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The potential for air pollution to cause excess deaths at
high concentrations was established in the mid-20th century
by a series of air pollution “disasters” in the United States
and Europe (1–3) that caused striking increases in mortality.
By the early 1990’s, time-series studies, each conducted at a
single location (4–7), showed that air pollution levels, even
at much lower concentrations, were associated with
increased rates of mortality and morbidity in cities in the
United States, Europe, and other developed regions. At pre-
sent, although these relative rates are small (an increase in
mortality or morbidity of a few percentage points over a
realistic exposure range), the burden of disease attributable
to air pollution may be substantial, considering the very
large populations exposed to air pollution and the large
numbers of persons to whom the relative rates of mortality
or morbidity apply.

In the past, critics of single-site studies questioned the
validity of the data used and the statistical techniques
applied to them. The critics noted inconsistencies in findings
among studies and even in the same city upon independent
reanalysis (5, 6). They questioned the choice of particular
cities and asked whether models had been selected that gave
estimates of effect that were biased upwards. These criti-
cisms have since been addressed by the use of multisite
studies (8, 9) in which site-specific data on air pollution and
health are assembled under a common framework.
Hierarchical models, which combine information across
locations, have provided a statistical approach for analyzing
multisite studies (10).

The work by Hwang and Chan (11), published in this
issue of the Journal, is one of the latest contributions on this
topic. Their study illustrates the utility of using hierarchical
models to analyze data on the relation between air pollution
concentrations and clinic visits for treatment of lower respi-
ratory tract illness. Hwang and Chan analyzed such data (as
well as data on temperature and dew point levels) for 50
sites in Taiwan in 1998. Here I discuss the advantages of

using hierarchical models to analyze multisite time-series
data on air pollution and health, provide perspective on the
results of Hwang and Chan (11), and address the problem of
publication bias in meta-analyses.

HIERARCHICAL MODELS

Hierarchical models provide an appropriate approach for
summarizing and integrating the findings of research studies
in a particular area (12–15). Hierarchical models have been
familiar to statisticians for four decades. Recently, because
of the development of computational tools that facilitate
their implementation (16, 17), hierarchical models have
been widely applied in many disciplines and have been used
to address environmental research questions.

The use of Bayesian hierarchical models to analyze mul-
tisite time-series data in relation to air pollution and health
provides an appropriate approach for combining evidence
across studies, quantifying the sources of variability, and
identifying effect modification. For example, Hwang and
Chan (11) assume a two-stage hierarchical model with the
following structure.

Stage I: site

Given a time series of daily mortality counts at a given site,
the association between air pollution and health within that
site is described using a regression model, which takes into
account potentially confounding factors such as trend, sea-
son, and climate. Among the output of the stage I analysis are
the point estimate ( ) and the statistical variance (νs) of
the estimated mortality rate associated with each air pollutant
at each site.

Stage II: the Taiwan region

Data from the 50 sites of the Taiwan Ambient Air Quality
Network are combined by using a linear regression model,
where the outcome variable is the true relative mortality rate
associated with air pollution indexes within each site and the
explanatory variables (Xj

s) are the site-specific characteristics
(population density, yearly averages of the pollutants and of
temperature) that may modify the relative rate. Formally,

βs � α0 � a
p

j�1
αjX

s
j � error

β̂s
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If the predictors Xj
s are centered about their mean values, the

intercept (α0) can be interpreted as the pooled coefficient for
a hypothetical site with mean predictors. The regression
parameters (αj) measure the change in the true relative rate
of mortality associated with a 1-unit change in the corre-
sponding site-specific variable.

