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We analyzed a national data base of air pollution and mortality for the 88 largest U.S. cities for the period 1987–1994, to estimate relative
rates of mortality associated with airborne particulate matter smaller than 10 microns (PM10) and the form of the relationship between
PM10 concentration and mortality. To estimate city-specific relative rates of mortality associated with PM10, we built log-linear models
that included nonparametric adjustments for weather variables and longer term trends. To estimate PM10 mortality dose–response curves,
we modeled the logarithm of the expected value of daily mortality as a function of PM10 using natural cubic splines with unknown
numbers and locations of knots. We also developed spatial models to investigate the heterogeneity of relative mortality rates and of
the shapes of PM10 mortality dose–response curves across cities and geographical regions. To determine whether variability in effect
estimates can be explained by city-specific factors, we explored the dependence of relative mortality rates on mean pollution levels,
demographic variables, reliability of the pollution data, and specific constituents of particulate matter. We implemented estimation with
simulation-based methods, including data augmentation to impute the missing data of the city-specific covariates and the reversible jump
Markov chain Monte Carlo (RJMCMC) to sample from the posterior distribution of the parameters in the hierarchical spline model. We
found that previous-day PM10 concentrations were positively associated with total mortality in most the locations, with a �5% increment
for a 10 �g/m3 increase in PM10. The effect was strongest in the Northeast region, where the increase in the death rate was twice as
high as the average for the other cities. Overall, we found that the pooled concentration–response relationship for the nation was linear.

KEY WORDS: Air pollution; Data augmentation; Generalized additive model; Hierarchical model; Natural cubic spline; Particulate
matter; Relative rate.

1. INTRODUCTION

Epidemiologic time series studies conducted in cities around
the world have consistently found associations between daily
levels of airborne particulate matter smaller than 10 microns
(PM10), and daily numbers of deaths. These findings have
raised concern about the public health effects of PM pollu-
tion (Schwartz 1994; Pope, Dockery, and Schwartz 1995a;
American Thoracic Society and Bascom 1996a), and moti-
vated reassessment of air quality standards in many coun-
tries, including the United States, the United Kingdom, and
the European Union members. However, one key limitation
of these studies has been use of data from a single or a few,
possibly nonrepresentative, locations. The National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) addresses this
limitation by assembling and analyzing a national data base
that includes information on mortality, weather, and air pollu-
tion for the 88 largest metropolitan areas in the United States.
The statistical framework estimates associations between air
pollution and mortality (and morbidity) for the entire United
States, within large regions and for particular cities (Samet,
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Zeger, Dominici, Dockery, and Schwartz 1999; Samet et al.
2000b).
Initially, we analyzed data for the 20 largest U.S. cities,

using a two-stage linear regression model for combining evi-
dence from multiple locations (Dominici, Samet, and Zeger
2000). We then extended this analysis to estimate the shape of
the PM10 mortality dose–response curve (Daniels, Dominici,
Samet, and Zeger 2000). The 20-city analyses were con-
strained in model development and in their substantive find-
ings by the relatively small number of cities. Further investi-
gation is needed into the heterogeneity of the dose–response
relationship of air pollution and mortality across cities and
regions and on the modification of the effects of PM10 by fac-
tors such as copollutants, PM composition, city or regional
measurement error, and population characteristics and suscep-
tibilities.
In this article we extend the NMMAPS data base and anal-

yses to include the 88 largest U.S. cities. The objectives of
this article are (1) to combine information across these 88
locations to estimate regional and national relative rates of
mortality from exposure to PM10, (2) to explore heterogeneity
of effects across broad geographic regions and determinants
of heterogeneity, and (3) to estimate regional and national
air pollution mortality dose–response curves. To determine
whether city-specific factors can explain variability in the rel-
ative rates of mortality for PM10, we have collected data on a
set of city-specific variables: demographic characteristics, co-
pollutant levels, precision of the air pollution measurements,
and particle size distribution. A subset of these city-specific
variables are missing in some cities, and thus a strategy for
imputing missing data is needed. To address objectives (1)
and (2), we develop a three-stage linear regression model with
data augmentation to handle missing data in the city-specific
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covariates. To address (3), we use a two-stage spline model to
estimate the shape of the PM10 mortality dose–response curves
within each region.
Section 2 describes the data base of air pollution, mor-

tality, and meteorological data from 1987 to 1994 for the
88 U.S. cities used in this analysis. Section 3 introduces
the hierarchical regression model with data augmentation for
combining information on the PM10 mortality associations
across cities within regions and across regions. Section 4
introduces the hierarchical spline model used to estimate
regional and national PM10 mortality curves. Section 5 sum-
marizes the findings and presents results of model compar-
isons, model checking, and sensitivity to prior distributions.
Finally, Section 6 discusses our findings. Details on the imple-
mentation of the reversible jump Morkov Chain Monte Carlo
(RJMCMC) for model fitting are presented in the Appendix.

2. DATA

Figure 1 shows the locations of the selected 88 cities and
the 7 geographical regions of interest. We obtained data on
mortality, weather, and air pollution these areas from publicly
available data sources. Daily mortality counts were obtained
from the National Center for Health Statistics. Hourly tem-
perature and dew point data were available from the National
Climatic Data Center, as assembled in the EarthInfo CD data
base (http://www.sni.net/earthinfo/cdroms/). The daily time
series of PM10 data for each city were obtained from the
Aerometric Information Retrieval Service (AIRS) data base
maintained by the U.S. Environmental Protection Agency
(http://www.wpa.gov/airs/airs.html). One-year (1999) average
PM2�5 concentrations for each city were provided by Dr. John
Bachmann of the Environmental Protection Agency. We also
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Figure 1. Map of the 88 Largest U.S. Cities With the 7 Geographical Regions of Interest. The gray scales are proportional to the estimated log
relative rates of mortality, which show a �4% to 4% increase in mortality per 10 �g/m3 increase in PM10. The circles’ areas are proportional to
the statistical precisions of the estimates. The larger circles show less statistical uncertainty. The circles with the black outline denote the relative
rates that are statistically significant.

collected information on multiple city-specific factors from the
1990 CensusCD (email: info@censuscd.com).
For the spatial analysis, we grouped the 88 counties

into seven geographic regions (Northwest, Upper Midwest,
Industrial Midwest, Northeast, Southern California, South-
west, Southeast), following the stratification used in the 1996
Review of the National Ambient Air Quality Standard for Par-
ticulate Matter (Environmental Protection Agency 1996). A
detailed description of this database is given elsewhere (Samet
et al. 1999; Samet et al. 2000b).

