns versus estimates obtained by fitting generalized additive models with smoothing splines gam + s. Vertical and horizontal lines indicate
true values. Note that small bias still remains (see table 2). Bottom: estimates of β obtained by fitting a Poisson regression model with parametric
nonlinear adjustments for confounding factors glm + ns versus estimates obtained by fitting generalized additive models with LOESS smooth-
ers gam + lo. Vertical and horizontal lines indicate true values. Note that small bias still remains (see table 2).
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0.067. The fitted values of models 1 and 2 are shown in
figure 1 (bottom left and right). Note that with less control
for trend and seasonality, the estimated β for Pittsburgh
becomes larger (i.e., 0.73 percent vs. 0.51 percent). Table 2
summarizes the results of our simulations. The first column
indicates the nonparametric smoother included in GAM
models 1 and 2; the second column represents the true log
relative rate (β); and the third column summarizes the
percent bias of gam + s + default, gam + s, and glm +
ns with respect to the true β. Even when the data are gener-
ated from a GAM with smoothing splines or LOESS
smoothers, gam + s + default and gam + lo +
default produce a bias of 36–42 percent. The bias is not
negligible (7–18 percent) when more stringent convergence
parameters are used and when a smaller number of degrees
of freedom (or a larger span in the LOESS smoother) is used
in the smooth function of time to adjust for trend and season-
ality.

To investigate whether the degree of bias depends on the
size of the true relative rate of mortality (β), we repeated the
simulation study generating 1,000 mortality time series from
model 1, with β’s equal to 0.05 percent, 0.1 percent, 0.5
percent, 0.7 percent, and 1 percent increases in mortality per
10-unit increase in PM10, respectively. For each sampled
mortality time series, we estimate the relative rate of
mortality using gam + s + default. Figure 3 (left) plots
the relative bias versus the true β values. The relative bias is
defined as (  – β)/β, where  is the average of the 1,000
gam + s + default estimates. The bias decreases as the
size of the true coefficient increases, indicating that, on a
percentage scale, estimates of smaller effects are affected
more by inappropriate control in the convergence criteria.

We also performed additional simulation studies to assess
the relations between bias and degree of concurvity in the
GAM. The degree of concurvity (29) can be estimated by
calculating the correlation between the daily time series of
PM10 (x1t) and the fitted values ( 1t) from the linear model x1t
= s1(temperature, 6) + s2(time, 7/year) + ε, where ε is distrib-
uted as N(0,σ2). For the Pittsburgh data, such concurvity is
equal to 0.60. We then generate 1,000 mortality time series
from model 1, replacing x1t with ~x1t, where ~x1t = 1t +
N(0,σ2), and we chose σ2 so that the correlations between
~x1t and 1t are equal to 0, 0.3, 0.6, 0.8, and 0.9. Figure 3
(right) plots relative bias versus concurvity. Here we take 

to be the average of the 1,000 gam + s + default esti-
mates and β to be a 0.51 percent increase in mortality per 10-
µg/m3 increase in PM10. As expected, bias increases as
concurvity increases.

NMMAPS REANALYSES

We next reanalyzed the NMMAPS data by calculating
city-specific relative rate estimates under three methods: 1)
gam + s + default; 2) gam + s; and 3) glm + ns.
Figure 4 (top left) shows the 90 city-specific estimates at lag
1 obtained with glm + ns (x-axis) versus the published
NMMAPS estimates (13, 15) obtained with gam + s +
defaults (y-axis). Figure 4 (top right) shows the 90 city-
specific estimates at lag 1 obtained with glm + ns (x-axis)
versus the 90 city-specific estimates at lag 1 obtained with
gam + s and more strict convergence parameters. The black
square is plotted at the pooled estimate across the 90 cities;
its size corresponds to ±2 standard errors of the pooled esti-
mates.