The sources of variation in the estimation of the health
effects of air pollution are specified by the levels of the hier-
archical model. Under a two-stage hierarchical model, the dif
ference between the estimated site-specific relative rate ( )
and the true pooled relative rate (α0) can be broken down as

The variation of about βs is described by the within-site
variance (νs), which depends on the number of days with
available air pollution data and on the predictive power of
the site-specific regression model. The variation of βs about
α0 is described by the between-site variance (τ2), which
measures the heterogeneity of the air pollution effects across
cities. The specification of a Bayesian hierarchical model is
completed with the selection of the prior distributions for
the parameters at the highest level of the hierarchy. If there
is no desire to incorporate prior information into the analy-
sis, then vague prior distributions are the default choice.
However, it is important to complete the Bayesian analysis
by investigating the sensitivity of the substantial findings to
the choice of the prior distributions.

Posterior distributions of the pooled estimate (α0), of the
between-site variance (τ2), and of the second-stage regres-
sion parameters (αj) provide an appropriate summary of
the site-specific relative rates of mortality; a full charac-
terization of the heterogeneity of the air pollution effects
across the 50 locations; and the identification of site-
specific characteristics that modify the association
between air pollution and health. The two-stage hierarchi-
cal approach used by Hwang and Chan (11) can be
extended to include additional levels of the hierarchical
models (for example, sites within geographic regions, geo-
graphic regions within nations, etc.) which lead to the esti-
mation of additional sources of variability (within sites,
between sites within regions, and between regions) and
potential effect modifiers at the site or regional level (for
example, see Dominici et al. (18)).

Complex hierarchical models can be fitted using simula-
tion-based methods (17, 19) which provide samples from
the posterior distributions of all parameters of interest.
Several software packages for this process are now available
(for example, see http://www.mrc-bsu.cam.ac.uk/bugs/).
One of the appealing features of simulation-based
approaches is that site ranking with respect to the magnitude
of the health effects of air pollution is straightforward. For
example, in the paper by Hwang and Chan (11), the poste-
rior probability that a particular site is the worst location in
terms of the health effects of air pollution can be estimated
easily by determining the empirical frequency with which
the relative rate of hospital admissions at that particular site
is the largest.

β̂s

1β̂s � α02 � 1β̂s � βs2 � 1βs � α02

β̂s

HETEROGENEITY AND EFFECT MODIFICATION

Hwang and Chan (11) used simulation-based methods to
approximate the posterior distributions of all parameters of
interest. They summarized their results by calculating
Bayesian estimates (and 95 percent posterior intervals) of the
site-specific and overall air pollution effects. Alternatively, a
point estimate of the pooled effect can be obtained by assum-
ing a random-effects model and by taking a weighted average
of the site-specific estimates—as suggested by DerSimonian
and Laird (20), for example. Under the weighted average
approach for a random-effects model, the weights of the site-
specific estimates are modified to take into account the vari-
ability between locations—for example, by including a point
estimate of τ2. Unfortunately, in the Hwang and Chan paper
(11), very little attention was given to the issue of hetero-
geneity, which can be appropriately assessed under a
Bayesian approach. In fact, the inspection of posterior distri-
butions of τ2 provides a better characterization of the degree
of heterogeneity of effects across sites than a point estimate
of τ2 and/or the classical χ2 statistic for testing τ2 � 0.

Hwang and Chan (11) reported that rates of daily clinic
visits were positively associated with current-day concen-
trations of nitrogen dioxide, carbon dioxide, sulfur dioxide,
and particulate matter ≤ 10 µm in diameter (PM10). Overall,
they found that a 10-unit (ppb) increase in current-day nitro-
gen dioxide concentrations was associated with approxi-
mately a 5.8 percent increase (95 percent posterior interval:
4.9, 6.8) in daily clinic visits for respiratory illness (11).
This is a much larger estimate than the 0.2 percent increase
in mortality (95 percent posterior interval: –0.25, 0.7)
reported in the National Morbidity, Mortality, and Air
Pollution Study (NMMAPS) (21). Hwang and Chan also
found that a 10-unit (µg/m3) increase in current-day PM10
concentrations was associated with approximately a 0.84
percent increase (95 percent posterior interval: 0.35, 1.31) in
daily clinic visits for respiratory illness (11). This pooled
PM10 result is slightly lower than the morbidity results of the
multisite NMMAPS, which reported a 1.4 percent increase
(95 percent confidence interval: 0.34, 2.45) in hospital
admissions for chronic obstructive pulmonary disease asso-
ciated with current-day PM10 (21).