3. HIERARCHICAL LINEAR MODEL WITH
DATA AUGMENTATION

In this section we introduce a three-stage hierarchical model
with data augmentation to estimate regional and national rel-
ative rates of mortality for particulate matter, taking into
account the missing data in the city-specific predictors.
In the first stage of the model, we fit a log-linear general-

ized additive model (Hastie and Tibshirani 1990), where the
outcome variable, Y r

ct , is the total number of deaths on a par-
ticular day t, in city c, within region r and the exposure vari-
able, PMct−1, is the previous day’s PM10 level:

Y r
ct � �r

ct ∼ Poisson��r
ct�	 c = 1	 
 
 
 	Cr	

r = 1	 
 
 
 	R	 t = 1	 
 
 
 T 	 (1)

log�r
ct = �r

c PMct−1+�cXt�

Here Cr , R, and T denote the number of cities within each
region r , the number of regions, and the number of days;
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�r
ct = E�Y r

ct�; Xt is the tth row of the design matrix for the
confounding factors (e.g., long-term trends and seasonality in
the mortality time series, and weather variables); and �c is the
corresponding vector of coefficients. The potential confound-
ing variables and the rationale for their inclusion, are listed in
Table 1. Justification for selecting the smooth functions to con-
trol for longer-term trends, seasonality, and weather and sen-
sitivity analyses with respect to the lag structure of the expo-
sure variable have been given by Samet, Zeger, and Berhane
(1995), Samet, Zeger, Kelsall, Xu, and Kalkstein (1997), Kel-
sall, Samet, and Zeger (1997), Samet, Dominici, Curriero,
Coursac, and Zeger (2000a), and Dominici et al. (2000).

In several locations, a high percentage of days had missing
PM10 values for which measurements are generally required
only every six days. Because there are missing values of some
predictor variables are missing on some days, we restricted
analyses to days with no missing values across the full set of
predictors.
At the second stage, we describe the heterogeneity of the

city-specific effects within regions, assuming that

�r � �r
0	�	Z

r 	 �2 ∼ NCr��
r
0 j

r +Zr�	�2I�	

r = 1	 
 
 
 	R	 (2)

where �r = ��r
1	 
 
 
 	�

r
Cr � is the collection of true PM10 coeffi-

cients for the Cr cities in region r , Zr is a matrix of dimension
Cr × p with the cth row �Zr

c1	 
 
 
 	Z
r
cp� denoting the cen-

tered covariates for the cities belonging to region r , �r
0 is the

regional air pollution effect when all of the covariates are cen-
tered at their mean values, jr is a vector of length Cr having
all elements equal to 1, and �= ��1	 
 
 
 	�p� is the vector of
the second-stage regression coefficients (i.e., �j measures the
change in �r

c per unit of change in the city-specific covariate
Zr
cj), and �2 measures the variance of the �r

c’s within each
region. The second-stage covariates are included in the design
matrix Z, and the rationale for their inclusion are summa-
rized in Table 2. Details on the exploratory analyses that led
to the selection of these variables appear elsewhere (Samet et
al. 2000b).
At the third stage of the model, we investigated heterogene-

ity of the regional air pollution effects ��r
0� across regions; we

assume

�r
0 � �0	 �

2 ∼ N
(
�0	 �

2
)
� (3)

Here �0 is the overall relative rate of mortality for PM10, and
�2 measures the variance of �r

0 across regions.

Table 1. Potential Confounding Factors in the Estimation of the City-Specific Relative Rates Associated With
Particulate Air Pollution Levels, and the Rationale for Their Inclusion in the Model

Predictors Primary reasons for inclusion

Indicator variables for the three age groups To allow for different baseline mortality rates within each age group
Indicator variables for the day of the week To allow for different baseline mortality rates within each day of the week
Smooth functions of time with 7 degrees of freedom (df)/yr To adjust for long-term trends and seasonality
Smooth functions of temperature with 6 df To control for the known effects of weather on mortality
Smooth functions of dewpoint with 3 df To control for the known effects of humidity on mortality
Separate smooth functions of time (2 df/yr) for each age group
contrast

To separately adjust for seasonality within each age group

Because the vector �c corresponding to the factors listed in
Table 1 is highly dimensional (its dimension is 118), the com-
putational demand of a full Bayesian approach—that is, sim-
ulating from the joint posterior distributions of �r

c and �c and
then integrating over the �c to obtain the marginal posterior
distributions of the �r

c—is extremely laborious. The compu-
tation becomes even more intensive when we implement data
augmentation to impute the missing city-specific covariates.
Therefore, let �̂r = ��̂r

1	 
 
 
 	 �̂
r
Cr � and V r = diag�vr1	 
 
 
 	 v

r
Cr �

be the maximum likelihood estimates (MLEs); their sampling
variances are obtained by fitting the city-specific model (1) for
city c and region r . We simplify the computation substantially
by replacing the first stage of the model with the MLE-based
normal approximation to the likelihood function,

�̂r ∼ NCr ��r 	 V r�� (4)

Because of the large number of days with air pollution and
mortality measurements within each city, we found that the
MLE-based normal approximation to the likelihood is ade-
quate, as discussed in Section 5.1.
This analysis is complicated by missing data for the second-

stage variables in a subset of cities. (The percentages of cities
with missing data for each variable are listed in Table 2.)
We impute the missing data by implementing data augmen-
tation (Tanner 1991) within the Gibbs sampler (Gelfand and
Smith 1990), which requires specification of the conditional
distributions of vectors of covariates that are missing (Zr

cm)
given the vector of covariates that are observed (Zr

co). We
assume that

Zr
cm � Zr

co	�	�∼ Nlc
��o	�mm�o�	 (5)

where

�o = �m +�mo�
−1
oo �Z

r
co−�o�	

�mm�o = �mm −�mo�
−1
oo �om

and � and � are the mean and covariance matrix of the p vec-
tor Zr

c = �Zr
cm	Z

r
co�.