Visual inspection of the plot indicates substantial agree-
ment between the two sets of city-specific estimates. Cities
whose estimates are unchanged fall exactly on the y = x line.
The original pooled estimate under gam + s + default (a
0.41 percent increase in mortality per 10-µg/m3 increase in
PM10 (posterior standard error 0.05)) is larger than the
pooled estimate under glm + ns (a 0.21 percent increase in
mortality per 10-µg/m3 increase in PM10 (posterior standard
error 0.06)). The pooled estimate under gam + s with the
strict convergence criterion is similar to the pooled estimate
under glm + ns (a 0.27 percent increase in mortality per 10-
µg/m3 increase in PM10 (posterior standard error 0.05)). If we
use 3 degrees of freedom per year in the smooth function of
time under glm + ns, we obtain a pooled estimate of 0.31
percent (posterior standard error 0.05).

Figure 4 (bottom left) shows the standard errors of 90 city-
specific estimates at lag 1 obtained with glm + ns (x-axis)
versus gam + s + defaults (y-axis). Figure 4 (bottom
right) shows the standard errors of 90 city-specific estimates
at lag 1 obtained with glm + ns (x-axis) versus gam + s (y-
axis). GAM consistently gives smaller estimated standard
errors than glm + ns. The estimated standard errors in the
two models are roughly proportional to each other. This is
consistent with recent work by Ramsay et al. (29), who

TABLE 2.   Percent bias of relative rate estimates under generalized additive models with smoothing splines and LOESS smoothers 
for default and more stringent convergence parameters and for different degrees of control for trend and seasonality

Model True log relative rate Percent bias

gam + s + default gam + s glm + ns
s1(time, 7/year) + s2(temperature, 6) 0.51 36 7 2

s1(time, 3/year) + s2(temperature, 6) 0.73 22 17 0

gam + lo + default gam + lo glm + ns
lo(time, 0.024) + lo(temperature, 0.4) 0.53 42 18 9

lo(time, 0.067) + lo(temperature, 0.4) 0.73 24 18 1

β̂ β̂

x̂

x̂

x̂
β̂
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showed that inability of the GAM to detect concurvity can
lead to underestimation of the standard errors of relative rate
estimates. Standard errors are underestimated even if more
stringent convergence parameters are used (figure 4, bottom
right).

Figure 5 compares pooled estimates across 90 cities under
the three regression methods. The 90 city-specific estimates
are pooled across cities under 1) a fixed-effect model, 2) a
random-effect model with a moment estimator of the across-
city variance (30), and 3) a Bayesian two-stage model with a
noninformative prior of the across-city variance and a
Markov chain Monte Carlo estimation procedure (31), as in
the papers by Dominici et al. (7, 13). Relative to glm + ns,
we observe that 1) gam + s + default gives a larger
pooled estimate and 2) gam + s with restricted convergence
criteria gives a similar but slightly larger pooled estimate.
The pooled estimates show little sensitivity to the specific
pooling procedure used. The Markov chain Monte Carlo
method provides slightly more conservative confidence
intervals.

SIMULATION STUDY FOR POOLED ANALYSES

To characterize precisely the extent of bias in the pooled
NMMAPS results, we performed a second simulation study.
We first estimated the 90 city-specific relative rates of
mortality at lag 1 from the NMMAPS database by using glm
+ ns with restricted convergence parameters and with the
same set of confounding factors used in the NMMAPS anal-

yses (7, 13, 15). More specifically, we replaced all of the
smoothing splines in the NMMAPS GAM model (7, 13)
with natural cubic splines that had the same number of
degrees of freedom. The spline knots were equally spaced at
appropriate quantiles of the distribution of each covariate.

For each city, we obtained the maximum likelihood esti-
mate of the linear predictor t

c = exp{( cPM10t + Σj
^nsj

c(xjt,λ j)} using a fully parametric version of the GAM of
Dominici et al. (7, 13). We then pooled the 90 city-specific
estimates ( c) using a two-stage hierarchical normal model
with a noninformative prior on the across-city variance. The
pooled estimate under this model is 0.21 percent per 10-
µg/m3 increase in PM10 (posterior standard error 0.06), as
reported above.

