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While time-series studies have consistently provided evidence for an effect of particulate air pollution on
mortality, uncertainty remains as to the extent of the life-shortening implied by those associations. In this paper,
the authors estimate the association between air pollution and mortality using different timescales of variation in
the air pollution time series to gain further insight into this question. The authors’ method is based on a Fourier
decomposition of air pollution time series into a set of independent exposure variables, each representing a
different timescale. The authors then use this set of variables as predictors in a Poisson regression model to
estimate a separate relative rate of mortality for each exposure timescale. The method is applied to a database
containing information on daily mortality, particulate air pollution, and weather in four US cities (Pittsburgh,
Pennsylvania; Minneapolis, Minnesota; Seattle, Washington; and Chicago, Illinois) from the period 1987–1994.
The authors found larger relative rates of mortality associated with particulate air pollution at longer timescale
variations (14 days–2 months) than at shorter timescales (1–4 days). These analyses provide additional evidence
that associations between particle indexes and mortality do not imply only an advance in the timing of death by
a few days for frail individuals.

air pollution; Fourier analysis; hierarchical model; mortality; Poisson distribution; time factors; time series

Abbreviations: CI, confidence interval; PM10, particulate matter with an aerodynamic diameter ≤10 µg/m3.

Editor’s note: An invited commentary on this article
appears on page 1066, and the authors’ response appears on
page 1071.

A number of studies over the last decade have shown an
association between particle concentrations in outdoor air
and daily mortality counts in urban locations (1–3). These
associations have been estimated through the use of Poisson
regression methods, and the findings have been reported as

log relative rates of mortality associated with air pollution
levels on recent days. These associations have been widely
interpreted as reflecting the effect of air pollution on persons
who have heightened susceptibility because of chronic heart
or lung diseases (4).

Thus, the increased mortality associated with higher pollu-
tion levels may be restricted to very frail people whose life
expectancy would have been short even without air pollu-
tion. This possibility is termed the “mortality displacement”
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or “harvesting” hypothesis (5). If an effect is evident only at
short timescales, pollution-related deaths are advanced by
only a few days, and in fact, the days of life lost might argu-
ably be of low quality for the frail individuals at risk of
dying. Consequently, the public health relevance of the find-
ings of the daily time-series studies has been questioned (6).
The mortality displacement hypothesis received specific
discussion in the 1996 Staff Paper on Particulate Matter
prepared by the US Environmental Protection Agency
because of its policy implications (4). The findings of two
long-term prospective cohort studies of air pollution and
mortality, the Harvard Six Cities Study (7) and the American
Cancer Society’s Cancer Prevention Study II (8), were
considered to offer critical evidence counter to the mortality
displacement hypothesis.

Several investigators have approached the problem of
mortality displacement using analytical models for daily
time-series data (9–12). If the association between air pollu-
tion and mortality does reflect the existence of a pool of frail
individuals in the population, episodes of high pollution that
lead to increased mortality might reduce the size of this pool,
and days subsequent to high-pollution days would then be
expected to show a reduced effect of air pollution. Therefore,
the occurrence of this phenomenon can be investigated by
assessing interaction between prior high-pollution days and
the effects of subsequent pollution exposure on mortality
counts; under the mortality displacement hypothesis, a nega-
tive interaction is predicted (13, 14).

Recently, Kelsall et al. (15) and Schwartz (11) developed
related methods for analysis of daily time-series data, both
offering approaches to estimating air pollution-mortality
associations at varying timescales. More specifically, Kelsall
et al.’s methodology gives a continuous smooth estimate of
relative risk as a function of timescale (frequency domain
log-linear regression). Zeger et al. (10) applied the frequency
domain log-linear regression to previously analyzed data for
Philadelphia, Pennsylvania, from 1973–1988. Schwartz (11,
12) used a filtering algorithm (16) to separate the time
series of daily deaths, air pollution, and weather into long-
wavelength components, midscale components, and residual,
very short-term components and applied this method to data
on Boston, Massachusetts, from 1979–1986 and Chicago,
Illinois, from 1988–1993. Note that both of these methods
(10, 11) analyze both pollution and mortality on the same
timescales, i.e., shorter-term to longer-term. Both sets of
analyses found effects on longer timescales.

