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SUMMARY9

This paper presents a case study in longitudinal data analysis where the goal is to estimate the e�cacy
of a new drug for treatment of a severe chronic constipation. Data consist of long sequences of binary11
outcomes (relief=no relief) on each of a large number of patients randomized to treatment (low and
high dose) or placebo. Data characteristics indicate: (1) the treatment e�ects vary non-linearly with13
time; (2) there is substantial heterogeneity across subjects in their responses to treatment; and (3) there
is a high proportion of subjects who never experience any relief (the non-responders).15
To overcome these challenges, we develop a hierarchical model for binary longitudinal data with a

mixture distribution on the probability of response to account for the high frequency of non-responders.17
While the model is speci�ed conditionally on subject-speci�c latent variables, we also draw inferences
on key population-average parameters for the assessment of the treatments’ e�cacy in a population.19
In addition we employ a model-checking method to compare the goodness-of-�t for our model against
simpler modelling approaches for aggregated counts, such as the zero-in�ated Poisson and zero-in�ated21
negative binomial models.
We estimate subject-speci�c and population-average rate ratios of relief for the treatment with respect23

to the placebo as functions of time (RRt), and compare them with the rate ratios estimated from the
models for aggregated counts. We �nd that: (1) the treatment is e�ective with respect to the placebo25
with higher e�cacy at the beginning of the study; (2) the estimated rate ratios from the models for
aggregated counts appear to be similar to the average across time of the population-average rate ratios27
estimated under our model; and (3) model-checking suggests that the hierarchical and zero-in�ated
negative binomial model �t the data best.29
If we are mainly interested to establish the overall e�cacy (or safety) of a new drug, it is appropriate

to aggregate the longitudinal data over time and analyse the count data by use of standard statistical31
methods. However, the models for aggregated counts cannot capture time trend of treatment such as the
initial treatment bene�t or the development of tolerance during the early stage of the treatment which33
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may be important information to physicians to predict the treatment e�ects for their patients. Copyright1
? 2005 John Wiley & Sons, Ltd.

KEY WORDS: binary longitudinal; random e�ect; mixture; zero-in�ated Poisson regression; zero-in�ated3
negative binomial; model checking

1. INTRODUCTION5

Inclinical trials, repeated measurements are often taken over time to evaluate e�cacy and
safety of a new drug for treatment of a chronic disease. In some instances, outcomes are7
binary indicators of relief of a symptom or of occurrence of an adverse e�ect. This paper
is motivated by a case study in longitudinal data analysis where the goal is to estimate9
the e�cacy of a new drug for treatment of a severe chronic constipation from a phase III
clinical trial. Data consist of long sequences of repeated binary outcomes (relief=no relief) on11
patients randomized to treatment (low and high dose) or placebo. The data are characterized
by: (1) non-linearity of the treatment e�ects over time; (2) heterogeneity among subjects in13
their responses to treatment; and (3) high frequency of subjects who never experience any
relief (non-responders). These data characteristics render standard methods for the analysis15
of longitudinal data less suitable for an appropriate assessment of the treatment e�ect which
needs to take into account all sources of uncertainty.17
Statistical methods for analysis of longitudinal binary data have been rapidly developed

during recent years. Diggle et al. [1] and Cox et al. [2] provide the detailed review. One19
alternative to longitudinal data analysis is to aggregate the repeated binary observations for
each subject over time and then analyse the total number of responses using Poisson regression.21
Since the repeated measurements for each person are likely to be correlated, we expect extra-
Poisson and=or extra-binomial variation [3] which would result in a poor �t to the standard23
generalized linear model [4]. A number of extensions have been proposed for aggregations of
correlated binary outcomes; the readers can �nd an annotated bibliography in Reference [5].25
In this paper we develop a hierarchical model for the analysis of binary longitudinal data

having a mixture distribution on the probability of response. Our modelling approach allows27
estimation of the subject-speci�c and population-averaged rate ratios of relief (response) for
the treatment with respect to the placebo as a smooth function of time taking into account the29
high frequency of subjects who achieve no relief (non-responders) as well as the heterogeneity
of subjects who do experience some relief (responders).31
To check our model and compare it with alternatives, we simulate data sets under each �tted

model and graphically display departures of the simulated data sets from the observed data. We33
implement our model checking method to compare goodness-of-�t of our hierarchical model
for longitudinal data vs the following models for aggregated counts data: (1) the negative35
binomial (NB) [6]; (2) zero-in�ated Poisson (ZIP) [7]; and (3) zero-in�ated negative binomial
(ZINB) [8].37
In Section 2, we describe the case study and the data set. In Section 3, we introduce

our hierarchical model for longitudinal analysis and illustrate the estimation approaches of39
the subject-speci�c and population-average rate ratios of relief by Monte-Carlo Markov chain
(MCMC) methods. In Section 4, we brie�y review models for aggregated counts and illustrate41