For each city, we then generated 100 mortality time series
Y t

c from an overdispersed Poisson distribution with mean
equal to the city-specific fitted values  t

c. We analyzed each
city-specific simulated data set with gam + s + default
and glm + ns to obtain two sets of 90 × 100 relative rate
estimates and their standard errors. We then pooled the city-
specific estimates across cities under a random-effect model
(30) using an estimate of the across-city variance obtained
from the Markov chain Monte Carlo procedure.

Figure 6 shows histograms for the 100 pooled estimates
obtained under glm + ns (left) and under gam + s +
default (right). The vertical lines are placed at the true
value—that is, at the pooled estimate from the glm + ns.
First, the distribution of the 100 pooled estimates under glm
+ ns is centered at the true pooled value (pooled estimate

FIGURE 3. Right: relative bias in the log relative rate  versus the true β. The relative bias is measured as (  – β)/β, where  is obtained by
averaging the gam + s + default estimates across the 1,000 iterations. The square is plotted at β = 0.51 percent increase in mortality per
10-µg/m3 increase in particulate matter less than µm in diameter—for example, the estimate for the Pittsburgh, Pennsylvania, database (1987–
1994) of the National Morbidity, Mortality, and Air Pollution Study—using glm + ns. Left: relative bias versus different values for concurvity.
The relative bias is measured as (  – β)/β, where  is obtained by averaging the gam + s + default 1,000 estimates and β is set to be
0.51 percent. The square is plotted at the observed concurvity for Pittsburgh (0.6).

β̂ β̂ β̂

β̂ β̂

µ̂ β̂

β̂

µ̂
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from glm + ns), indicating that the glm + ns model
provides unbiased estimates not only of the city-specific
effects but also of the pooled effects. Second, as in the simu-
lation study for the city-specific analyses, the 100 pooled
estimates under gam + s are all larger than the true value,
showing a bias similar to that indicated by the simulation
study for city-specific analyses.

DISCUSSION

In this analysis, we examined the effects of using default
convergence criteria options in S-Plus gam software on time-
series studies of daily mortality counts and air pollution. Our
simulations using time-series data for Pittsburgh (1987–
1994) and a GAM model with two smooth functions
(smoothing splines or LOESS) suggested that GAMs with

FIGURE 4. Relative rate estimates (top) and standard errors (bottom) for mortality across 90 US cities in the National Morbidity, Mortality, and
Air Pollution Study. Shown are estimates obtained by fitting a Poisson regression model with parametric nonlinear adjustments for confounding
factors glm + ns versus estimates obtained by fitting generalized additive models with smoothing splines gam + s + default (left) and
by using more restrictive convergence criteria gam + s (right). The black square is plotted at the pooled estimate across the 90 cities; its size
corresponds to ±2 standard errors of the pooled estimates.
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default convergence criteria overestimate the true parameter
by 36–42 percent and that such bias is larger when 1) LOESS
smoothers are used instead of smoothing splines, 2) the
magnitude of the regression coefficients is small (e.g.,
<0.001), and 3) concurvity among the time-series covariates
(32)—the nonparametric analog of multicollinearity—is
greater.

We observed that for time-series studies of air pollution
and mortality, the bias is dependent on the nonparametric
adjustment for confounding factors such as trend, season-

ality, and weather. A smaller number of degrees of freedom
in the smoothing spline or a larger span in LOESS leads to
larger estimated relative rates, smaller concurvity, and there-
fore less bias from lack of convergence. For example, in our
simulations for Pittsburgh, we used 7 degrees of freedom per
year. If we change the number of degrees of freedom to 3,
the bias drops from 36 percent to 22 percent. However, if we
compare the relative bias for 3 versus 7 degrees of freedom
for a fixed particle effect and concurvity, we find greater bias
with fewer degrees of freedom.