The model specification is completed with the selection of
prior distributions for the parameters at the top level of the
hierarchy. We assume a priori that these parameters are inde-
pendent, and, except for the within-region and between-region
variance components (�2 and �2), we choose vague conju-
gate priors with large variances. For �2 and �2, we assume
a half-normal prior distribution, which gives moderate weight
to complete homogeneity while also allowing for the possi-
bility of more substantial heterogeneity (Pauler and Wakefield

dominici
au: should these be 'df/yr' too?
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Table 2. Second-Stage Variables and the Rationale for Their Inclusion
in the Model

Percent
Predictors Primary reasons for inclusion missinga

logPM10 Possibility of a saturation effect 0
log �O3 To explore modification of 11

the effect of one pollutant to another
logNO2 To explore modification of 35

the effect of one pollutant to another
log%NoHS Potential heterogeneity of the effects 0

associated with socio-demographic
factors

logitMCC Potential heterogeneity of the effects 21
associated with the varying quality of
the exposure

PM2�5/PM10 Hypothesized health effects of fine particles 0

NOTE: PM10, �O3	 and NO2 denote the mean level of PM10, mean level of ozone (O3), and
mean level of nitrogen dioxide (NO2) over the period 1987–1994; %NoHS is percentage of
persons lacking a high school degree; and MCC is median of all pairwise correlations of the
PM10 measurements among the location-specific monitors.
a The percentage of cities with missing data.

2000). In Section 5.1 we explore the consequences of this
assumption using a sensitivity analysis of the posterior results
to the prior specification. To obtain posterior distributions of
all of the parameters of interest, we implement a Gibbs sam-
pler with data augmentation to generate values from the poste-
rior distribution of the unknown parameters and missing pre-
dictors.

4. HIERARCHICAL SPLINE MODEL

In this section we introduce a hierarchical spline model to
estimate regional PM10 mortality dose–response curves. We
allow for additional flexibility in the pollution–mortality rela-
tionship by replacing the linear term �r

cPMct−1 in the city-
specific model (1) with S�PMct−1, knots) where S is a natural
cubic spline with an unknown number of knots, k, at unknown
locations �= �!1	 
 
 
 	 !k�, and with boundary knots fixed at 0
and 100 �g/m3. We allow for up to two knots (k≤ 2) at possi-
ble locations #20	25	 
 
 
 	70$ �g/m3, and we assume that the
number and location of knots is the same across cities within
a region but may vary from region to region. We base this
assumption on the increasing regional homogeneity of partic-
ulate pollution, reflecting the regional impact of such sources
as power plants or mobile sources in large metropolitan areas.
The seven regions designated by the Environmental Protec-
tion Agency reflect the increasing homogeneity within their
bounds (Environmental Protection Agency 1996).
We assume

log�r
ct = S�PMct−1	knots�+�cXt

=�r
cBt +�cXt	 (6)

where conditionally on k and �, Bt is the t row of the design
matrix for the natural cubic splines of the PM10 variable, �r

c

is the corresponding vector of coefficients, and Xt and �c are
the same as in model (1). Let �̂r

c and Wr
c be the MLE of the

vector of coefficients corresponding to the splines and their
sampling covariance matrix for city c in region r obtained
by fitting model (6). As in the hierarchical linear model of

Section 3, we replace the first stage of the model with a MLE-
based normal approximation of the likelihood function,

�̂r
c ��r

c ∼ Nk��
r
c	W

r
c �	 c = 1	 
 
 
 	Cr � (7)

To describe between-city variation of the dose–response
curves within regions, we add a second level to the model,

�r
c � �r 	Dr ∼ Nk��

r 	Dr�	 r = 1	 
 
 
 	R	 (8)

where �r denotes the vector of coefficients of the regional
dose–response curve and Dr denotes the between-city within-
region covariance matrix.
We did not include city-specific covariates at the second

level for two reasons. First, this would substantially increase
the number of parameters in the model. Second, we expect
that most of the heterogeneity would be explained by the
nonlinearity allowed in the spline models, and that the inclu-
sion of city-specific covariates would not contribute in the
reduction of the between-city variability.
Because of the computational burden, we estimated dose–

response curves separately within each region. A national
dose–response curve is estimated by directly pooling informa-
tion across the 88 cities, assuming that there is little between-
region variability.
With regard to the prior specification, we assumed that the

number of knots k and their locations � have discrete uni-
form priors. Similarly for �r , we assumed a flat prior. For the
prior on Dr , a computationally convenient choice is to place
a constrained Wishart density on Br

0, where Br
0 =W

1/2
0 �W0+

Dr�−1W
1/2
0 and W0 = �1/Cr�

∑Cr

c=1W
r
c (Everson and Morris

2000).
To sample from the posterior distribution of the number of

knots, their locations, and all other unknown parameters, we
implemented an RJMCMC algorithm. Details on the imple-
mentation of the RJMCMC are provided in the Appendix.
We assessed convergence by diagnostic methods (Raftery and
Lewis 1992; Gelman and Rubin 1992; Gilks, Richardson, and
Spiegelhalter 1996) in CODA (Best, Cowles, and Vines 1995).

