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Abstract 

 Misclassification of exposure is a well-recognized, inherent limitation of 

epidemiologic studies of disease and the environment.  For many agents of interest, 

exposures take place over time and in multiple locations; accurately estimating the 

relevant exposures for an individual participant in epidemiologic studies is often 

daunting, particularly within the limits set by feasibility, participant burden, and cost.  

Researchers have taken steps to deal with the consequences of measurement error by 

limiting the degree of error through a study’s design, estimating the degree of error 

using a nested validation study, and by adjusting for measurement error in statistical 

analyses. 

 In this paper, we address measurement error in observational studies of air 

pollution and health.  Because measurement error may have substantial implications for 

interpreting epidemiologic studies on air pollution, particularly the time series analyses, 

this paper sets out a systematic conceptual formulation of the problem of measurement 

error in epidemiologic studies of air pollution and considers the consequences within 

this formulation.  When possible, we have used available, relevant data to make simple 

estimates of measurement error effects. 

 We start with an overview of measurement errors in linear regression, 

distinguishing two extremes of a continuum-Berkson from classical type errors, and the 

univariate from the multivariate predictor case.  We then propose one conceptual 

framework for the evaluation of measurement errors in the log-linear regression used for 

time series studies of particulate air pollution and mortality, identifying three main 

components of error.  We present new, simple analyses of data on exposures of 
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particulate matter less than 10 µm in aerodynamic diameter (PM10) from the PTEAM 

(Particle Total Exposure Assessment Methodology) study.  Finally, we summarize open 

questions regarding measurement error and suggest the kind of additional data 

necessary to address them. 
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1. Introduction 

 Misclassification of exposure has long been recognized as an inherent limitation 

of epidemiologic studies of the environment and disease (1).  For many agents of 

interest, exposures take place over time and in multiple locations so that it is difficult to 

accurately estimate the relevant exposures for individual study participants, particularly 

within the limits set by feasibility, participant burden, and cost.  In general, exposure 

measurement error tends to blunt the sensitivity of epidemiologic studies for detecting 

effects of environmental agents, although the specific impact of exposure error on effect 

estimates depends on several factors including the study design, the types of error, and 

the relationships between the outcome and the independent variables (1, 2).  As the 

problem of exposure error has become well-recognized, researchers have taken steps 

to control its consequences by limiting the degree of error through careful study design 

and data collection, by estimating the degree of error using a nested validation study, 

and by making adjustments for measurement error in statistical analyses. 

In this paper, we address the problem of exposure error in observational, 

ecologic time-series studies of air pollution and health.  Pollution of outdoor air is a 

public health concern throughout the world.  For decades, epidemiologic studies have 

been a cornerstone of our approach to investigating the health effects of air pollution 

and have been a principal basis for setting regulations to protect the public against 

adverse health effects.  Two broad types of observational study designs have been 

used in research on air pollution: ecological or aggregate-level studies, either cross-

sectional or time-series in design, and individual-level studies, primarily of the cross-

sectional or cohort designs.  In ecological studies, population-level indicators of 
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exposure are typically drawn from centrally-sited air pollution monitors.  In individual-

level cross-sectional and cohort studies, exposure estimates for individual participants 

may be based on centrally located monitors, on the combination of central monitors with 

personal records of environments where participants spend time, or on personal 

exposure monitoring (3).   

Regardless of study design, any pollution exposure assessment strategy will 

introduce some degree of exposure measurement error.  For example, in the Six Cities 

Study, a prospective cohort study of air pollution and respiratory health and mortality, 

exposure estimates for persons from each of the six cities were based on centrally sited 

monitors (4, 5).  Exposures were further characterized for samples of participants using 

personal monitors and monitors placed in their homes; the resulting data provide an 

understanding of the components of error associated with using the central site data for 

all participants.  

 The problem of measurement errors in predictor variables in regression analysis 

has been carefully studied in the statistics and epidemiological literature for several 

decades.  Fuller (6) summarizes early research on linear regression with so-called 

“errors-in-x” variables.  Carroll et al. (7) extend this literature to generalized linear 

models including Poisson, logistic, and survival regression analyses.  Thomas and 

colleagues (2) presents an overview of the exposure error or “misclassification problem” 

from the general epidemiological perspective.  For recent illustrations of statistical 

approaches to measurement error in epidemiological research, see Spiegelman et al. 

(8), Willett (9), and Pierce et al. (10). 
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In one of the early papers on the topic of exposure error in studies of air pollution, 

Shy and colleagues (11) described the problem and addressed its consequences in an 

epidemiologic framework.  Goldstein (12, 13) recognized that a single monitoring station 

may not adequately represent a geographic area and conducted an analysis of 

correlations among concentration data from several monitors in New York City.  In the 

ensuing decades, there has been deepening understanding of measurement error in 

general and its potential implications for the study of air pollution (14, 15).   

During the 1990s, substantial new evidence, largely from ecologic, time-series 

analyses of air pollution and mortality, showed that daily variation in ambient measures 

of particulate air pollution, within current standards of the US Environmental Protection 

Agency, was associated with daily mortality levels (16).  Strong concerns have been 

raised about interpreting these associations in view of potential errors in the exposure 

measurements.  In a series of papers, Lipfert and Wyzga (17-19) have suggested that 

the central monitoring data used in the time-series analyses have an uncertain 

relationship with exposures of individuals in the study communities; they have further 

argued that those errors vary among pollutants, complicating interpretation of any multi-

pollutant models.  Lipfert and Wyzga have referred specifically to an analysis by 

Schwartz, Dockery, and Neas (20) which attributed effects on mortality to fine rather 

than coarse particles, based in part on the results of multivariable models which 

included variables for both particulate measures.   