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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our model-checking method. In Section 5, we summarize the results. A discussion of the results1
and modelling strategies is in Section 6.

2. DATA3

The motivating data of this paper are obtained from a phase III double-blind randomized
clinical trial evaluating the e�cacy of a new drug for treatment of severe chronic constipa-5
tion. The primary e�cacy outcome is a relief of constipation de�ned as the occurrence of
‘spontaneous complete bowel movement’. A bowel movement (defecation) was de�ned as7
‘spontaneous’ only if the subject recorded ‘No’ to the diary question ‘Did you take laxatives
in the 24 hours preceding that bowel movement?’. A bowel movement was considered ‘com-9
plete’ only if the subject recorded ‘Yes’ to the diary question ‘Did the stool make you feel like
you completely emptied your bowels?’ From these two items in the patients’ diary recorded11
daily, the primary outcome variable is constructed as a binary response 1 if the subject ex-
perience ‘spontaneous’ and ‘complete’ bowel movement on each day, 0 otherwise. Subjects13
who have less than 2 days of relief of constipation per week during a 2-week drug-free run-in
period were eligible. After the run-in period, 641 subjects were randomized to one of three15
groups: placebo, and two doses of the drug (low and high dose). Patients were treated once
daily with an oral preparation for 12 consecutive weeks (84 days). In summary, the primary17
outcome is a binary response Yij indicating a relief of constipation (response) for subject i
on day j. Predictors of interest are time (tij) which ranges from 1 to 84 days, and treatment19
indicators (x1i=1 if low dose and 0 otherwise; x2i=1 if high dose and 0 otherwise).
Table I summarizes the total number of subjects (Nk) for each treatment group (k) where21

k=P, L, H are indices for placebo (P), low dose (L) and high dose (H); the median and the
range of follow-up days across subjects (ni); the range of the total number of responses during23
follow-up days (Yi=

∑ni
j=1Yij); and the average fraction of days with response (

∑Nk
i=1 Pi=Nk ,

where Pi=Yi=ni). The average fractions of days with response are 0:138; 0:218 and 0.21625
for the placebo, low and high dose groups, respectively, suggesting a possible treatment
bene�t.27
Figures 1 and 2 show the daily relief rate (observed per cent of responders, Pj=

∑nj
i=1Yij=nj,

where nj is the number of subjects at time j) for each treatment group plotted against29
follow-up time. For both the high and low dose group, the relief rate of treatment is higher
than for placebo for most of days. The relief rate on treatment decreases over time more31
rapidly at �rst, the relief rate for placebo increases with time.

Table I. Total number of subjects (Nk) where k =P, L, H are indices for placebo (P),
low dose (L) and high dose (H), median and range of follow-up days across subjects
(ni), range of the total number of responses during follow-up days (Yi=

∑ni
j=1Yij),

and average fraction of days with response (Pi=Yi=ni).

Nk Median of ni Range of ni Range of Yi Mean of Pi

Placebo 212 83 5–84 0–81 0.138
Low dose 214 84 2–84 0–75 0.218
High dose 215 83 1–84 0–82 0.216

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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Figure 1. Daily relief rate (observed per cent of responders) over time for treatments (low and high
doses of the drug) with respect to the placebo. The points are observed per cent of responders (the
dots for placebo, the triangles for low dose and the crosses for high dose) and the lines are smoothing

curves over the points of observed per cent of responders for each treatment group.
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Figure 2. Daily relief rate (observed per cent of responders) over time for
low dose with respect to high dose.