5. RESULTS

Figure 1 shows the locations of the 88 cities, the magnitude
of the estimated relative rates of mortality (color scale), and
their statistical precisions (areas of the circles). We found that
previous-day PM10 concentrations were positively associated
with total mortality counts for most of the locations.
Figure 2 shows MLE and 95% confidence intervals of the

log-relative rates of mortality per 10 �g/m3 increase in PM10

for each location. These estimates were obtained by fitting the
semiparametric log-linear model (1) to the data for each loca-
tion independently. The estimates of the city-specific effects
ranged from highs of 2% per 10 �g/m3 in Oakland and 1%
per 10 �g/m3 in New York City and San Diego to negative
estimates in 22 of the 88 cities, including Dallas-Fort Worth,
Little Rock, and Modesto.
The solid squares and the solid circles with the bold seg-

ments denote the posterior means and 95% posterior inter-
vals of the pooled regional effects with and without covari-
ate adjustment. Adjusted and unadjusted regional effects were
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Figure 2. MLEs and 95% Confidence Intervals of the Log-Relative Rates of Mortality per 10 �g/m3 Increase in PM10 for Each Location. The
solid and the square circles with the bold segments denote the posterior means and 95% posterior intervals of the pooled regional effects without
and with covariate adjustments. At the bottom, marked with triangles and bold segments, are the overall effects for PM10 for all the cities without
and with covariate adjustments.

similar in most regions. The pooled regional estimates of the
PM10 effects varied somewhat across the regions and were
estimated to be greatest in the Northeast, with a relative rate of
.9% per 10 �g/m3 (95% CI �58	1�31). On the far right, marked
with triangles and bold segments, are the overall effect esti-
mates for PM10 for all of the cities with and without covariate
adjustment. The overall effect with covariate adjustment was
slightly larger than the overall effect without covariate adjust-
ment (without adjustment, a posterior mean = �43% increase

in mortality per 10 �g/m3 increase in PM10, 95% posterior
interval �06	 �77; with adjustment, a posterior mean = �55%
increase in mortality per 10 �g/m3 increase in PM10, 95%
posterior interval �10	 �98).
Figure 3 shows boxplots of the posterior distributions of

the second-stage regression coefficients �. We found some
evidence for modification of the log-relative rate of mortal-
ity associated with PM10 levels by logPM10 level in a direc-
tion implying greater shorter-term (acute) effects at lower
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Figure 3. Boxplots of the Posterior Distributions of the Second-
Stage Regression Coefficients.

longer-term (chronic) levels of PM10. The negative associa-
tion between the relative rate of mortality and logPM10 might
indicate a saturation effect of air pollution on mortality. One
explanation of this phenomenon is that the pool of suscepti-
ble individuals could be depleted in cities with higher average
PM concentrations. If this were the case, then the short-term
effects of air pollution on mortality would be lower than in
cities with a lower PM average and a relatively larger pool of
susceptible individuals.

(a)

(b)

Figure 4. Posterior and Prior Distributions of the Within- and Between-Region Variances on the Log Scale (log10
2 and log10�2). The bottom
row of numbers represents the original scale of 
2 and �2. (a) The posterior distribution of log10
2 under the half-normal prior. The curve with
the bold dots represents the half-normal prior in log10 scale. (b) The posterior distribution of log10�2 under the half-normal prior. The curve with
the bold dots represents the half-normal prior in log10 scale. The dotted dark line represents the posterior distribution of log10�2 under an inverse
gamma prior IG(3, 1), and the curve with the empty dots represents the inverse gamma prior IG(3, 1) in log10 scale.

The positive coefficients for O3 and NO2 levels (although
with a large posterior standard error) might indicate a poten-
tial confounding or modifying effect, or both, of the gaseous
pollutants on the relative rate of mortality. The positive coef-
ficient for %NoHS (although with a large posterior standard
error) might imply that cities with lower socioeconomic status
have a higher PM10 effect on mortality. The negative coeffi-
cient for PM2�5/PM10 is puzzling and inconsistent with previ-
ous studies, which found that fine particles, PM2�5, are more
likely than coarse particles to be responsible for health effects
�PM10 − PM2�5� (Levy, Hammitt, and Spengler 2000). How-
ever, we found when the PM2�5/PM10 ratio is the only pre-
dictor included in the second-stage regression, the estimated
regression coefficient for PM2�5/PM10 increased from −�7
(std = �91) in the multivariable model, as shown in Figure 3,
to −�057 (std = �58�. In summary, except for logPM10, we did
not find strong evidence of effect modification by the other
predictors included in the model.
Posterior distributions of the within- and between-region

variances on the log10 scale (log10 �
2 and log10 �

2) are shown
in Figure 4. The second row of numbers represents the origi-
nal scale of �2 and �2. A posteriori, the within-region variance
was much smaller than the between-region variance, indicat-
ing that the effects of PM10 on mortality tend to be similar
for cities within the same geographical region and relatively
more heterogeneous for cities in two different regions. How-
ever, because of the small number of regions, the posterior
distribution of �2 tended to be quite sensitive to the prior spec-
ification. Section 5.1 explores the sensitivity of these findings
to the prior assumption with regard to heterogeneity across
cities and across regions.