In this paper, we extend the work by Zeger et al. (10) and
Schwartz (11) in the methodological, substantive, and compu-
tational arenas. More specifically, we develop a timescale
decomposition of a time series based on the discrete Fourier
transform; we introduce a two-stage model for combining
evidence across locations for estimation of pooled timescale-
specific air pollution effects on mortality; and we provide the
software for decomposing a time series into a set of desired
timescale components. At the first stage of the model, we use
Fourier series analyses (17, 18) to decompose the daily time
series of the air pollution variable into distinct timescale
components. This decomposition leads to a set of orthogonal
predictors, each representing a specific timescale of variation
in the exposure. We then use this set of predictors in Poisson

regression models to estimate a relative rate of mortality corre-
sponding to each timescale exposure while controlling for
other covariates such as temperature. A comparison between
our approach and the frequency domain log-linear regression
analysis is provided below in the section “Sensitivity analysis
and model comparison.”

The method is applied to concentrations of particulate
matter, based on measurements of particles with an aero-
dynamic diameter less than or equal to 10 µg/m3 (PM10) and
daily mortality counts from four US cities—Pittsburgh,
Pennsylvania; Minneapolis, Minnesota; Chicago, Illinois;
and Seattle, Washington. These were four cities with daily
PM10 measurements that were among the 90 largest US cities
used in the National Morbidity, Mortality, and Air Pollution
Study (19, 20). The analyses are restricted to these cities
because they are the only US locations with daily air pollu-
tion concentrations available in this database for this time
interval, while in most other locations, PM10 levels were
measured only every 6 days as required by the Environ-
mental Protection Agency. Our approach is not suitable for
every-sixth-day PM10 data, for two reasons: 1) no informa-
tion is available from the data for estimation of the short-
term effects of air pollution on mortality and 2) because of
the “aliasing” phenomenon, the effects of air pollution at the
longer timescales are distorted. In our context, the aliasing
phenomenon occurs when the sampling interval is larger
than 1 day, so that variations in the daily time series at the
shortest timescales produce an apparent effect at the longer
timescales.

MATERIALS AND METHODS

Data

We used daily time series of mortality, weather, and air
pollution data for Pittsburgh, Minneapolis, Chicago, and
Seattle for the period 1987–1994 (see figure 1). Daily
mortality counts were obtained from the National Center for
Health Statistics and were grouped by age (<65, 65–75, and
>75 years) and by cause of death according to the Interna-
tional Classification of Diseases, Ninth Revision (cardiovas-
cular-respiratory mortality (cardiac conditions, codes 390–
448; respiratory conditions, codes 490–496; influenza, code
487; and pneumonia, codes 480–486, 507) and mortality due
to other remaining diseases). Accidental deaths were
excluded. Hourly temperature and dew point data were
available from the National Climatic Data Center, assembled
in a compact disk database from EarthInfo, Inc. (21). The air
pollution data were obtained from the Aerometric Informa-
tion Retrieval Service (22) database maintained by the Envi-
ronmental Protection Agency. For the pollutants measured
on an hourly basis, we calculated the 24-hour average. A
more detailed description of the database has been published
elsewhere (19, 20).

Methods

Below we describe our statistical approach to estimation
of the association between air pollution and mortality using
different timescales. We let  be the air pollution timeXt

c
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series and  be the mortality time series in location c. We
first decompose the air pollution series  into distinct
component series , one for each distinct timescale k, and
then we calculate the association between , without
decomposition, and each of the timescale components .
The decomposition is obtained by applying the discrete
Fourier transform to the  series (17, 18). Specifically, we
assume

and

   (1)

where ϕc denotes the overdispersion parameter and the ’s,
the parameters of interest, denote the log relative rate of
daily mortality for each 10-unit increase in the air pollution
level in location c on a timescale k. Our modeling approach
replaces the term , where  is the air pollution time
series and βc is the city-specific log relative rate of mortality,
with the sum , where Xt = ΣkXkt, and the X1t, …, Xkt,
…, XKt is a set of orthogonal predictors. This model estimates
relative rates of mortality at different timescales and charac-
terizes the timescale variation in the air pollution time series
that contributes to the estimate of the overall effect βc. Here
we expect that under a short-term mortality displacement
scenario, mortality would be mainly associated with a short-
term effect of air pollution.