FIGURE 5. Pooled relative rate estimates for mortality across 90 US cities in the National Morbidity, Mortality, and Air Pollution Study under three
models: 1) gam + s + default, 2) gam + s, and 3) glm + ns. The 90 city-specific estimates obtained under each model were pooled
across cities under 1) a fixed-effect model, 2) a random-effect model (30) with a moment estimator of the across-city variance, and 3) a Bayesian
two-stage model with a noninformative prior for the across-city variance and a Markov chain Monte Carlo estimation procedure (31), as in the
paper by Dominici et al. (7).
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In simulation studies using NMMAPS data for the 90
largest US cities and using city-specific regression models
with smooth functions (smoothing splines) to adjust for
nonlinear confounders as described elsewhere (13, 15), we
found that pooled relative rate estimates obtained under
GLMs with natural cubic splines and iteratively reweighted
least squares better detect true relative rates than GAMs with
smoothing splines and default convergence parameters for
the local scoring and the backfitting algorithm.

Although GAM with nonparametric smoothers provides a
more flexible approach for adjusting for nonlinear
confounders compared with fully parametric alternatives in
time-series studies of air pollution and health, we have found
that the use and implementation of GAMs requires extreme
caution. Specifically: 1) default convergence parameters
need to be modified; 2) GAM optimizes a penalized likeli-
hood that can itself lead to increased bias in pollution effect
estimates in exchange for decreased variance; and 3) even
when the convergence of the backfitting algorithm is guaran-
teed, failure of the GAM to detect concurvity can also lead to
underestimation of the standard error of relative rate esti-
mates (29). The NMMAPS reanalysis empirically confirmed
the theoretical results of Ramsey et al. (29). It showed that
the degree of bias in the standard errors is proportional to the
size of the standard errors and that this underestimation
remains even when more stringent convergence parameters
are used.

Imposing stricter convergence criteria altered the
NMMAPS results quantitatively but not qualitatively. In the
reanalysis, the pooled estimate across 90 cities at lag 1
moved from a 0.41 percent (posterior standard error 0.05)
increase in total mortality for a 10-unit increase in PM10 to a
0.27 percent (posterior standard error 0.05) increase. When

GLMs with natural cubic splines were used, the pooled esti-
mate was 0.21 percent (posterior standard error 0.06). In
every analysis, however, there was strong evidence for a
positive association between acute exposure to PM10 and
death, even with very conservative adjustments for trend,
seasonality, and weather. The differences among these
pooled time-series estimates are also small relative to the
difference between the effects of acute exposures obtained
from the time-series studies (like NMMAPS) and the effects
of chronic exposures estimated from cohort studies (33–36).

The findings of this analysis in no way diminish the utility
of GAM and other nonparametric regression techniques in
epidemiologic or other research. A significant advantage of
nonparametric regression is that epidemiologists need not
rely on difficult-to-verify assumptions about the functional
form of the dependence of the outcome on individual risk
factors or confounders. To guard against the problems iden-
tified here, convergence criteria must be made substantially
more stringent by users and/or distributors of statistical soft-
ware.

Use of default settings was standard practice in environ-
mental epidemiology until we started investigating this
issue. Researchers can guard against such problems by regu-
larly assessing the sensitivity of their findings to the conver-
gence criteria used. An excellent overview of software
reliability for S-Plus, SAS, and SPSS is provided by McCul-
logh (37, 38).

As a result of the simulation studies described here, the
default parameters in the gam function of S-Plus, version 6.1,
have already been revised, with somewhat more stringent
convergence parameters (ε = 10–7, M = 30, εbf = 10–7, Mbf =
30) (39). This problem is likely to be shared by other soft-
ware packages.