dominici
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Regional PM10 mortality dose–response curves are shown
in Figure 5 with bold solid lines. These curves were estimated
separately within each region, allowing for an unknown num-
ber and location of knots. The curves with empty dots were
estimated by using a simplified version of the RJMCMC algo-
rithm with one fixed knot at 40 �g/m3. At the bottom right are
the national dose–response curves. The bold line represents the
estimated national dose–response curve, allowing for unknown
numbers and locations of knots and obtained by directly pool-
ing information across the 88 cities. This approach assumes
little between-region variability, which is not reflected in the
hierarchical linear model. We also estimated a national dose–
response curve by pooling the fixed knot regional curves with
a two-stage Bayesian hierarchical model (Daniels et al. 2000).
This national curve, represented by the empty dots, overlaps
with the national curve estimated using RJMCMC. To allow
for a direct comparison with the spline model, the regional
linear curves are obtained under the hierarchical linear model
without any shrinkage across regions.
The national dose–response curve, obtained by combin-

ing information across all the cities, is clearly linear. At the
regional level, the data from cities in several regions (North-
west, Southwest, Upper Midwest, and Southeast) indicate
some modest departure from a linear model. In particular,
evidence in the Southwest and Southeast indicate a change
point of about 30 �g/m3. The Northwest and Upper Midwest
regions show a leveling off (saturation effect) at higher PM
levels. This is consistent with the negative association between
the relative rate of mortality and logPM10 found in the hier-
archical linear model. However, these dose–response curves
have considerable uncertainty, and the pointwise confidence
bands are consistent with a linear relationship.

5.1 Model Checking, Model Comparison, and
Sensitivity Analysis

In this section we check modeling assumptions, discuss
results of model comparisons, and investigate the impact of
the prior distribution on our results.

5.1.1 Model Checking. In Section 3 we replaced the first
stage of the city-specific model (1) with an MLE-based nor-
mal approximation to the likelihood function (4). To verify the
adequacy of this approximation, we first selected the five cities
with the smallest number of PM10 measurement days (sam-
ple sizes between 338 and 376). Within each city, we imple-
mented a fully Bayesian analysis of the city-specific model (1)
and estimated the joint posterior distribution of all unknown
parameters (relative rates of mortality and coefficients of the
splines) by importance sampling (Hammersley, Handscomb,
and Muller 1966; Geweke 1989; Wakefield, Gelfand, and
Smith 1991). We used proper but vague priors for all of the
coefficients. Samples from the marginal posterior distribution
p��r

c � data) and samples from the normal approximation to
the likelihood (4) were very similar (results not shown).

5.1.2 Model Comparison. To investigate the impact of
the data augmentation approach on our results, we com-
pared Bayesian and frequentist estimates of �. The first was

obtained under the hierarchical model with data augmenta-
tion as described in Section 3, and the second under the lin-
ear mixed-effects model with EM algorithm applied only to
the cities with complete data (48 total). More specifically, we
compared estimates of � under the following three scenar-
ios for departure from the hierarchical linear model with data
augmentation:


 NR: Fit a linear mixed-effects model by the Newton–
Raphson (NR) algorithm (Lindstrom and Bates 1988) to
the complete data. Here �̂r is the outcome; �r

0	 r =
1	 
 
 
 	R are the random effects; and � are the fixed
effects.


 BC1: Fit the hierarchical linear model to the complete
data, ignoring the statistical error in the estimated �̂rs,
that is, assuming �r = �̂r .


 BC: Fit the hierarchical linear model to the cities with
complete data.

Point estimates and 95% confidence intervals of the second-
stage regression coefficients � under each scenario are shown
in Figure 6. Results under the baseline model had narrower
confidence intervals, indicating that parameters can be esti-
mated more precisely by using all of the 88-cities data with
data augmentation than by using only the complete data. This
is particularly true for the logPM10 coefficient. Here, the asso-
ciation between the relative rate of mortality and the logPM10

is negative when we include all of the cities than when we
consider only the cities with complete data, because cities
with missing data in the other covariates tend to have lower
logPM10 and larger relative mortality rates than cities with
complete data.
The hierarchical spline and linear models can be compared

easily, because the linear model is a special case of the spline
model with 0 knots. We did so by inspecting the posterior dis-
tribution of the number of knots k obtained under RJMCMC
(see Table 3). At a national level, the data clearly supported
the hypothesis of linearity with a posterior probability of k= 0
equal to 1. Most of the regions lent some support to the linear
model. For example, the Industrial Midwest and Northeast had
posterior probabilities of k= 0 equal to �94 and �44. Only two
regions had probabilities of more than �10 for the two-knot
model, with five regions lending the most support to the one-
knot model. The linearity of the national dose–response curve
most likely reflects averaging out of the nonlinearities at the
regional and city levels when the data are pooled nationally.
In addition, none of the confidence boundaries at the regional
level was inconsistent with a linear relationship.

5.1.3 Sensitivity to the Priors for �2 and �2. The poste-
rior distributions for the regression parameters are dominated
by the likelihood functions given the vague prior assump-
tion. Inferences about the degree of heterogeneity in pollution
effects among cities and regions however were sensitive to the
prior assumptions about �2 and �2.
Our strategy for investigating the impact of the prior dis-

tribution on our results was based on inspecting the posterior
distributions of the unadjusted overall PM10 effects on total
mortality �0 and the between-region variance �2 under four
scenarios for departure from the baseline prior distribution for
the two variance components �2 and �2.



8 Journal of the American Statistical Association, March 2002

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

ooooo
ooooo

ooooo
ooooo

ooooo
oooooo

oooooo
oooooooo

ooooooooooo
oooooooooooooooooooooooooooooooooooooooooooo

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooo

ooooooo
ooooooo

oooooo
oooooo

oooo

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

oooo
oooo

oooo
oooo

oooo
oooo

oooo
ooooo

ooooo
ooooo

oooooo
oooooo

ooooooo
oooooooo

ooooooooo
oooooooooo

oooooooooo
o

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

oooo
oooo

oooo
ooooo

ooooo
oooooo

oooooooo
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

oooooooooo
oooooooooo

oooooooooo
oooooooooo

oooooooooo
oooooooooo

oooooooooo
ooooooooooo

oooooooooo
ooooooooo

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

ooo
oooo

oooo
ooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oo

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

oooooooooooooooooooooooooooooooooooooooooooooo
ooooooo

oooooo
ooooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo
oooo

oooo

re
la

tiv
e 

ra
te

 o
f m

or
ta

lit
y

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

oooooo
oooooo

ooooooo
ooooooo

ooooooo
oooooooo

oooooooo
ooooooooo

oooooooooo
ooooooooooo

ooooooooooo
oooooooooo

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

0 20 40 60 80 100

(h)(g)