We expect that the repeated measurements on the same subject will be correlated. Serial1
correlation of repeated binary outcomes can be explored by use of the empirical lorelogram
[9, 10]. The lorelogram is simply the log odds ratio between observations at each pair of3
points tj and tk de�ned as

LOR(tj; tk) = log �(Yij; Yik) where

�(Yij; Yik) =
P[Yij=1; Yik =1]P[Yij=0; Yik =0]
P[Yij=1; Yik =0]P[Yij=0; Yik =1]

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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Figure 3. Lorelogram: estimated log odds ratio as function of lag time.

Figure 3 shows the estimated log odds ratio as function of lag time |tj − tk | separately for1
each treatment group. This �gure indicates substantial serial dependence (odds ratio ¿3) for
long lags upto 80 days with greater serial dependence for placebo than treatment. This suggests3
that the treatment diminishes the serial dependence compared to placebo, in other words, the
treatment reduces the variability of random e�ects among subjects in the treatment group5
compared in placebo. Presence of serial correlation at long lags is consistent with subjects
having their own latent propensity of disease that is not fully captured by the covariates.7
Random intercept model is therefore an appropriate choice to start. Notice that the log odds
ratio between observations at very long lag cannot be estimated precisely since there are not9
much information, for example, there is at most one pair of observations at lag 83 for each
subject, which may lead the estimation of lorelogram after 60 days less precise.11
Figure 4 shows the histogram of fraction of the total number of days with response

(Pi=Yi=ni) for each treatment group. It shows a high proportion of patients who never expe-13
rience the relief, for whom the fractions of days with response are zeros. Histograms indicate
that there may be two groups of people: the non-responders represented by high proportion of15
zero fraction of days with response (big piles at zero in the left panel) and the responders who
experience at least one response during the follow-up days (normal density shape histogram17
as log odds scale in the right panel). In addition, the proportions of zero fraction of days with
response under the treatment are smaller than under placebo suggesting that the treatment is19
e�ective in reducing the proportion of non-responders. Thus, histograms in the log odds scale
clearly indicate that the distribution of log odds of a response can usefully be modelled as a21
mixture distribution with di�erent probability of non-responders for each treatment.
In summary, our exploratory analysis suggests that there are several characteristics of these23

data that make the evaluation of treatment e�ect challenging: (1) distinct non-linear time
trends for each of the three groups; (2) high serial correlation; (3) evidence of a mixture25
distribution for the log odds of probability of a response.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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Figure 4. Fraction of days with response, original scale and log odds.

3. LONGITUDINAL DATA ANALYSIS APPROACH1

In this section, we describe a Bayesian hierarchical model for longitudinal data analysis of
binary outcomes which takes into account the data characteristics illustrated in Section 2.3
We assume that Yij (1 for relief for subject i on day j; 0 otherwise) has a Bernoulli distri-
bution with probability pij. To take into account the high frequency of non-responders, we5
assume that there are two subpopulations: non-responders who never experience any relief and
responders who do experience some relief. We denote by �k the probability that a subject7
taking treatment k belongs to the non-responders group, where k=P, L, H are indices for
placebo (P), low dose (L) and high dose (H), respectively. With probability (1 − �k), we9
specify a logistic regression model where the logit of pij is modelled as function of covari-
ates including: (1) main treatment e�ects; (2) a natural cubic spline of time with two knots11
to allow for non-linear treatment e�ects; (3) a random intercept (ui) to approximate the serial
dependence.13

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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Table II. De�nitions of subject-speci�c rate ratios of relief (RRt(u)) as function of
model parameters under the hierarchical model.

RRt(u)L:P =
Pt(L)(ui)
Pt(P)(ui)

(1− �L)
(1− �P)

e�0+u+ns(t;3)+�1+ns(t;3)

1 + e�0+u+ns(t;3)+�1+ns(t;3)

/
e�0+u+ns(t;3)

1 + e�0+u+ns(t;3)

RRt(u)H :P =
Pt(H)(ui)
Pt(P)(ui)

(1− �H )
(1− �P)

e�0+u+ns(t;3)+�2+ns(t;3)

1 + e�0+u+ns(t;3)+�2+ns(t;3)

/
e�0+u+ns(t;3)

1 + e�0+u+ns(t;3)

RRt(u)H :L=
Pt(H)(ui)
Pt(L)(ui)

(1− �H )
(1− �L)

e�0+u+ns(t;3)+�2+ns(t;3)