With respect to effect modification, Hwang and Chan (11)
found that an individual pollution coefficient for nitrogen
dioxide was modified by a yearly average PM10 in a direc-
tion implying lower shorter-term (acute) effects of nitrogen
dioxide at greater longer-term (chronic) levels of PM10.
Similarly the effects of sulfur dioxide and carbon monoxide
exposure were also associated negatively with a commu-
nity’s annual PM10 concentrations.

In recent papers (18, 22, 23), researchers have explored
and discussed effect modification of the health effects of air
pollution but have focused mainly on the identification of
modifiers of the short-term effects of PM10 instead of mod-
ifiers of the short-term effects of nitrogen dioxide, as Hwang
and Chan did (11). In the NMMAPS, Dominici et al. (18)
found that short-term PM10 effects are modified by long-
term average PM10 level, indicating greater short-term
(acute) PM10 effects at lower long-term (chronic) levels of
PM10. Negative associations between short-term effects of
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FIGURE 1. Boxplots of site-specific estimates of the effects of par-
ticulate matter ≤ 10 µm in diameter divided by their standard errors
(t statistics = ) from a meta-analysis of 19 US locations by
Levy et al. (23) and the National Morbidity, Mortality, and Air Pollution
Study (NMMAPS), a study of air pollution in 90 US locations (21).
The horizontal lines within the boxes represent the median value,
and the edges of the boxes represent the interquartile range.
Dashed lines denote 95% confidence intervals, and bullets repre-
sent outliers.

β̂s>2νs

FIGURE 2. Comparison between the pooled effects of particulate
matter ≤ 10 µm in diameter (PM10) (µg/m3) on mortality obtained in
a meta-analysis of 19 US locations by Levy et al. (23) and in the
National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a
study of air pollution in 90 US locations (21). The solid line repre-
sents the posterior distribution of the pooled effect of PM10 on mor-
tality obtained in the NMMAPS. The dotted line represents the nor-
mal approximation to the estimated pooled effect of PM10 on mortal-
ity obtained in Levy et al.’s meta-analysis (23).

air pollution (nitrogen dioxide and PM10) and long-term
average PM10 level might indicate that the pool of suscepti-
ble individuals is smaller in cities with higher average PM10
concentrations. If this were the case, the short-term effects
of air pollution on mortality would be lower in cities with a
large particulate matter average than in cities with a lower
particulate matter average and a relatively larger pool of sus-
ceptible individuals. On the other hand, Katsouyanni et al.
(22), within the APHEA study [Air Pollution and Health,
European Approach], found that long-term average nitrogen
dioxide concentration was an effect modifier of the short-
term effect of PM10, but in the opposite direction: The higher
the average nitrogen dioxide level, the larger the particle
effect. These findings suggest that the acute effects of PM10
on mortality might be greater in locations with a greater
long-term average of air pollution originating from vehicle
exhaust (nitrogen dioxide is considered an indicator of traf-
fic-derived pollution) as compared with pollution from other
sources.

In these multisite studies, there has not been a consistent
pattern of effect modification, probably because of difficult
methodological problems. These difficulties include the fol-
lowing: 1) the sites have sociodemographic characteristics
which vary spatially within that site, leading to serious con-
cerns about ecologic bias (19); 2) the predictors included in
the second stage of the model represent a crude proxy for the
desired site-specific characteristics, and they are very highly
correlated; and 3) the number of sites is limited, which
restricts the number of potential effect modifiers that can be
investigated jointly.

PUBLICATION BIAS

One advantage of using the multisite design to collect
time-series data on air pollution and health is that it is less
prone to the phenomenon of publication bias (24, 25), which
might strongly affect results obtained from meta-analyses of
published studies. To illustrate this point, I compared find-
ings between the NMMAPS (21) and a recent meta-analysis
of published studies of PM10 and mortality by Levy et al.
(23). Figures 1 and 2 show the results of this comparison.