(d) (e) (f)

(a) (b) (c)

Figure 5. Regional and National PM10 Mortality Dose–Response Curves for (a) Northwest, (b) Southwest, (c) Southern California, (d) Upper
Midwest, (e) Industrial Midwest, (f) Northeast, (g) Southeast, and (h) Overall. The x-axes are PM10 Levels in �g/m3. The vertical scale can be
interpreted as the relative rate of mortality as a function of PM10. The solid black curves are obtained by fitting the spline model with the RJMCMC
and allowing for an unknown number and location of knots. The curves with the empty dots are obtained by setting one knot at 40 �g/m3 and
fitting the spline model conditional on the restricted MLE of the between-city covariance matrix. The linear curves are obtained by fitting the
hierarchical linear model with a Gibbs sampler without borrowing strength across regions. The shaded area denotes the 95% confidence bands
for the curve with a fixed knot.
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Figure 6. Point Estimates and 95% Confidence Intervals of the
Second-Stage Regression Parameters � Estimated With the Following
Models: NR, mixed linear effect model for the complete case with NR
algorithm and �r = �̂r ; BC1, hierarchical linear model for the complete
case and �r = �̂r ; BC, hierarchical linear model for the complete case;
B, hierarchical linear model with data augmentation (baseline). Hori-
zontal lines are placed at 0.

The four scenarios and the posterior quantiles of �0 under
each prior specification, are summarized in Table 4. Poste-
rior means and IQR of �0 were not sensitive to the prior
specifications of �2 and �2. Prior and posterior distributions
on �2 are shown in Figure 4. The curve with the bold dots
represents the half-normal prior in log10 scale, and the his-
togram represents the posterior distributions of log10 �

2 under
the half-normal prior. The curve with the empty dots repre-
sents the inverse ( prior IG�3	1� in log10 scale, and the dotted
dark line represents the posterior distribution of log10 �

2 under
the inverse ( prior. As expected, because of the small num-
ber of regions, the posterior distribution of �2 was sensitive
to the prior. The inverse ( prior (curve with the empty dots)
assumed more heterogeneity and was more concentrated than
the half-normal prior. Consequently, a posteriori, we estimated

Table 4. Posterior Quantiles of the Unadjusted Overall PM10 Effect on Total Mortality, �0, Under Four
Specifications of Prior Distributions on 
2 and �2

Prior for 
2 Prior for �2 Scenario 5% 25% 50% 75% 95%


2 ∼ N�0	1�I
2>0 �2 ∼ N�0	1�I�2>0 Baseline �06 �33 �43 �53 �77

2 ∼ IG�3	3� �2 ∼ N�0	1�I
2>0 1 �09 �34 �47 �58 �85

2 ∼ N�0	1�I
2>0 �2 ∼ IG�3	1� 2 �02 �29 �42 �55 �78

2 ∼ IG�3	3� �2 ∼ IG�3	1� 3 �00 �30 �45 �60 �90

Table 3. Posterior Distributions of the Number of Knots, k, Within Each
Region and Overall

Region k= 0 k= 1 k= 2
Northwest �10 �86 �04
Southwest �02 �63 �35
Southcal �31 �68 �01
Upper Midwest �19 �75 �06
Industrial Midwest �94 �06 0
Northeast �44 �48 �08
Southeast �22 �13 �66

Overall 1�00 0 0

a larger between-region variability. In summary, the inverse )
prior on one or both variance components produced a posterior
distribution for �2 with a larger posterior standard deviation
(E�� � data�= �38 with half-normal prior and E�� � data�= �49
with inverse (), and city-specific relative rate estimates, which
drew more heavily on data from each city and less heavily on
data from other cities, yielding larger and more conservative
confidence bands on the overall relative rate.

6. DISCUSSION

In the United States and other developed countries, air qual-
ity standards for public health protection have their basis in
the scientific evidence on risks to health. In the United States,
for example, the Administrator of the Environmental Protec-
tion Agency is required by the Clean Air Act to set standards
for the major (so-called “criteria”) air pollutants that protect
the public health within an “adequate margin of safety.” To
fulfill this charge, information is needed on the risks to health
at different levels of the pollutant(s) and on the form of the
concentration–risk relationship.
The specification of statistical models used to estimate asso-

ciations between air pollution and health requires an extensive
preprocessing of variables and a series of analytic choices. In
particular, for the city-specific model these choices were based
mainly on the specification of variables to adjust for temporal
trends, weather, specification of the lag structure, selection of
pollutants and monitors, and stratification by age. These ana-
lytic choices and the sensitivity of the results to them have
been a major focus of our research (Samet et al. 1995, 1997,
1998, 1999, 2000b; Kelsall et al. 1997; Dominici et al. 2000)
and were briefly discussed in this article. The selection of
the variables included at the second stage of the hierarchi-
cal model was also the result of extensive exploratory analy-
ses summarized elsewhere (Samet et al. 2000b). The groups
of variables presented there and initially considered as poten-
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tial determinants of the heterogeneity of the effects across
cities were (1) mean levels of pollutants, temperature, and
dew point; (2) total mortality rates; (3) sociodemographic vari-
ables; (4) variables related to urbanization; and (5) variables
related to measurement error. Based on the correlation pat-
terns between the estimates of the relative rates of mortality
and the potential effect modifiers, we limited the number of
variables in each of the five groups and selected the second-
stage variables used in the article.