1 + e�0+u+ns(t;3)+�2+ns(t;3)

/
e�0+u+ns(t;3)+�1+ns(t;3)

1 + e�0+u+ns(t;3)+�1+ns(t;3)

In summary, we use the following modelling approach:1

Yij ∼ Bernoulli(pij)

logitpij = �0 + ui + ns(tij) + �1x1i + �2x2i

+ x1i × ns(tij) + x2i × ns(tij) w:p: (1− �k)

logitpij =−∞ w:p: �k

ui ∼Normal(0; �2)

where ns(tij) is a natural cubic spline of time with two knots at days 20 and 60, x1i and
x2i are indicators of the low and high dose treatments, respectively. The two knots at days3
20 and 60 were chosen to re�ect both our scienti�c understanding of the drug and empirical
consideration as described below. A similar class of drug for treatment of constipation often5
shows rapid pharmacodynamic action and greater response at the beginning of treatment, but
quickly develops tolerance to the treatment during early period of treatment, and �nally the7
treatment e�ect stabilizes and persists. This time trend could be found in a previous phase III
clinical trials for a similar class of drug [11]. As shown in Figures 2 and 3, the exploratory9
analysis also indicates the change of the treatment response occurred around days 20 and 60.
In addition, the two knots are roughly equally dividing the total number of days in the data11
at days 20 and 60 to ensure �exibility in modelling non-linear time trend.
Parameters of interest are both subject-speci�c and population-average rate ratio (RR) of13

relief for treatment (high dose and low dose) with respect to placebo. Table II summarizes the
de�nition of subject-speci�c rate ratios (RRt(u)) as function of model parameters and random15
e�ects. Subject-speci�c rate ratios of relief are de�ned as ratios of subject-speci�c probability
of having a relief for treatment (high dose and low dose) with respect to placebo. The subject-17
speci�c probability of having a relief for each treatment as a function of time can be calculated
by the subject-speci�c probability of having a relief given being a responder multiplied by19
the probability of being a responder for each treatment group. For example, the subject-speci�c
probability of having a relief for placebo, Pt(P)(ui), can be calculated by the subject-speci�c21
probability of having a relief given being a responder for placebo e�0+u+ns(t;3)=(1+e�0+u+ns(t;3))
multiplied by the probability of being a responder for placebo (1−�P) where ns(t; 3) denotes23
the natural cubic spline of time in the model.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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Population-average rate ratios of relief are de�ned as ratios of population-average probability1
of having a relief for treatment (high dose and low dose) with respect to placebo. For example,
the population-average RR for high dose with respect to placebo is3

RRt(H :P) =
∫
Pt(H)(ui)g(ui) dui∫
Pt(P)(ui)g(ui) dui

(1)

where
∫
Pt(H)(ui)g(ui) dui and

∫
Pt(P)(ui)g(ui) dui are the population-average probability of hav-5

ing a relief, and Pt(H)(ui) and Pt(P)(ui) are the subject-speci�c probability of having a relief
for the high dose and placebo, respectively, and g(ui) is the distribution of random e�ect ui,7
which is normal in this model.
We �t the model under a Bayesian framework using MCMC methods implemented with9

WinBUGS [12, 13]. We assign non-informative priors on the unknown parameters and we
assume that �k is U[0; 1], 1=�2 is Gamma(0.001, 0.001), and the regression coe�cients �11
are N(0; 10 000). Posterior distributions of the RRt(u) can be easily obtained by applying
formulas in Table II to the posterior samples of the model parameters [14]. We approximate13
the posterior distribution of the population-average RR using numerical integration methods.
More speci�cally, let W(m) = (R(m); X(m); �2(m)) be the mth posterior sample of model parameters.15
For each m, we:

• simulate the vector of random e�ects ul;m from N(0; �2(m)) for l=1; : : : ; L=1000;17
• calculate the subject-speci�c probability of having a relief Pt(k)(ul;m) as a function of
W(m) and ul;m where k=P, L, H ;19

• calculate the population-average probability of having a relief by averaging each subject-
speci�c probability with respect to the L random e�ects;21

• calculate the population-average rate ratio RRt by taking ratio of population-average
probability of having a relief for treatment (high dose and low dose) with respect to23
placebo.