FIGURE 6. Percent change in mortality per 10-µg/m3 increase in particulate matter less than 10 µm in diameter for 100 pooled estimates from a
simulation study using glm + ns (left) and gam + s + default (right). Solid vertical lines indicate the true parameter values.
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APPENDIX

Generalized Additive Models and the Local Scoring 
Algorithm

Here we briefly review the local scoring algorithm used to
fit a generalized additive model (GAM) and its implementa-
tion for air pollution time-series data. The local scoring algo-
rithm (2, 24) is analogous to the use of iteratively reweighted
least squares (16, 25) for solving likelihood and nonlinear
regression equations. At each iteration, an adjusted
dependent variable is formed and an additive regression
model is fitted. The estimation procedure of the additive
regression model depends on the number and nature of the
smooth functions included in the GAM. When the smooth
functions are parametric (e.g., regression splines), the addi-
tive regression model is fitted using weighted least squares,
and the GAM is equivalent to a generalized linear model.
When the smooth functions in the linear predictors are
nonparametric (smoothing splines or LOESS), the additive
regression model is fitted using the backfitting algorithm
(40, 41). The backfitting algorithm cycles through the varia-
bles and estimates each coordinate function by smoothing
partial residuals. If a single smooth function is included in
the model, the backfitting algorithm provides a closed-form
solution of the parameter estimates.

In most time-series analyses of air pollution and health that
have used GAM, the models include several nonparametric
smooth functions of calendar time and weather variables.
More specifically, let yt be the daily air pollution counts and
let x1t, x2t, and x3t be the daily time series of air pollution,
calendar time, and temperature, respectively. A typical
model assumes

yt ∼  Poisson(µt)
log µt = α + βx1t + s2(x2t,λ2) + s3(x3t,λ3) = ηt, (3)

where β denotes the relative rate of mortality associated
with a 10-µg/m3 change in air pollution levels and s2(x2t) and
s3(x3t) are nonparametric smooth functions with degrees of
freedom λ2 and λ3 modeled as smoothing splines or LOESS
functions.

The local scoring algorithm for model 3 consists of the
following steps:

• Initialize: α = β = s2 = s3 = 0 and m = 0, where sj = (sj(xj1),
…, sj(xjT)), j = 2, 3.

• Iterate: m = m + 1 < M (outer loop).
1. Form the adjusted dependent variable:

z = ηm–1 + (y – µm–1)∂η/∂µm–1,
where ηm–1 = αm–1 + βm–1x + s2

m–1 + s3
m–1 = log(µm–1) and z

= (z1, …, zT), x = (x1, …, xT) (similarly for η, µ, y).
2. Form the weights w = (∂µ/∂ηm–1)2 V–1, where V is the

variance of y at µm–1.
3. Fit an additive model to z using the backfitting algo-

rithm with weights w and estimate αm, βm, s2
m, s3

m, and ηm, as
follows:

3.1. Cycle j = 1, 2, 3 (inner loop).
3.2. Calculate residuals by removing the estimated func-

tions or covariate effects of all of the other variables:

rt1 = yt – s2
m–1 – s3

m–1

rt2 = yt – αm–1 – βm–1x – s3
m–1

rt3 = yt – αm–1 – βm–1x – s2
m–1, t = 1, …, T

3.3. Estimate the sj
m by smoothing the residuals with

respect to the next covariate:

2
m(x1t) = smooth(r2|x2t)
3
m(x1t) = smooth(r3|x3t)

The term “smooth(rj|xjt)” denotes a smoothing of the data
(rj,xj) at the point xjt. The parameter estimates (αm, βm) are
obtained by fitting weighted least squares on the data (r1,x1). 

3.4. Compute the backfitting convergence criterion:

3.5. Stop when |RSSm – RSSm–1| < εbf.
• Compute the local scoring convergence criterion:

∆m = |(Dm–1 – Dm)/(Dm–1 + ε)|,

where Dm–1 = D(y;ηm–1) is the deviance for a fitted model ηm

(2).
• Stop for ∆m < ε.

ŝ
ŝ
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