FIGURE 1. Daily time series of mortality (total, cardiovascular disease (CVD) and respiratory (Resp), and other causes (Other)), temperature
(Temp), and levels of particulate matter with an aerodynamic diameter less than 10 µg/m3 (PM10) for Pittsburgh, Pennsylvania, Minneapolis, Min-
nesota, and Chicago, Illinois, during the period 1987–1994. For Seattle, Washington, data for the period 1989–1994 were used.
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To protect the pollution relative rates from confounding by
longer-term trends and seasonality, we also remove the vari-
ation in the time series at timescales approximately longer
than 2 months by including a smooth function of time with 7
degrees of freedom per year. A sensitivity analysis with
respect to selection of the number of degrees of freedom in
the smooth function of time is discussed below. Smooth
functions of temperature and dew point temperature are used
to control for potential confounding by temperature and
humidity. The rationale for and details on the selected
smooth functions are provided by Samet et al. (23–25),
Kelsall et al. (26), and Dominici et al. (27).

Figure 2 illustrates the decomposition of Xt into six time-
scales. From the top of the panel to the bottom are displayed
time series ranging from series that comprise only the more
smooth fluctuations (low frequency components) to time
series that comprise only the less smooth variations (high
frequency components). The actual value of Xt (the last time
series at the bottom) on day t is obtained by summing the
values of the six component series on each day. Details on
the Fourier series decomposition and the URL address for
downloading the software for its implementation are

provided in the Appendix. Using the decomposed time series,
we can estimate timescale coefficients  denoting the rela-
tive change in mortality per 10-µg/m3 increase in the
corresponding timescale components of .
We estimate a vector of regression coefficients

 and their covariance matrix Vc. Although
one might want to allow a latency time for the effect of pollu-
tion, in equation 1 we regress  on  rather than use
lagged pollution series  for some lag lk > 0. We investi-
gate whether a lagged predictor is needed in the sensitivity
analysis.

RESULTS

Estimation

To estimate the timescale effects  and its covariance
matrix Vc within each location c, we fit the Poisson regres-
sion model (equation 1) with smooth functions of time,
temperature, and dew point modeled as natural cubic splines
and using the function glm( ) in S-Plus (MathSoft, Inc.,
Cambridge, Massachusetts). To combine the coefficients

FIGURE 2. Decomposition into a six-component series of data on particulate matter with an aerodynamic diameter ≤10 µg/m3 (PM10) for
Pittsburgh, Pennsylvania, from the period 1987–1994. The bottom row shows the observed PM10 values with a horizontal line plotted at the mean
value (31.6 µg/m3) and tick marks at the 10th (8.9 µg/m3) and 90th (61.1 µg/m3) percentiles. Time series 1 to 6 (top to bottom) are the timescale
decompositions of the observed data series. A horizontal line is plotted at the mean value, which in all cases is one sixth of the original mean
(5.3 µg/m3), and tick marks show the 10th and 90th percentiles (see vertical axis at right). The decomposition is obtained by applying the function
decompose( ) with breaks equal to 1, 48, 96, 208, 416, 834, and 2,922 days. The internal breaks (48, 96, 208, 416, and 834) were obtained by
dividing the length of the data (e.g., T = 2,922 days) by timescales of 60, 30, 14, 7, and 3.5 days. One should always select the minimum and
maximum breaks to be 1 and T in order to capture the lowest and highest Fourier frequencies.
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across cities, we use a fixed-effect model with weights Wc =
(Vc)–1 and an estimator of the form 

 

with variance 

. 