A number of exposure assessment studies have found sizable differences 

between actual personal exposures to particles and estimates based on central monitor 

values (21).  Some have questioned whether the observed associations are plausible 
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given these findings.  However, Schwartz, Dockery, and Neas have responded that as 

the number of deaths per day is calculated over the population, the relevant exposure 

measure is the mean of personal exposures on that day, which is probably more tightly 

correlated with central station monitoring than individual exposures.  Janssen and 

colleagues (22) have reported that much of the variation in PM10 measurements is 

between people and that the longitudinal correlation between average and ambient 

PM10 measures is relatively high.  The debate over measurement error and its 

consequences has taken place, however, without the development of a more 

comprehensive formulation of the problem. 

Because exposure measurement error may have substantial implications for 

interpreting epidemiologic studies on air pollution, particularly the time-series analyses, 

this paper describes one systematic conceptual formulation of the problem of exposure 

error in epidemiologic, time-series studies of air pollution and considers the possible 

consequences for relative risk estimation.  We have used available and relevant data to 

obtain rough estimates of the magnitudes of the effects of measurement error for one 

city.  

Section 2 presents an overview of the main ideas on exposure measurement 

errors in linear regression, distinguishing Berkson from classical type errors and the 

univariate from multivariate predictor cases.  Section 3 develops a conceptual 

framework for evaluation of measurement errors in the log-linear regression models 

used for time-series studies of particulate air pollution and mortality, identifying three 

main components of error.  In Section 4.1, we present new analyses of data on 

exposures to particulate matter less than 10 µm in aerodynamic diameter (PM10) from 
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the PTEAM (Particle Total Exposure Assessment Methodology) study (23).  We 

illustrate how data on personal and ambient exposure levels can be used to assess the 

effects of measurement error on the estimated associations of PM10 with daily mortality.  

In Section 4.2, we illustrate a statistical approach for assessing the bias in a relative risk 

estimate caused by exposure measurement error.  Section 5 summarizes the open 

questions regarding measurement error and proposes the additional data needed to 

address more effectively these questions. 

 

2. Overview of Measurement Error Effects in Regression Models 

 This section sets out the fundamental concepts of how exposure error can affect 

an epidemologic study of pollution and health.  We do so by considering the effects of 

exposure measurement error in a standard linear guassian regression model.  This 

topic has been treated in full detail elsewhere (2, 6, 7, 24, 25).  For simplicity, consider a 

regression of the health response ty  (e.g., log mortality rate on day t) and predictors 

tx (e.g., PM10, O3, weather): 

     ttxt xy εβα ++=       (E1) 

where α  and xβ  are regression coefficients to be estimated, and tε  represents residual 

error which is assumed to be independent of tx .  Here xβ  is the expected change in 

mortality per unit change in true exposure.  Given observations ),( tt yx , t = 1, …,T and 

appropriate assumptions about the distribution of the residuals, ordinary least-squares 

estimation provides optimal (unbiased and minimum varianced) estimates of the 

regression coefficients. 
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 Now we assume that instead of the true exposure levels tx , we have only an 

imperfect measure of exposure, denoted tz .  The overall difference between tx  and tz  

comprises multiple components of error including differences:  between individual- and 

population-average exposures; between population-average exposures and ambient 

levels at central sites; and between actual ambient levels and the measurements of 

those levels.  Suppose we regress the health outcome ty  on the imperfect tz  rather 

than tx  which is unavailable:  

∗∗ ++= ttzt zy εβα . 

How will zβ̂  differ from xβ̂ ? 

 To answer this question, we will first assume that tz  is a “surrogate” for tx   which 

means that, given tx , there is no additional information in tz  about ty .  We then can 

distinguish two fundamentally distinct types of relationships between the true and 

measured exposures, which represent poles of a measurement error continuum.  The 

first type is referred to as the “classical error model” (7) in which we assume that z  is an 

imperfect measure of x , so that the average z  within each x  stratum equals x  

( xxz =Ε )( ).  Then it follows that the measurement error xz −  is uncorrelated with the 

true value x .  This “classical model” is a reasonable one for the difference between 

measured ambient levels of pollution and the true values for a measuring device that is 

unbiased.  That is, when the true level of pollution is x , an unbiased instrument will 

measure x  on average, even if individual measurements z  differ from x . 

 The second type of model for measurement error is the “Berkson error model” 

(2).  In this model, we assume that the average value of the true exposure x  within 
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each stratum of measured level z  equals z  ( zzx =Ε )|( ).  This Berkson model is 

appropriate when z  represents a measurable environmental factor that is shared by a 

group of participants whose individual exposures x  might vary because of time-activity 

patterns.  For example, z  might be the spatially averaged ambient level of a pollutant 

without major indoor sources and x  might be the personal exposures, which when 

averaged across people, match the ambient level.   

 “Classical” and “Berkson” models for exposure measurement errors represent 

two extremes of a continuum.  Most exposure errors combine elements of each, but 

because the consequences on risk assessment of classical and Berkson errors differ, it 

is useful to consider each in turn.  In the Berkson error case, if we regress ty on tz , 

rather than on tx , the estimate zβ̂  is an unbiased estimate of the coefficient xβ , which 

would be obtained by regressing ty on the actual exposure tx .  That is, having tz rather 

than tx does not lead to bias in the regression coefficients under the surrogacy 

assumption.  The exposure measurement error does increase the variance of the 

regression coefficient, however, since having tz rather than tx is obviously not as 

informative about the coefficient xβ .  Bias is not introduced, however.  The same is true 

if the average x  at each value of z  differs from z  by a fixed amount a , i.e., 

( ) azzx −=Ε . 

 In contrast, under the classical error model, zβ̂ obtained by regressing ty on the 

imperfect measure exposure tz , is a biased estimate of xβ .  In the simple linear 

regression with one explanatory variable, zβ̂  is expected to be smaller than xβ  or 

“attenuated”.  The degree of attenuation increases as the variance of the exposure error 
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increases.  Again, a constant difference in the expected values of the two measures 

does not change this result. 