4. STATISTICAL MODELS FOR AGGREGATED DATA AND MODEL25
COMPARISON

In this section, we brie�y describe three modelling approaches for count data which are27
obtained by aggregating subject-speci�c binary outcomes over time. The basic structure of
each model relies upon a Poisson regression having two main treatment e�ects (x1i and x2i)29
de�ned as in Section 3 and an o�set equal to the number of follow-up days (ni) to take into
account the di�erent follow-up time among subjects.31
The aggregated data present two major challenges that prevent us from using a standard

Poisson regression model. First, they show substantial heterogeneity across subjects which33
leads to extra-binomial variation [3, 4]. Second, the number of zero counts due to non-
responders appears to exceed the predicted number under a Poisson model.35
We compare our hierarchical modelling approach for the longitudinal data with the following

three modelling approaches for the aggregated counts data: (1) the ZINB model; (2) the NB37
model; and (3) the ZIP regression model as a special case of ZINB.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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Table III. De�nitions of rate ratios of relief (RR) as function of model parameters
under models for counts data.

RRL:P =
P(Yi|L)
P(Yi|P) RRH :P =

P(Yi|H)
P(Yi|P) RRH :L=

P(Yi|H)
P(Yi|L)

NB e�1 e�2 e(�2−�1)

ZIP e�1
1 + e�0

1 + e�0+�1
e�2

1 + e�0

1 + e�0+�2
e(�2−�1)

1 + e�0+�1

1 + e�0+�2

ZINB e�1
1 + e�0

1 + e�0+�1
e�2

1 + e�0

1 + e�0+�2
e(�2−�1)

1 + e�0+�1

1 + e�0+�2

Let Yi be the total number of responses for subject i during the study period. Under ZINB1
we assume:

Yi | ui ∼ Poisson(�i)

log �i = log ni + �0 + ui + �1x1i + �2x2i w:p: 1− �i
log �i =−∞ w:p: �i

eui ∼Gamma(1=�; 1=�)

logit �i = �0 + �1x1i + �2x2i

where �i=E(Yi|ui). Notice that ZINB [8, 15, 16] takes into account over-dispersion due to3
both extra-zeros and heterogeneity among subjects. More speci�cally we assume a two-part
regression model where with probability 1 − �i we model Yi as negative binomial with a5
random e�ect ui to take into account heterogeneity (dispersion parameter, �). In addition we
assume that the probability of having zero count (�i) varies by treatment (x1i and x2i) with7
�0, �1 and �2 as regression coe�cients.
Notice that under the assumption �i=0, ZINB becomes NB which takes into account over-9

dispersion by allowing heterogeneity, but assumes everyone is capable of relief. Under the
assumption Var(ui)=0, then ZINB becomes ZIP which takes into account of over-dispersion11
by allowing a two-part Poisson regression model to model the extra-zeros. Therefore by
assessing the goodness-of-�t of these modelling approaches, we can gain insight into the13
source of over-dispersion.
Table III summarizes the de�nitions of rate ratios of relief as function of model parameters15

under the NB, ZIP, and ZINB models.

4.1. Model checking17

In this section, we illustrate an exploratory tool that compares the goodness-of-�t among the
three models for aggregated counts data and the hierarchical model for longitudinal binary19
data. Our method applied half-normal plots [17, 18] to compare simulated data from each21

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:000–000
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model to the observed data, and it can be described in the following steps:
1

1. for the hierarchical model, randomly choose 50 samples of parameter estimates from
the MCMC, say W(m). For each m=1; : : : ; 50, simulate a new data set Y (m)ij from our3
hierarchical model described in Section 3 with model parameters equal to W(m). We
calculate the simulated aggregated count Y (m)i =

∑ni
j=1Y

(m)
ij and the observed aggregated5

count Yi=
∑ni

j=1Yij to compare the hierarchical model with the models NB, ZIP, and
ZINB which are aggregated count models. For the models NB, ZIP, and ZINB, simulate7
50 new data sets from the �tted models obtained by setting parameter values equal to
their maximum likelihood estimates;9

2. obtain Y (m;o)i by ordering the simulated Y (m)i and obtain Y (o)i by ordering the observed
data set Yi;11

3. calculate mean and percentiles of Y (m;o)i across m, and plot these summaries vs Y (o)i for
each model and compare these with the line of complete agreement.13