An alternative approach would be to use as weights Wc =
(D + Vc)–1, where D is a diagonal between-city covariance

matrix with diagonal element τ2. Because of the limited
number of cities in the present analysis, we cannot estimate
τ2 reliably and have assumed τ = 0. A sensitivity analysis of
our results with respect to different values of τ2 obtained
from hierarchical analyses of data from 20 cities (27) and 88
cities (28) is discussed below.

We estimated city-specific and pooled log relative rates of
mortality for the following six timescale variations of PM10:
≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6 days,
and <3.5 days. Figure 3 shows the pooled estimates of the
log relative rates of mortality at different timescales for total

β ΣcW
c( )

1–
W

c

c
∑ β̂

c
=

V β( ) ΣcW c( )
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=

FIGURE 3. Pooled estimates of log relative rates of mortality at different timescales for total mortality (top left), cardiovascular-respiratory mor-
tality (top right), and mortality due to other causes (bottom) according to levels of particulate matter with an aerodynamic diameter ≤10 µg/m3 in
four US cities, 1987–1994. The estimates are plotted at ≥60, 40 (not shown on x-axis), 20, 10, 5, and <3.5 days, denoting approximate midpoints
of the intervals ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6 days, and <3.5 days, respectively. The shaded regions represent ±2 stan-
dard errors of the estimates. Bars, 95% confidence interval.
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mortality, cardiovascular and respiratory mortality, and
mortality due to other causes. At the far right are the plotted
estimates of the log relative rate of mortality obtained using
the nondecomposed time series Xt. For all causes and for
cause-specific mortality, we found that estimates of the asso-
ciation between air pollution and mortality obtained using
the smoother variations in the time series (10 days to 1
month) are somewhat larger than those obtained using the
less smooth variations (1–3 days). The largest effects
occurred at timescales greater than 2 months for total
mortality (1.35 percent per 10 µg/m3; 95 percent confidence
interval (CI): 0.52, 2.17), cardiovascular and respiratory
mortality (1.87 percent per 10 mg/m3; 95 percent CI: 0.75,
2.99), and other-cause mortality (0.72 percent per 10 µg/m3;
95 percent CI: –0.55, 1.95). To test the hypothesis that esti-
mated effects at the longer timescales are larger than
those at the shortest timescales, we linearly regress the

pooled  on the timescales and calculated weighted least
squares estimates. The solid lines in figure 3 represent the
fitted linear regressions. In all cases, the estimated slopes are
negative, with t statistics close to the significance level.

Table 1 shows the estimates of the timescale effect for
each city. At the city-specific level, we found a similar
pattern, with larger effects at the longer timescales and
smaller effects at the shorter timescales, with few excep-
tions. Consistent with previous studies (19, 20), the log rela-
tive rates, obtained by averaging across cities and across
timescales, are highest for cardiovascular and respiratory
mortality (0.22 percent per 10 µg/m3; 95 percent CI: –0.02,
0.46) and lowest for other-cause mortality (0.13 percent per 10
µg/m3; 95 percent CI: –0.13, 0.39). These findings suggest
that the estimates of association between air pollution and
mortality at the greater timescales contribute substantially to
the estimation of the overall log relative rate βc.

β̂k

TABLE 1.   Timescale and city-specific estimates of log relative rates of mortality (total, cardiovascular and respiratory, and other 
causes) associated with a 10-unit increase in particulate matter with an aerodynamic diameter less than or equal to 10 µg/m3 in four 
US cities, 1987–1994

* The numbers given for the timescales denote the midpoints of the following intervals: ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6
days, and <3.5 days.

† RR, relative rate; CI, confidence interval.

Type of mortality and 
timescale* (days)

Pittsburgh, Pennsylvania Minneapolis, Minnesota Chicago, Illinois Seattle, Washington Pooled data

Log RR† 95% CI† Log RR 95% CI Log RR 95% CI Log RR 95% CI Log RR 95% CI

Total mortality

≥60 1.34 0.18, 2.86 0.51 –1.90, 2.93 1.57 0.37, 2.77 1.37 –0.98, 3.72 1.35 0.52, 2.17

40 0.95 –0.23, 2.13 –1.11 –2.97, 0.75 –0.14 –0.97, 0.69 –0.33 –1.98, 1.32 0.01 –0.58, 0.61