 It is straightforward to establish the results summarized above on the effects of 

exposure error on simple linear regression coefficients and useful to do so in advance of 

considering a multiple regression case.  To re-establish notation, the model of interest is  

     ttxt xy εβα ++=      (E1) 

but because tx  is unobserved we instead might regress ty on tz : 

     **
ttzt zy εβα ++= .     (E2) 

The question is how will zβ̂ from (2) estimate xβ in (E1).  Under the classical error, 

( ) ttt xxz =Ε  tz  is assumed to vary about tx , that is so that by (2),  

     ( ) ( ) tzttztt xxzxy βαβα +=Ε+=Ε ** .  (E3) 

Comparing (E3) and (E1) shows that xz ββ = in the Berkson error case; that is zβ̂ is an 

unbiased estimate of xβ .  Adding a constant to one exposure variable only affects the 

intercept. 

 Under the classical model, tx  is assumed to vary about tz  or ( ) ttt zzx =Ε  which 

does not imply ( ) ttt xxz =Ε .  If we further assume that tx and tt xz −  are jointly normally 

distributed, it can be shown that 

     ( ) txtt xcxy βα +=Ε **  

where c is an attenuation factor between 0 and 1 given by c = var ( tx )|(var ( tx ) + var 

( tδ )) where ttt xz −=δ  is the exposure error.  Again, a constant difference between the 

two exposure measures only changes the intercept. 
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 Thus, the estimated regression coefficient is biased towards zero.  In one 

pertinent case, xβ  = 0, the naive estimate zβ̂ is unbiased with E( zβ̂ )= xβ = 0; that is, 

under the classical error model, measurement error does not lead to spurious 

associations if there is truly no association.  Random variation, of course, can produce 

such associations by chance, as it can absent measurement error.  However, the 

probability of such false positive associations (the Type I error rate) remains the same. 

 For estimating effects of air pollution on mortality, realistic models have elements 

of both classical and Berkson error models.  In general, the effect of such exposure 

errors is intermediate between the two extreme models.  The effect of measurement 

error, therefore likely depends upon the direction and magnitude of the correlation of 

measurement errors with the measured exposures and not just upon the variance of the 

measurement errors.   

 We now turn to the more complex situation of multi-pollutant models.  Such 

models are often applied in an attempt to estimate the independent effect of a pollutant 

present in a mixture with other pollutants.  For example, in an analysis of air pollution 

and mortality in Philadelphia, Kelsall et al. (26) regress mortality on as many as five 

pollutants.  Because little empirical evidence about the simultaneous errors in multiple 

pollutants is currently available, this section only lays a foundation that can inform the 

design of future studies, as discussed in Section 5.  Confining attention to the classical 

and the Berkson error cases, we again assume a linear regression model of the form 

given by Equation 1, where tx  now represents a vector of exposure variables, with a 

corresponding vector of regression coefficients xβ , and tz denotes a vector of 

measurements of each exposure variable.  In the Berkson error case, the assumption 
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that tx  is an imprecise version of tz  or ( ) ttt zzx =Ε  still assures that the estimates of the 

regression coefficients are unbiased, as in the univariate instance.  But under the 

classical error model, the multiple regression extension is not so straightforward.  As 

before, we assume that tz  is an imprecise measure of tx , i.e., ( ) ttt xxz =Ε .  To compute 

( )tt zxΕ  the average tx  at each tz , let V denote the covariance matrix of tx  and let T 

denote the covariance matrix of the difference ttt xz −=δ , V be the variance of tx  and, 

as before, we assume that δ and x  are independent.  Then, the matrix generalization of 

the earlier result is that Cxz ββ = where C = T (T+V)-1.  Now it is no longer true that 

xjzj ββ < for each component (j) and estimates of regression coefficients can be biased 

toward or away from the null; that is, positive associations can be produced even 

though the true coefficient for a particular component is zero, when the component is 

correlated with at least one component having a non-zero effect.  

 Table 1 illustrates the magnitude of bias that can result from regressing ty on two 

predictors tz1  and tz2  instead of on tx1 and tx2 . This example might refer to estimating 

the effects of PM10 and O3 on mortality when ambient values (zs) instead of personal 

exposure (xs) are available.  We assume ttt xz 111 δ+=  and ttt xz 222 δ+= , 

1)) 222111 ==== tt (x VarV(x VarV .  The table presents the expected values for the 

estimated regression coefficients when the true values are both one ( )1
21

== xx ββ  for 

varying values of the correlation between tx1  and tx2 , the variances of t1δ  and t2δ , and 

the correlation between the measurement errors t1δ  and t2δ .  At present, there is little 

empirical evidence about the nature or size of the correlations between pairs of pollutant 
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measurements and the table is intended to illustrate the consequences of measurement 

error in the two-predictor model.   

 The first line of the table refers to an example in which there is no correlation 

between tx1 and tx2 and there is equal variability of the two exposure errors 1δ and 2δ , 

and these errors are not correlated; that is, the error in one predictor does not predict 

the error in the other.  Here, there is an equal degree of attenuation in the coefficients 

for the two variables.  With unequal variances, but no correlation, i.e., the sixth row, the 

degree of attenuation is greater for the variable with greater variance.  If the exposures 

are correlated, but the errors are uncorrelated (the second and third rows), the two 

effect estimates are similarly altered with the direction of the effect depending on the 

sign of the correlation. Introducing correlation between the errors, i.e., the fourth and 

fifth rows, has an effect that depends on the pattern of correlation.  The bottom half of 

Table 1 shows more complex patterns with differing patterns of correlation and variation 

of the two errors.  Some of the scenarios introduce substantially different effects of the 

two variables, but none yield effect estimates above the true value of one, even with 

more extreme differences in error variances or the two correlations.  