5. RESULTS

Figure 5 shows the posterior means and 95 per cent posterior intervals of subject-speci�c rate15
ratio (RR) as function of time and for a range of values for random intercept u between
−3:5 and 3:5 (±2�̂). Also shown is the population-average RR which is obtained by applying17
equation (1). We found that, on average over the study population, both the high and low
doses have a higher rate of relief than placebo (panel at the bottom right). Posterior means of19
RRt (H :P) and RRt (L:P) vary over time from 2.7 at t=1 to 1.6 at t=84 and from 2.4 at t=1
to 1.9 at t=84, respectively. That is, at the beginning and after 12 weeks of the treatment,21
patients who took high dose of the drug are on average 2.7 and 1.6 times more likely to
experience relief than patients under placebo. Similarly, at the beginning and after 12 weeks23
of the treatment, patients who took low dose of the drug are on average 2.4 and 1.9 times
more likely to experience relief than patients under placebo. There is little or no evidence of25
a di�erence in response between the high and low dose groups. Note that the rate ratio is
close to 1.0 over the entire 84 day period.27
The subject-speci�c RR are plotted in correspondence of random e�ects u equal to (2�̂; 1�̂;

0;−1�̂;−2�̂), where �̂2 is the posterior mean of �2 under the hierarchical model (�̂=1:7). For29
larger values of the random e�ects u, the posterior mean and variance of the subject-speci�c
RR is smaller: if a person has a larger propensity to respond (large random intercept, i.e.31
u=2�̂=3:5), then he=she would have higher probability of having a relief whether he=she is
treated or not. For those people, the subject-speci�c RR for the high dose vs placebo would33
be similar to the subject-speci�c RR for low dose vs placebo and the subject-speci�c RR
would not change much over time. On the other hand, when the random e�ects u is small,35
we estimate a larger posterior mean and variance of the subject-speci�c RR: if a person
has small propensity to respond (small random intercept, i.e. u= − 2�̂= − 3:5) possibly37
due to severe disorder, then the treatment e�ects can be maximized with higher uncertainty
depending on the severity of disorder or personal characteristics. An extreme case of small39
propensity to respond will be a non-responder who might be due to functional disorder in
bowel movements or already developed tolerance to similar class of drugs. However, for even41
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Figure 5. Posterior means and 95 per cent posterior intervals of subject-speci�c rate ratios (RR(u))
for random intercept u=(−3:5;−1:7; 0; 1:7; 3:5) and population-average rate ratios de�ned by equa-
tion (1) as function of time under the hierarchical model. The estimated rate ratios under ZINB

are presented as horizontal lines.

those non-responders, the treatment shows an e�ect by reducing the probability of being a1
non-responder compared to placebo.
For the random e�ect, u=0, the posterior means of RRt(0)H :P and RRt(0)L:P are estimated3

to vary over time from 4.4 at t=1 to 1.3 at t=84 and from 3.7 at t=1 to 1.5 at t=84,
respectively. Compared to the population-average RR, the subject-speci�c RRt(0) shows larger5
estimates and much more variability than the population-average RR. In fact, population-
average coe�cients are in general smaller than subject-speci�c coe�cients, and the degree of7
the di�erence depends on the variance of the random e�ect [19, 20], which is substantial in
this case study. The estimated RRs were not sensitive to the exact location of knots at 209
and 60 days.
Figure 6 shows posterior distributions of variance of the random intercept estimated from11

Bayesian hierarchical model allowing a di�erent random intercept for each treatment group
(�k =0 for all k, but use di�erent �2 for each treatment in our model) and from Bayesian13
hierarchical model with a mixture distribution on the probability of response also allowing a
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Figure 6. Posterior distributions of variance of the random intercept estimated from Bayesian hierar-
chical model allowing a di�erent random intercept for each treatment group (left) and from Bayesian

hierarchical model with a mixture distribution on the probability of response (right).

Table IV. Maximum likelihood estimates and standard errors* of
population-average rate ratios under the models NB, ZIP, and ZINB.