Figure 1 shows boxplots of site-specific estimates of PM10

effects divided by their standard errors 
included in the meta-analysis of 19 US locations (23) and in
the NMMAPS multisite study of 90 US locations (21). The t
statistics in the meta-analysis are larger than the t statistics
obtained in the NMMAPS—indicating the possible “file
drawer” phenomenon, common in meta-analyses of pub-
lished studies, in which studies finding no significant relation
between PM10 and mortality may not have been published.

Figure 2 shows the posterior distribution of the pooled
effect of PM10 on mortality (α0) obtained under the meta-
analysis (dotted line) and under the NMMAPS (solid line).
Substantial overlap between the two curves indicates that
the results obtained under the NMMAPS (21) and the results
obtained under the Levy et al. meta-analysis (23) are rela-
tively consistent. However, the posterior distribution of the
pooled effect has a larger mean, and it is much more con-

1t statistics � β̂s>2νs2

centrated under the Levy et al. meta-analysis (23) than under
the NMMAPS (21). For example, the posterior probability
that the pooled PM10 effect estimated with the meta-analysis
is larger than the pooled PM10 estimated under the
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NMMAPS is close to 80 percent. This indicates that meta-
analyses of published studies that selectively favor findings
with significant effects might seriously overestimate the
pooled effect and underestimate the corresponding statisti-
cal uncertainty. However, this difference might also be
explained by methodological differences between the
NMMAPS and the time-series studies used in the meta-
analysis.

CONCLUSIONS

The paper by Hwang and Chan (11) in this issue of the
Journal is an important contribution to the estimation of the
health effects of air pollution from multisite time-series data
using a Bayesian hierarchical model. For guidance in policy
development, exposure-risk relations must be described
with sufficient precision (26); this precision can be gained
by pooling the large amounts of publicly available data on
mortality, morbidity, air pollution, and potential con-
founders and modifiers.

Multisite studies and Bayesian hierarchical models pro-
vide a unified framework for 1) estimating individual pollu-
tant effects for particular sites, pooled effects, and compo-
nents of variation; 2) investigating effect modification; and,
more generally, 3) producing more credible results by
appropriately taking into account all sources of uncertainty
and by overcoming the problem of publication bias.

Heterogeneity is potentially a key issue for the policy
implications of epidemiologic studies of air pollution and
health, because, in the presence of substantial heterogeneity
across sites, the overall effect may have less public health
relevance than site-specific estimates, and the characteriza-
tion of effect modification becomes of primary scientific
and public health interest (27). Clearly, interpretation of
findings on effect modification is a difficult component of
these analyses. The methods are weakened by gaps in the
publicly available data on air pollution, mortality, and site-
specific characteristics and by the inherent limitations of
these data.

A promising approach to the investigation of effect mod-
ification might rely on the integration of results from small-
area studies and global studies (that is, studies in which
information from several multisite studies is combined).
These two approaches are complementary with respect to
their advantages and limitations. Small-area studies collect
data in more homogeneous and restricted geographic areas.
Therefore, they are less prone to ecologic bias, and the
potential modifiers are more precisely measured. However,
results of small-area studies are less generalizable to other
locations. Global studies aim to combine information on air
pollution and health within and between multisite studies
from different countries and regions (the United States,
Europe, Canada, and Asia), and therefore they are likely to
provide a more complete characterization of the heterogene-
ity. However, they are still sensitive to the problem of eco-
logic bias, and additional work in these areas is necessary.

With repeated application of hierarchical models to mul-
tisite data, current statistical methods offer an approach for
tracking the health effects of air pollution over time as con-

trol measures are implemented. These techniques might
contribute to the development of a global surveillance sys-
tem for measuring the health effects of air pollution and for
documenting improvements attributable to changes in the
regulation of air purity.
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