 Table 2 also addresses the consequences of measurement error in a two-

variable model, but in this example only one variable ( 2x ) has a true effect; the other 

exposure 1x has no effect on the health outcome y.  Either correlation between tx1 and 

tx2 or their errors can introduce an apparent effect of 1x  on y.  Some scenarios of 

variance and correlation even bring the apparent effects of the two variables quite close 

(e.g., the tenth and eleventh rows), but in every case, including more extreme situations 
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than shown, the estimate for the true predictor )( 2β  is always larger than for the null 

predictor )( 1β .   

 Some general conclusions can be offered concerning multi-pollutant models 

under this simple, classical error model. 

C1. There is a general tendency for the coefficient from the regression on tz  

to be attenuated (smaller than) the corresponding coefficient from the 

regression on tx , i.e., xjzj ββ < if all 0>xjβ . 

C2. The degree of attenuation of each coefficient depends, in large part, on 

its measurement error variance relative to the variance of the true 

exposure – i.e., Tjj/Vjj.  Thus, the coefficients for variables that are 

measured with considerable error will be attenuated more than those 

of variables with less error. 

C3. Depending on the correlation structure of the attenuation matrix C, some 

of the effect of one variable, xjβ , may be transferred to the estimate of 

another variable’s effect, zkβ̂ .  Such transfers of effect are generally from a 

more poorly measured variable to a better measured variable.  However, 

for such transfers to be large, the true exposure variables or their 

measurement errors need to be substantially correlated. 

C4. As a consequence of conclusion (C3), the estimate of a parameter can be 

biased away from the true value.  However, this type of bias generally 

arises only with a very strong negative correlation between the 

measurement errors (e.g. the ninth-eleventh rows of Table 2). 
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C5. Also as a consequence of (3), there will generally be spurious 

associations for a variable jx  which, in fact, has no effect only if xj is 

substantially correlated with one or more variables which actually have an 

effect.  Generally, the correlation amongst the errors has a larger influence 

on the bias than the correlation amongst the true pollutant levels. 

 These conclusions are obtained from and therefore pertain to the classical linear 

regression model with two predictors, assuming tz  is a surrogate for tx  (non-differential 

errors).  The actual exposure measurement situation in the air pollution-mortality context 

is obviously more complex.  First, log-linear, not linear, models are used, although the 

degree of non-linearity is usually small in mortality studies.  Second, the measurement 

errors are not purely of the classical, non-differential type.  For example, the degree of 

error for gaseous pollutants may depend on temperature or other covariates.  Finally, 

errors may be multiplicative rather than additive.  Nonetheless, the linear regression 

with classical measurement error is a leading case that provides insight into the major 

possible consequences of exposure errors. 

 

3. Framework for Assessing Measurement Error Effects in Pollution-Mortality 

Studies 

The previous section has set out fundamental concepts underlying statistical 

models of exposure measurement error.  This section builds upon these concepts but 

focuses on the specific log-linear regressions used for assessing the pollutant-mortality 

association, controlling for weather variables.  We identify three major components of 

measurement error and present a statistical framework for evaluating their potential 
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effects on the estimated pollutant-mortality associations.  The discussion below is based 

upon the premise that the ideal investigation of the health effects of air pollution would 

be conducted at the individual level with measurements of personal exposure to 

pollutants.  However, exposure and mortality data are generally only available after 

aggregation to a municipal level; little or no data from indoor air monitoring are 

available.  Finally, air pollutant measurements are imprecise and this imprecision has 

consequences for estimates of pollutant effects on mortality, as described in Section 2 

above.  

 To investigate the effects of exposure error in the log-linear regressions widely 

used to assess the pollutant mortality association, consider the following model for an 

individual’s risk of mortality: 

    )( exp 0 xititit x βλλ =       (E4) 

where itλ  is the risk of death for person i on day t; it0λ  is that individual’s baseline risk in 

the absence of exposure, ie itx = 0, and )(exp xitx β  is the relative risk of death associated 

with the explanatory variables itx .  Let ity =1 if person i dies on day t and 0 if he does 

not.  We typically observe the total number of deaths for a population ty = yit

n

=1i

t

∑ , where 

nt ≈ n is the population size on day t.  By (E4), the expected total numbers of deaths 

tλ in a community is 

      = 0it

i

it

i
tt  = Ey λλλ ∑∑= exp ( )xitx β .   (E5) 

In analyzing population-level data on mortality and air pollution, log-linear regressions of 

the following form have been fit 
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   ( )utztt uzts ββλ ++= )( exp       (E6) 

where s(t) is an arbitrary but smooth function of time introduced to control for the 

confounding of longer-term trends and seasonality, tz  is the average of multiple monitor 

measurements of ambient pollution measurement for day t, and tu  are other possible 

confounders such as temperature and dew point temperature on the same and previous 

days.  

 If the regression coefficient xβ  for a pollutant in the personal risk model (E4) is 

the target for inference, how closely do estimates of zβ  from model (E6) approximate 

xβ ?  Below, we identify potential sources of bias in zβ̂ as an estimate of xβ , using the 

concepts of Berkson and classical measurement error summarized in Section 2. 

 Figure 1 poses a model of the relationship between the personal exposure to a 

pollutant itx  for person i on day t and the available ambient values tz  measured with 

error by monitors.  Assuming, for simplicity, a high degree of spatial homogeneity in 

ambient levels, personal exposure is contributed to by *
tz , the true outdoor level and itw , 

the indoor level which is also influenced by *
tz  from penetration of the pollutant in 

outdoor air into indoor spaces.  For example, personal exposure to PM10 is determined 

by the time spent outdoors, the concentration during that time, and by the 

concentrations in indoor environments that are determined by indoor sources such as 

cigarette smoking and the penetration of particles indoors, as air is exchanged between 

the outdoors and the indoor environments.  Figure 1 further shows that personal risk of 

dying is influenced by a person’s baseline risk in addition to the unobserved personal 
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exposure to pollutant itX .  Only the measured ambient pollution data are observed and 

are therefore shown in a rectangular box. 