Model RRL:P RRH :P RRH :L

NB 1.56 (0.21) 1.54 (0.21) 0.99 (0.13)
ZIP 1.53 (0.18) 1.50 (0.18) 0.98 (0.10)
ZINB 1.56 (0.20) 1.54 (0.20) 0.99 (0.12)

Between parentheses are denoted the standard errors.
∗Obtained with the delta method.

di�erent random intercept for each treatment group (use di�erent �2 for each treatment in our1
model). We can see that the variability of the random intercept from Bayesian hierarchical
model with a di�erent random intercept (left) is reduced among subjects in the treatment group3
compared in placebo as we expected from the lorelogram (Figure 3). However, if we take
into account non-responders using a mixture distribution on the probability of response, the5
variabilities of the random intercept are reduced in all the treatment groups and almost similar
across the treatment groups (right), which led to use the same �2 for all treatment groups7
in our �nal hierarchical model. This indicates that much of the di�erences in variabilities of
random e�ect among subjects in placebo compared to the treatment was due to non-responders.9
Table IV summarizes point estimates and standard errors of the RRs. The standard errors

were estimated and compared by using both the delta method and bootstrap. The two methods11
provided very similar estimates. In Figure 5, the estimated RRs under ZINB are presented
as horizontal lines over time for the comparison with the population-average RR and the13
subject-speci�c RR. RRL:P and RRH :P overlapped as one solid line due to their similarity.
The estimated RRs under ZINB appear to be similar to the average across time of population-15
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Table V. Maximum likelihood estimates and standard errors of model parameters for NB, ZIP, and ZINB.

�0 �1 �2 � �0 �1 �2

NB −1.981 0.446 0.433 1.837
(0.096) (0.135) (0.135) (0.109)
(0.089)* (0.115)* (0.116)* (0.108)*

ZIP −1.654 0.310 0.233 −1.021 −0.512 −0.890
(0.021) (0.027) (0.027) (0.157) (0.238) (0.261)
(0.081)* (0.105)* (0.108)* (0.157)* (0.238)* (0.261)*

ZINB −1.806 0.371 0.285 1.367 −1.656 −0.593 −1.895
(0.098) (0.131) (0.129) (0.139) (0.296) (0.432) (1.143)
(0.094)* (0.112)* (0.115)* (0.115)* (0.308)* (0.430)* (1.171)*

∗Standard errors are estimated by use of a robust variance estimator [21–23].

average RRs obtained under the hierarchical model. Thus, even though the simpler models for1
the aggregated counts data do not allow to estimate RR as a function of time, the conclusion
about the overall treatment e�ect would remain the same. However, we should notice that3
ZINB cannot capture the initial treatment bene�t or the development of tolerance during the
early stage of the treatment.5
Table V summarizes the maximum likelihood estimates, standard errors, and robust standard

errors [21–23] of the parameters under the models for the aggregated counts data. We notice7
that under the ZIP model the robust standard errors are about four times greater than the
model-based standard errors implying that modelling extra zeros is not enough to take into9
account over-dispersion. The estimate of the variance of the random e�ects � under NB and
ZINB indicates over-dispersion due to heterogeneity. The estimate of � under ZINB is smaller11
than under NB, suggesting that part of over-dispersion in ZINB is explained by modelling
extra zeros. This �nding is consistent with the smaller estimate of the variance of random13
e�ect from Bayesian hierarchical model with a mixture distribution as shown in Figure 6.
The estimates of �0, �1 and �2 under ZIP are greater than under ZINB, indicating that ZIP15
captures over-dispersion through modelling extra zeros only, whereas ZINB can take into
account over-dispersion also through the variance of random e�ects.17
Figure 7 shows the plots of simulated (Y (m;o)i ) which are ordered simulated data Y (m)i

explained in Section 4 vs the ordered observed data (Y (o)i ) under the hierarchical model and19
under the models for aggregate counts. Figure 8 shows the same plots under the hierarchical
model but separately for the three sub-periods, during 1–4, 5–8 and 8–12 week. In both �gures,21
under the hierarchical model the line of complete agreement lies entirely within the 95 per
cent quantile of Y (m;o)i implying that our hierarchical model is consistent with the marginal23
distribution of total number of responses. Among the three alternative models, ZINB is the
best, although, the plot is skewed in the high value of observed values. Similar phenomenon25
occurs for NB whereas goodness-of-�t for the ZIP model is very poor. Therefore, in connection
with the result in Table V, our method for comparing goodness-of-�t between models suggests27
that over-dispersion can be mostly explained by the heterogeneity, although modelling the
excess in zero counts can improve the �t also. Finally, if the goal is to evaluate overall29
treatment e�ect, then ZINB is the best alternative.
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Figure 7. The plots of simulated Y (m; o)i vs observed Y (o)i for the hierarchical model
and models for the aggregated counts data.