Our modeling approach uses the same set of confound-
ing variables in the different locations, although the estimates
of the confounding effects are city-specific. An alternative
approach would have been to select these confounding vari-
ables differently within each city, conditionally on some
desired optimality criteria. For example, we could have
selected a city-specific number of degrees of freedom in the
smooth functions of time, based on the inspection of the
autocorrelation function of the residuals of the mortality time
series. We decided against this approach for two reasons:
(1) to ensure direct comparability of the city-specific coeffi-
cients at the second level of the hierarchical model and (2) to
maintain a clear interpretation of the regional-specific relative
mortality rates.
The strengths of these methods lie in the synthesis of evi-

dence across broad regions and the characterization of hetero-
geneity of effect at the city or regional level. To guide policy
development, concentration–response relationships need to
be described with sufficient certainty (Barnett and O’Hagan
1997); this certainty can be gained by pooling the large
amounts of publicly available data on mortality, air pollu-
tion, and potential confounders and modifiers. Our methods,
although computationally intense, can be implemented on pub-
licly available data. There are obvious extensions to other
environmental health problems, such as morbidity from air
pollution. The methods are weakened by the gaps in the pub-
licly available data on air pollution, mortality, and city-specific
characteristics and by the inherent limitations of these data.
The air pollution data routinely available from required reg-
ulatory monitoring provide only the mass of particulate mat-
ter, with no information on chemical or other characteris-
tics of the particles, such as size distribution. After the 1997
promulgation of new standards for PM2�5, monitoring was ini-
tiated for PM2�5, and, in some locations, particles are charac-
terized by their chemical composition. Thus, future analyses
of heterogeneity of effects may be more informative. Total
mortality—the outcome measure used in these analyses—is a
crude measure, undoubtedly including a substantial proportion
of deaths not attributable to air pollution; however, findings
for total mortality have obvious public health relevance. More
specific categories of cause of death can be used—for exam-
ple, cardiovascular and respiratory deaths. Although specificity
is gained, precision is lower because of the smaller number of
events. In addition, the cause of death information specified on
the death certificate is not always reliable. The decennial cen-
suses provide information on city-specific characteristics that
have the advantage of ready availability, but provide only par-
tial coverage of some potentially relevant characteristics, such
as time-activity patterns.
Overall, we found that the pooled concentration–response

relationship for the nation was approximately linear. There

was little evidence for deviation from linearity down to the
lowest levels to support the existence of a threshold. This find-
ing confirms the prior analysis by Daniels et al. (2000) of
data from 20 U.S. cities (included within the 88 cities con-
sidered here). As recently summarized by Pope (2000), anal-
yses of time series data in a number of locations, including
London, Cincinnati, Birmingham, Utah Valley, and Shenyang,
are also consistent with linearity, as are the findings of the two
major long-term studies, the Harvard Six-Cities cohort and the
American Cancer Society cohort (Dockery et al. 1993; Pope
et al. 1995b). The consistent finding of a linear relationship,
now confirmed at the national level, places a difficult burden
on policy makers charged by the Clean Air Act with setting
protective standards for public health that include a margin of
safety.
We found indications of potential nonlinearity in four of

the regions: the Northwest, Southwest, Upper Midwest, and
Southeast. The analyses for the Northwest and Upper Midwest
regions also suggest a leveling of the effect at higher PM val-
ues. This is consistent with the negative association between
the city-specific relative rates of mortality and logPM10 found
in the hierarchical linear model. However, the uncertainty
boundaries for these regions indicate compatibility of the data
with a linear relationship, and we currently have no specific
hypotheses explaining why these regions might have other
than a linear dose–response curve.
In general, the city-specific characteristics did not explain

much variation in the effect of PM across cities. However, we
found evidence in the data suggesting that cities with lower
mean PM10 levels tend to have larger relative rates of mor-
tality from PM10 exposure. The negative association between
the relative rate of mortality and the mean PM10 is consistent
with our mortality displacement analyses (Zeger, Dominici,
and Samet 1999; Dominici, McDermott, Zeger, and Samet
2001), which showed that the association between air pollu-
tion and mortality is larger at the longer-term variations in
the time series, corresponding to a more chronic effect of air
pollution on mortality, than at the short-term variations in the
time series, corresponding to a more acute effect of air pol-
lution on mortality. These results are also consistent with the
findings of two long-term prospective cohort studies of air pol-
lution and mortality, the Harvard Six-Cities Study (Dockery et
al. 1993) and the American Cancer Society’s Cancer Preven-
tion Study II (Pope et al. 1995b), which offer critical evidence
of a long-term chronic effect of air pollution on mortality.
In summary, we offer a set of methods for combining evi-

dence in publicly available databases on the concentration–
response relationship for air pollution and mortality. A multi-
stage analysis was used because a uniform analytic approach
can be applied to each city, power is gained from the pooled
sample, and heterogeneity can be explored across the loca-
tions.
Previous meta-analyses of the PM literature have provided

pooled effects estimates, but have not addressed between-
study variability that may be associated with analytical mod-
els, pollution patterns, and exposed populations (Schwartz
1994). The meta-analysis by Levy et al. (2000) was one of
the first attempts to determine whether study-specific factors
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can explain some of the variability of the relative rate of mor-
tality associated with PM10. However, meta-analyses of pub-
lished studies of air pollution and health were limited by three
factors: (1) the lack of a common analysis of the raw data,
(2) the limited number of locations, and (3) the study selection
bias. Our hierarchical approach overcomes these limitations
(Dominici 2001).
In developing these methods, our intention was to pro-

vide evidence in a form that would be directly applicable
to policy development, as shown by our finding that the
concentration–response relationship for air pollution and mor-
tality is linear with a high degree of certainty. With repeated
application, our methods would offer an approach for tracking
the health effects of air pollution over time as control mea-
sures are implemented; they should have application to other
environmental health problems as well.