 In considering the consequences for zβ̂ as an estimate of xβ  of having an 

imprecise measure of ambient pollution tz , rather than actual personal exposure itx , it 

is useful to begin by decomposing the pollution measurement difference between itx  

and tz  into three components: 

    )()()( **
tttttittit zzzxxxzx −+−+−+= .   (E7) 

Here, )( tit xx − is the error due to having aggregated rather than individual exposure 

data; ( tx - ∗
tz ) is the difference between the average personal exposure and the true 

ambient pollutant level; and )z-z( t
*
t represents the difference between the true and the 

measured ambient concentration.   

 The first term )( tit xx −  is an example of Berksonian error so that in a simple 

linear model, having aggregate rather than individual exposure does not itself lead to 

bias into the regression coefficient.  The second term ( tx - ∗
tz ) is not Berksonian and is 

likely to be a source of bias.  The final term )z-z( t
*
t  is largely of the Berkson type if the 

average of the available monitors tz  is an unbiased estimate of the true spatially 

averaged ambient level 
*

tz . 

 We can now further study the effects of these three terms on risk estimation by 

substituting the decomposition in (E7) into Equation E5.  After some straightforward 

calculations detailed in the Appendix, the expected number of deaths on day t can be 

written 
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( ) .  )]()()[()log( exp **)(
0 xttttt

w
txtttt zzzxxxznEy ββλ −+−+−++=    (E8) 

 Here xβ  is the personal log-relative risk of interest from Equation E5.  Note the 

approximation (E8) retains only linear terms in the expansion of an exponential function.  

The second order terms, are an order of magnitude smaller and are ignored to simplify 

the exposition.  For studies of particulate pollution effects on mortality, the effect sizes 

are on the order of a percent or two so that ignoring second order terms should not 

qualitatively affect the results.  In studies of morbidity, higher order terms may be more 

important. 

 The total baseline risk ( ttn 0λ ) almost certainly varies smoothly over time, since it 

is an average risk over a large population.  Hence, it will be appropriately controlled for 

in log-linear regressions by inclusion of the smooth )(ts  in Equation (E6).  We now 

consider xtz β  and the three components of error in turn. 

 The first error term t
w

t xx −)(  is proportional to the difference between the 

baseline-risk weighted average personal exposure and the unweighted average 

personal exposure.  It derives from the Berkson error )( tit xx −  and produces no bias in 

the linear, unaggregated model.  This difference due to risk weighting in our log-linear 

model with person-specific baseline risks is likely to be small and to vary slowly over 

time.  Hence, it can be adequately controlled by inclusion of the smooth function )(ts  in 

the log-linear regression of ty on tz .  One scenario in which this difference would vary 

from day to day and therefore not be adequately controlled would occur if the more frail 

individuals were to follow pollution reports (or a correlate like weather) and reduce their 

exposures to ambient air on high pollution days by, for example, staying indoors.  
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Current warning systems for air pollution alerts are intended, in fact, to reduce 

exposures of susceptible persons in this fashion. 

 The second error term *
tt zx −  is non-Berksonian and has the greatest potential to 

introduce bias in the estimate zβ̂  when *
tz is correlated with *

tt zx − .  Even if the terms 

are uncorrelated so that zβ̂  will be a roughly unbiased estimate of xβ , it will reduce 

efficiency relative to a study in which tx  is available since zt and tx -zt share the same 

coefficient in (E8). 

 The difference *
tt zx −  between average personal exposures and the true ambient 

value can be analyzed further by considering an individual personal exposure itx .  

Because individual i’s exposure on day t derives either from indoor or ambient sources, 

we can write itittitit Izx )1(* αα −+=  where itI  is the concentration of pollutant generated 

by indoor sources such as tobacco smoke and pets, itα  is his or her fraction of 

exposure from ambient sources which take place either outdoors or result from 

penetration of ambient pollution indoors.  It follows that tttt Izx += *α  where 

∑ −=
i

tititt nII ./)1( α   That is, the average personal exposure is proportional to the 

ambient level, offset by the effects of the population average of the non-ambient indoor 

sources. 

 Wilson and Suh (27) have argued that the daily population average 

concentrations of fine particles derived from indoor sources tI are approximately 

independent of ambient levels tz across time.  When this is true, failure to measure 

indoor sources will not introduce further bias in the estimation of xβ  because the 
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deviations due to indoor air exposure are a second example of Berkson error, which 

errors will tend to cancel one another out when averaged over the population.  

Nevertheless, *
tz  is only proportional to tx  so that even if tα  varied little over time 

)( αα ≈t , the coefficient zβ̂  from a regression of ty  on *
tz  would estimate xαβ , not xβ .  

Hence, if 20% of daily exposure results from indoor sources independent of the ambient 

levels, the regression on ambient levels will yield coefficients that are roughly 20% 

smaller than would have occurred with actual personal exposures.  However, this may 

be the appropriate coefficient for policy makers seeking an estimate of the effect of an 

inarguable measure of ambient levels.  This, however, assumes that particles from 

indoor sources and outdoor sources are identical; that is, they are similar in composition 

and toxicity.  If not the case, then the two types of particles are more appropriately 

treated as separate pollutants, and the personal exposure measure desired would be 

*
tit zα , the personal exposure to particles from outdoor sources.  Studies using sulfates 

as a tracer for particles from outdoor sources indicate that indoor/outdoor ratios are less 

than one.  Since people spend most of their time indoors this suggests that itα  will be 

less than one, and that the second term in Equation (E8) will be negatively correlated 

with tz , and will bias the estimated coefficient downward.  This also illustrates that the 

model is not restricted to cases where ( ) )(zEx =Ε . 