6. DISCUSSION1

Motivated by a randomized clinical trial of a treatment for a severe chronic constipation, we
developed a hierarchical model for longitudinal data analysis of binary outcomes. Our model3
takes account of: (1) non-linear time trends for the treatment e�ect in the placebo and treat-
ment groups; (2) a dose-speci�c parametric contrast between the treatment and placebo groups;5
(3) serial correlation; and (4) a mixture distribution for the log odds of probability of re-
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Figure 8. The plots of simulated Y (m; o)i vs observed Y (o)i for the hierarchical model
during three sub-periods of time.

sponse. We estimated posterior distributions of subject-speci�c and population-average rate1
ratios of relief for the treatment with respect to the placebo as functions of time (RRt).
Both subject-speci�c and population-average rate ratios have their own important interpre-3

tations. Drug regulatory authorities would generally be interested in the population-average
rate ratios since new drug must show e�cacy for the whole population, whereas doctors who5
should treat individual patient are likely to be more interested in the subject-speci�c rate ra-
tios. The posterior mean and variance of the subject-speci�c rate ratios showed that patients7
with high-risk (low propensity to respond) are more likely to have larger bene�t of treatment
than patients with low-risk (high propensity to respond) [24, 25]. The estimated rate ratios9
from simpler modelling approaches for the aggregated counts are similar to the average across
time of the population-average rate ratios from our hierarchical model for longitudinal data.11
We found that: (1) the treatment is more e�ective than the placebo throughout the 84 days,

having the e�cacy decreases at the beginning of the study; (2) there is little di�erence in13
the e�cacy of the drug between the high and low doses; and (3) even though the simpler
models do not produce estimates of the treatment e�ect as a function of time, the conclusion15
about the overall treatment e�ect is similar across modelling approaches.
To compare our hierarchical model for the analysis of binary longitudinal data with simpler17

modelling approaches, we developed a model-checking method to assess goodness-of-�t. Our
approach suggested that the hierarchical model �ts the data best. In addition, the comparison of19
the goodness-of-�t between models of increasing complexity provided a better characterization
of the sources of over-dispersion. Our model-checking method suggested that most of over-21
dispersion in data can be explained by the heterogeneity, but modelling the excess in zero
counts improved the �t also.23
The statistical analysis of longitudinal binary outcomes adapted in this paper is similar

to the one recently proposed by Carlin et al. [26]. These authors presented a Bayesian hi-25
erarchical model with a mixture distribution to estimate risk of smoking in teenagers as
functions of covariates, and they compared their hierarchical formulation with the following27
alternative modelling approaches: (1) a logistic-regression model with GEE [27]; and (2) a
logistic regression model with normal distributions on the random e�ects. Di�erently from the29
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approach adapted by Carlin et al. [26], we compared rate ratios from models for aggregated1
counts vs population-average rate ratios obtained by marginalizing over the random e�ect dis-
tribution. In addition, to assess treatment e�cacy over time, we estimated rate ratios under3
the hierarchical model as smooth function of time (RRt).
Longitudinal data analysis methods and statistical analysis of the aggregated count data have5

their own pros and cons, and either approach could be legitimate depending on the scienti�c
question. In a longitudinal data analysis, we use the maximum amount of information available7
in the data. Most importantly, we can estimate the time course of treatment e�cacy or adverse
e�ect. In this motivating example, there is clear evidence of changing e�cacy with time. Such9
a result could be valuable to developing guidelines for treatment of individual patients or can
be used to plan future clinical trial or drug development for a similar series of new drugs.11
On the other hand, if we are mainly interested to establish the overall e�cacy (or safety)

of a new drug, then it is appropriate to aggregate the longitudinal data over time and analyse13
the count data using standard statistical methods as done here. Although the models for
aggregated data such as ZINB can estimate overall treatment e�ect and �t the data well, they15
cannot capture time trend of treatment (e.g. the initial treatment bene�t or the development
of tolerance during the early stage of the treatment) which may be useful information to17
physicians to predict the treatment e�ects for their patients.
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