APPENDIX A: IMPLEMENTATION OF
THE REVERSIBLE JUMP

We draw samples from the joint posterior distribution of ��	 k� by
implementing the following RJMCMC algorithm:

1. Choose a type of move and do the move. That is, either add a
knot, delete a knot, or move an existing knot. Implementation
of this step follows that described by Denison, Mallick, and
Smith (1998) and Di Matteo, Genovese, and Kass (2000).

2. Compute �̂r
c and Wr

c conditional on the number and location
of knots. These estimated coefficient and sampling covariances
change as the number and location of the knots change.

3. Compute D̂r , the restricted MLE, conditional on the number
and location of knots.

4. Compute the acceptance probability to determine whether to
accept ��	 k� for this iteration. The acceptance probabilities for
the birth and deletion of a knot are given by �b and �d and
are defined in the next section.

5. Repeat steps 1–4 M times.

For each iteration from the RJMCMC algorithm, we obtain a sam-
ple from the marginal posterior distribution of ��	 k� conditional on
D̂r and on �r�j� . We then sample � from ��r � D̂r�j� 	��j�	 k�j�	data�.
This distribution is multivariate normal with covariance matrix V =
�
∑

c�W
r
c + D̂r �−1�−1 and mean V ×∑

c�W
r
c + D̂r �−1�̂r

c .
Note that we cannot simply average the coefficient of the spline

curves across iterations as the number and location of the knots
changes. We can obtain the posterior mean of the regional (or city-
specific) curve by averaging the curves specified by �r (�r

c) from
each iteration. We do this by choosing a grid of PM10 values and
then pointwise averaging the curves over the grid.

An alternative approach to fixing Dr at its restricted MLE is to
sample Br

0 from �Br
0��	 k	data�, where Br

0 = W
1/2
0 �W0 +Dr�−1W

1/2
0

and W0 = 1
Cr

∑Cr

c=1W
r
c (see Everson and Morris 2000 for details).

To show that the RJMCMC algorithm proposed earlier converges
to the correct distribution, we need to show that the Markov chain
satisfies detailed balance,

-�Mk�P�Mk−1�Mk�= -�Mk−1�P�Mk�Mk−1�� (A.1)

This proof follows very closely the proof of Di Matteo et al. (2000),
and we use their notation. In (A.1), Mk denotes the parameters of the
model with k knots and Mk−1 denotes the parameters of the model
with k−1 knots. P�Mk�Mk−1� is the transition probability for going
from Mk to Mk−1 and -�Mk� is the posterior distribution of Mk,

defined as

-�Mk�= L̂�y�B0�p�B0�!	k�p���k�p�k�/p̂�y�	

where L̂ is the approximation to the marginal likelihood for B0 as
defined by Daniels and Kass (1998), � is integrated out, p̂�y� is the
normalizing constant, p�B0	 !	 k�= p�B0�!	k�p�!�k�p�k� is the joint
prior distribution on the between-city covariance matrix, and the loca-
tion and number of knots are as defined in Section 4.

Now define bk = P�k+ 1�k� to be the probability of adding a
knot and dk = P�k− 1�k� to be the probability of deleting a knot,
when k knots are currently in the model. For our example, we set
bk = dk = �4. Let �d denote the acceptance probability for deleting a
knot. Then

P�Mk−1�Mk�= P�k−1�k�P�delete !j �k�-̂�B0�!	k−1	 �̂��d

= dk�1/k�-̂�B0�!	k	 �̂��d	

where
�d =min#1	A$

with

A= -�Mk−1�

-�Mk�

bk−1�1/�n− �k−1���
dk1/k

-̂�B0�!	k	 �̂�

-̂�B0�!	k−1	 �̂�
�

Here -̂�B0�!	k	 �̂� denotes the constrained Wishart density that most
closely envelops the true full conditional distribution of B0 (Everson
and Morris 2000). To evaluate this constrained Wishart density, we
need the normalizing constant (i.e., the probability that all of the
eigenvalues of B0 are less than or equal to 1). This can be computed
by simulation (i.e., simulate from the same Wishart distribution, -̂	
without the constraint and then estimate the probability).

We now consider adding a knot, that is, going from a model with
k− 1 knots to a model with k knots. Here let �b denote the accep-
tance probability for adding a knot,

P�Mk�Mk−1�= P�k�k−1�P�add !j �k−1�-̂�B0�!	k	 �̂��b	

= bk−1�1/�n− �k−1���-̂�B0�!	k	 �̂��b	

where
�b =min#1	B$

with

B = -�Mk�

-�Mk−1�

dk1/k
bk−1�1/�n− �k−1���

-̂�B0�!	k−1	 �̂�

-̂�B0�!	k	 �̂�
= 1/A�

If A < 1, then �d = A and �b = 1,

-�Mk�P�Mk−1�Mk�

= -�Mk�dk�1/k�-̂�B0�!	k−1	 �̂�A

= -�Mk�dk�1/k�-̂�B0�!	k−1	 �̂�

× -�Mk−1�

-�Mk�

bk−1�1/�n− �k−1���
dk1/k

-�B0�!	k	 �̂�

-̂�B0�!	k−1	 �̂�

= -�Mk−1�bk−11/�n− �k−1��-̂�B0�!	k	 �̂�

= -�Mk−1�P�Mk�Mk−1��

Thus detailed balance is satisfied. Similar arguments can be used to
show that moving a knot satisfies detailed balance.



12 Journal of the American Statistical Association, March 2002

If instead of sampling B0, we fix it at its restricted MLE, B̂0 (D̂),
then the foregoing argument proceeds similarly. However, the product
of the prior for B0 and the likelihood approximation, L̂�y�B0�, in
-�Mk� is now replaced by L̂�y�B̂0�D̂��. In addition, the transition and
acceptance probabilities remain the same, except for the exclusion
of -̂�B0��	 k	 �̂�. The approach of fixing D at its restricted MLE
estimate simplifies computations. However, it decreases the size of
the penalty for models with more knots (see Di Matteo et al. 2000).

[Received December 2000. Revised August 2001.]
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