 The final of the three error terms in Equation E8, tt zz −* , represents the 

instrument measurement error in the ambient levels; like tit xx − ; it is close to the 

Berkson type.  This term would tend to be cancelled out by spatial averaging across 

multiple, unbiased ambient monitors in a region.  For example, Kelsall et al. (26) 
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averaged daily TSP data from up to nine monitors in their analysis of effects of particles 

on mortality in Philadelphia.  However, in many cities there is only one or a few monitors 

operating at a time.  Even with a small number of monitors, longer-term drift in 

instruments will not substantially affect estimates of xβ because the time series models 

control for such trends by inclusion of )(ts  in (E6).  For this final error term to cause 

substantial bias in zβ̂ , the error tt zz −*  must be strongly correlated with tz  at shorter 

time scales.  Further investigations of this correlation in cities with many monitors are 

warranted. 

 To summarize, we have discussed three components of measurement error:  1) 

an individual’s deviation from the risk-weighted average personal exposure; 2) the 

difference between the average personal exposure and the true ambient level; and 3) 

the difference between the measured and the true ambient levels, which includes 

spatial variation and instrument error.  Our analysis argues that the first and third 

components are of the Berkson type and, therefore, are likely to have smaller effects on 

the relative risk estimates.  However, the second component can be a source of 

substantial bias, if for example, there are short-term associations of the contributions of 

indoor sources with ambient concentrations.  In the following section, we present one 

simple analysis of the PTEAM data that illustrates how we can further study the effects 

of the most important second component. 
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4. Evaluating Potential Measurement Error Bias in Pollutant-Mortality Relative 

Risk Estimates 

 The framework set out in the previous section can be used, in combination with 

data on the components of error, to quantify the consequences of exposure 

measurement error.  In this section, we use one of the few available data sets with 

ambient and personal measurements to illustrate one approach.  In Section 4.1, we 

begin by using daily measurements of personal exposure for 178 persons followed in 

the PTEAM Study (23) to quantify the difference between concentration measured by 

an ambient monitor and the average of personal exposures.  In Section 4.2, we present 

one approach for estimating the size of bias in estimated PM10-mortality regression 

coefficients zβ̂  as an estimate of the true relative risk for personal exposure xβ , due to 

having data from one or a few ambient monitors rather than personal exposure data for 

PM10.   

 

 4.1 PTEAM Study Data 

The PTEAM Study (23, 28) generated a daily measurement of personal exposure 

to PM10 for a sample of 178 nonsmoking residents of Riverside, California aged 10 

years or more for the period September 22 through November 9, 1990.  In addition, a 

daily average PM10 value from an ambient monitor positioned near the homes was also 

collected; Pellizzari and Spengler provide details on the methods used to collect these 

data (29). 

 We use the PTEAM Study data to estimate the correlation between the daily 

PM10 concentration for the ambient monitor tz  and the difference between the average 
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personal exposure and concentration measured by the ambient monitor tt zx − .  These 

estimates correctly account for the varying number of observations on a given day.  But 

the average personal exposure value is based on relatively few measurements and is 

therefore more variable across time than the actual mean exposure.  Note that Equation 

(E8), includes a weighted average of personal exposures, with weights determined by 

the baseline personal risk for each individual.  In the PTEAM Study, those weights are 

unavailable and hence, an unweighted average is used.  Figure 2 displays a time-

series plot of the daily ambient values and the average personal exposures.  The 

correlation across time of these two series is estimated to be 0.58 (95% confidence 

interval 0.35 to 0.74).  We note that this is much greater than the more widely cited 

cross-sectional correlation from this study.  It would likely be even greater if the mean 

personal exposure was calculated on a larger number of persons each day.  The 

corresponding correlation across time between the ambient monitor concentrations and 

the daily differences between the personal and ambient values is -0.63 with 95% 

confidence interval, -0.77 to -0.42.  Hence, the hypothesis that the measurement error 

tt zx −  is uncorrelated with tz  is not consistent with the PTEAM Study data. Some bias 

in the regression coefficient is therefore expected.  Because the correlation of tt zx −  

and tz  is negative, the coefficient zβ̂  in the regression on tz  will tend to underestimate 

the coefficient in the regression on tx  in a single pollutant analysis. We now assess the 

size of the bias that will result from this measurement error. 
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4.2 Addressing the Bias in PM10-Mortality Regression Coefficients 

In this section, we illustrate how the PTEAM Study results of Sections 4.1 or 

other, perhaps more appropriate data sets on the difference between average risk-

weighted personal exposure and ambient monitor concentrations, can be used to 

estimate bias in the results of log-linear regression models.   

If available, we would have used the average personal exposure series, tx , for at 

risk residents of each city in the standard log-linear regression model rather than ,tz  as 

was used in the original analyses.  We would then compare the regression coefficients 

obtained when tx  is the predictor with those using tz  to assess the bias. 

 Obviously, tx  is not available except in special circumstances.  But from the 

PTEAM Study data, shown in Figure 2 or similar data, we can estimate the relationship 

of xt  and tz , for example, by assuming: 

x zt t t= + +θ θ ε0 1      (E9) 

where 0θ  and 1θ  are the intercept and slope to be estimated from the available data.  

We can then use the fitted (E9) to predict the unobserved tx  from the available tz  and 

then use the predicted value tx̂  as the desired exposure values when estimating the 

pollution-mortality relative risk xβ .  In fact the estimate of xβ  has the simple form 

1̂/ˆˆ θββ zx = .  This is one well-known approach to adjust for exposure measurement error 

called “regression calibration” (7).  As an illustration, we have applied this strategy to a 

regression of daily mortality on ambient concentrations of PM10 for Riverside, California 

for the period 1987-1994.  We estimate 95.59ˆ
0 =θ  (se = 7.21), 60.0ˆ

1 =θ  (se = 0.080), and 

var(ε) = 22.4.   
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 Calibration is easy to implement and apply.  Its limitations are that confidence 

intervals for xβ̂  depend upon large sample theory and it does not extend easily to 

situations where multiple sources of information about the tx , tz  relationship are 

available. 

 It is simple, however, to overcome these possible limitations of calibration by 

using a simulated value xt
*  rather than the predicted value tx̂  from (E9).  That is, we 

use Equation (E9) to simulate the average personal exposure, xt
* , from the ambient 

exposure, tz , for a city or period of interest when tx  is not available, under the 

assumption that the estimated θs and var(ε) are applicable.  This simulated series xt
*  is 

then used instead of tz in the log-linear regression.  The result is one estimate of β x  - 

call it $β x . If we then repeatedly simulate xt
* s and for each, fit the log-linear regression 

to obtain $β x  we obtain a distribution of $β x s.  The difference between the mean of the 

simulated $β x s and the $β z  derived from the log-linear regression of mortality on zt
* , is a 

measure of the bias resulting from having tz  rather than the average personal exposure 

for that city.  By simulating xt
* s rather than using a fixed predicted value tx̂ , we properly 

account for non-linearities and sources of variation in $β x  and can extend the analysis to 

more complicated situations. 

 Figure 3 shows the distribution of the $β x s for Riverside (solid curve).  Also 

shown is the normal approximation of the likelihood function for the coefficient $β z  from 

the log-linear regression of mortality directly on tz  (dotted curve).  Solid and dotted lines 
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are at the centers of these distributions.  We find that the $β x s have a mean 1.42% 

increase in mortality (95% interval -0.11, 2.95) per 10 unit change in PM10.  In 

comparison, the estimate of zβ from the usual log-linear model (dashed vertical line) is 

$β z  = 0.84% (95% interval -0.06, 1.76).  Hence, measurement error has biased the 

result toward the null.  Second, the distribution of the $β x s is more dispersed than the 

distribution of $β z .  This is because we have taken into account the variability due to 

having tz , not xt , i.e., arising from Var ( )tε  in Equation (E9).  The results are very 

similar to what we obtain from calibration. 

 This calculation assumes the estimated relationship between xt  and tz  for the 

PTEAM Study is the true one, and hence, we ignore a second component of uncertainty 

due to estimation of the relationship between xt  and zt  from the finite sample size of 

the PTEAM Study data taken at one site and a particular time period.  That is, even if 

we assume that the relationship between xt  and tz  is known, estimating the association 

of mortality with xt  is less precise than with tz , given only tz  in that particular city.  Of 

course, the relationship of xt  and tz  is not precisely known and needs to be quantified 

further.  Dominici et al. (30) provide a more complete analysis of the bias in zβ̂ as an 

estimate of xβ  using the PTEAM Study and four other data sets and a more complete 

statistical model.  Their findings are qualitatively similar to those presented here.  

Finally, it is important to note that our assessment of bias assumes that the health 

effects of personal exposure to particles originating outdoors and indoors are the same.  

To assume otherwise would require substantially more detailed data and modeling. 
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5. Summary and Research Recommendations 

 The differences between true personal exposure for every individual )( itx  and 

measured ambient concentrations, averaged over a few fixed, imprecise monitors )( tz , 

is inherently complex, as is the effect of this exposure measurement error on estimates 

of pollution-mortality relative risks.  Nonetheless, it is useful and imperative to analyze 

these effects in light of our current understanding of the measurement process.  This 

paper presents one framework for doing so.  We distinguish two extremes of a 

continuum of types of measurement errors:  Berkson and classical errors.  The former is 

likely to create little bias in mortality-relative risk estimates; the latter has more serious 

consequences. 

 We posit a relative risk model in which an individual’s hazard of death on a given 

day is expressed as a function of his or her personal exposure which is decomposed to 

highlight three types of exposure errors.  This model is then aggregated to produce the 

model for the expected total deaths in a population used in most time-series analyses.  

This model shows that a risk-weighted average personal exposure measure is the 

desired one and we discuss the consequences of the widely used feasible alternative, 

ambient concentration.  In contrast, differences between individual exposures on a 

given day and the risk-weighted average of personal exposures are an example of 

Berkson error and not likely to cause substantial bias in coefficients from time-series 

morbidity studies.  Our analysis suggests that the largest biases in inferences about the 

mortality-personal exposure relative risk will occur due to the more complex errors 

between ambient and average personal exposure measures.  If indoor sources produce 

particles of similar composition and toxicity as outdoor source particles, indoor sources 



Measurement error in time-series studies 

30 11/11/99 

may be a major component of this error.  Finally, as an illustration we have used the 

best available data, that from the PTEAM Study in Riverside, California, with both 

personal exposure and ambient time series to quantify the size of this error.  Our 

analysis indicates that the coefficient obtained from regressing mortality on measured 

ambient levels )( tz  is smaller than what we expect if we regress mortality on average 

personal exposure )( tx . 

 For tractability and clarity, we have conducted a first-order analysis of exposure 

errors and have ignored possible second and higher order effects in which daily 

fluctuations in the variance of personal exposures across a population or in the 

covariations among the measurement errors could introduce additional biases.  Second 

order terms will be insignificant in studies of particulate effects on mortality where the 

first order terms are on the order of percent.  Such higher-order analyses for other 

studies of for example morbidity, are beyond the scope of this paper and will require 

substantially more detailed models and data.  It is, however, possible that higher order 

effects are important so that further investigation is necessary. 

Epidemiologic research is necessarily limited by the quality of the health outcome 

and risk factor measurements (31).  Time-series studies of the acute effects of air 

quality on mortality are subject to the limitations posed by the available measurements 

of pollution levels.  The generic criticism -- that measurement errors render the results 

of such time-series models uninterpretable -- is incorrect.  This paper demonstrates that 

the consequences of measurement error can be quantified, although only a few 

informative data sets are presently available. This paper suggests that differences 

between the average personal exposure and ambient measurements are the most likely 
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source of substantial bias.  We suggest that data should be collected for comparison of 

risk-weighted average personal exposure with ambient levels in several cities with 

varying degrees of spatial heterogeneity in ambient levels, population composition, and 

indoor pollution sources.  Given such data, models like those summarized by Dominici 

et al. (32) can be used to quantify more precisely the biases due to pollutant 

measurement errors.  

This paper focuses on the effects on relative risk estimates of using tz , 

measured ambient particle levels rather than itx , actual personal exposures in log-linear 

regressions.  Such effects are important from a scientific perspective to quantify the 

health risks of exposure to particulate pollution.  From a regulatory perspective, the 

effect of having the imprecise tz  rather than the “true” ambient value *
tz  may be of 

greater interest since it is ambient levels that may or may not be regulated further.  A 

more detailed error analysis of the *
tt zz −  difference would investigate the spatial 

variation in particulate levels and how the number of monitors used to calculate tz  

reduced this source of measurement error.   

The analyses in Sections 3 and 4 focus on measurement error in a single 

pollutant measure, PM10.  As discussed in Section 2, simultaneous errors in several 

pollutants can complicate the analysis.  Section 2 clearly demonstrates, however, that 

qualitative biases – that is, changes in the sign of a coefficient – can occur only when 

the measurement errors for different pollutants are highly correlated with one another.  

This level of correlation might arise if two or more pollutants are measured by the same 

instrument (e.g., different fractions of PM) or if multiple instruments are housed in the 

same location which is subject to atypical exposure patterns.  The possibility 
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nevertheless requires detailed investigation, since in this case the findings of 

epidemiologic studies could be misleading.  Personal exposure studies that collect 

multiple exposures can provide the necessary data to investigate the effects of co-

occurring errors using straightforward extensions of the approaches outlined in Section 

3 and 4. 

In this paper, we have considered the effects of exposure measurement error on 

regression coefficients from log-linear models in which serial correlation is accounted for 

using flexible smoothing splines.  An alternate analytic strategy is to fit a linear 

regression with time series errors (ARIMA model, (33)).  In certain specific time series 

models, the degree of attentuation due to classical error might be reduced since to 

account for the autocorrelated errors, the ARIMA filters or smooths both the responses 

and the predictors which might reduce the degree of measurement error.  Further 

research on this possibility is warranted. 

The measurement error framework in Section 3 and the illustrative calculations in 

Section 4 make apparent several open questions and opportunities for additional data 

collection that would enable more accurate quantification of the effects of measurement 

error in assessing the air pollution-mortality relationship.  In relation to single-pollutant 

models, we consider that the two most important questions are: 

• Is the average personal exposure to pollutants from indoor sources correlated 

over time with ambient levels? 

• Does the difference between baseline risk-weighted average exposure and 

population average exposure vary slowly over time? 

For models with multiple pollutants, the additional key question is:  
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• How do the components of error identified in Equation (E5) co-vary across 

pollutants?  For example, how do the differences between actual ambient 

levels and the measured levels correlate across the different pollutants and 

how do these differences depend on the true values of other pollutants or 

covariates? 

Wilson and Suh (27) have conducted a meta-analysis of data from multiple sites 

and conclude, in answer to the first question above, that concentrations of fine particles 

originating from indoor sources are independent of ambient levels over time.  To confirm 

this finding and to address the remaining, key questions, additional research is 

warranted.  It would be highly informative if, in several cities with diverse pollution 

sources and patterns, a stratified sample of the population were drawn with one stratum 

representing the entire population and the second representing the frail subgroup.  Daily 

measurements of personal exposure and indicators of indoor sources would be 

collected for multiple pollutants for each person.  Ambient levels would also be 

monitored.  Decisions about the numbers of persons within each subgroup and the 

numbers of days of monitoring for each person would be made based upon preliminary 

analyses of data from one city. 



Measurement error in time-series studies 

34 11/11/99 

Table 1: Predicted Bias in Bivariate Regression Coefficients under Different 

Covariance Structures for True Exposures and Measurement Errors When Both 

Variables Have a True Effect:  0.1
21

== xx ββ .  We assume Var ( ) =1x Var ( )2x =1. 

Corr( 21, xx ) Var( 1δ ) Var( 2δ ) Corr( 21,δδ ) E(
1

ˆ
zβ ) E(

2

ˆ
zβ )   

0.0 1.0 1.0 0.0 0.50 0.50   

0.5 1.0 1.0 0.0 0.60 0.60   

-0.5 1.0 1.0 0.0 0.33 0.33   

0.0 1.0 1.0 0.5 0.40 0.40   

0.0 1.0 1.0 -0.5 0.67 0.67   

0.0 0.5 2.0 0.0 0.67 0.33   

0.5 0.5 2.0 0.0 0.71 0.53   

0.5 0.5 2.0 0.3 0.66 0.27   

0.5 0.5 2.0 0.5 0.64 0.21   

0.5 0.5 2.0 0.7 0.64 0.14   

0.5 0.5 2.0 -0.5 0.83 0.50   

0.5 0.5 2.0 -0.7 0.91 0.57   

0.5 0.5 2.0 -0.9 1.00 0.66   
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Table 2: Predicted Bias in Bivariate Regression Coefficients under Different 

covariance Structures for True Exposures and Measurement Errors 

When Only One Variable Has a True Effect: 1,0
21

== xx ββ .  We assume 

Var ( )1x =Var ( )2x =1. 

Corr( 21, xx ) Var( 1δ ) Var( 2δ ) Corr( 21,δδ ) E(
1

ˆ
zβ ) E(

2

ˆ
zβ )   

0.0 0.5 2.0 0.0 0.00 0.33   

0.0 0.5 2.0 0.5 -0.12 0.35   

0.0 0.5 2.0 -0.5 0.12 0.35   

0.5 0.5 2.0 0.0 0.06 0.29   

-0.05 0.5 2.0 0.0 -0.06 0.29   

0.5 0.5 2.0 0.3 -0.01 0.28   

0.5 0.5 2.0 0.5 -0.07 0.29   

0.5 0.5 2.0 0.7 -0.15 0.29   

0.5 0.5 2.0 -0.5 0.17 0.33   

0.5 0.5 2.0 -0.7 0.21 0.36   

0.5 0.5 2.0 -0.9 0.26 0.39   
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