20 –0.57 –1.30, 0.15 1.21 –0.10, 2.51 0.36 –0.15, 0.87 0.38 –0.92, 1.69 0.18 –0.20, 0.56

10 0.19 –0.45, 0.83 0.06 –1.03, 1.15 0.42 –0.01, 0.84 0.11 –1.19, 1.40 0.30 –0.02, 0.63

5 0.27 –0.27, 0.81 0.92 –0.12, 1.95 –0.01 –0.40, 0.37 0.43 –1.15, 2.00 0.16 –0.13, 0.46

<3.5 0.09 –0.57, 0.75 –0.67 –1.86, 0.52 –0.06 –0.47, 0.36 0.02 –2.30, 2.33 –0.07 –0.40, 0.27

Overall 0.15 –0.19, 0.49 0.24 –0.37, 0.84 0.16 –0.07, 0.38 0.26 –0.45, 0.98 0.17 –0.01, 0.34

Cardiovascular 
and 
respiratory 
mortality

≥60 1.19 –0.86, 3.24 0.99 –2.36, 4.35 2.54 0.90, 4.17 1.86 –1.44, 5.15 1.87 0.75, 2.99

40 1.00 –0.59, 2.59 –1.80 –4.38, 0.78 0.35 –0.78, 1.48 –2.67 –4.95, –0.39 –0.08 –0.89, 0.74

20 –0.33 –1.31, 0.64 1.00 –0.80, 2.79 0.45 –0.24, 1.14 1.04 –0.76, 2.85 0.32 –0.19, 0.84

10 0.44 –0.42, 1.31 –0.12 –1.62, 1.38 0.63 0.05, 1.20 0.24 –1.56, 2.03 0.48 0.04, 0.92

5 0.22 –0.50, 0.95 0.51 –0.92, 1.94 –0.24 –0.77, 0.28 0.84 –1.34, 3.01 –0.01 –0.41, 0.39

<3.5 0.23 –0.65, 1.11 –0.48 –2.13, 1.16 0.05 –0.51, 0.61 0.22 –2.99, 3.44 0.06 –0.39, 0.51

Overall 0.25 –0.20, 0.70 0.07 –0.77, 0.90 0.23 –0.08, 0.53 0.22 –0.76, 1.21 0.22 –0.02, 0.46

Mortality due to 
other causes

≥60 1.45 –0.85, 3.74 –0.83 –4.36, 2.69 0.75 –1.02, 2.52 0.56 –2.83, 3.96 0.72 –0.50, 1.94

40 0.85 –0.92, 2.61 0.02 –2.70, 2.73 –0.74 –1.98, 0.50 2.04 –0.38, 4.47 0.11 –0.77, 0.99

20 –0.93 –2.01, 0.16 1.26 –0.65, 3.17 0.31 –0.44, 1.07 –0.23 –2.13, 1.68 0.03 –0.54, 0.59

10 –0.10 –1.06, 0.86 0.33 –1.26, 1.93 0.22 –0.41, 0.84 0.30 –1.59, 2.19 0.16 –0.33, 0.64

5 0.40 –0.42, 1.21 1.39 –0.13, 2.90 0.32 –0.25, 0.90 0.28 –2.02, 2.58 0.44 0.00, 0.88

<3.5 –0.14 –1.14, 0.86 –1.03 –2.77, 0.72 –0.20 –0.81, 0.42 –0.45 –3.82, 2.91 –0.26 –0.75, 0.24

Overall 0.02 –0.49, 0.53 0.38 –0.50, 1.27 0.11 –0.23, 0.45 0.38 –0.66, 1.43 0.13 –0.13, 0.39
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Sensitivity analysis and model comparison

Below we investigate the sensitivity of our results with
respect to: 1) lag choice in the air pollution time series;
2) adjustment for long-term trends and seasonality; and
3) the degree of heterogeneity of the true relative rates
among cities. We also apply our timescale approach to the
Philadelphia database for 1973–1988 that was previously
analyzed by Zeger et al. (10), to compare methods used here
with the frequency domain log-linear regression estimates
previously published.

We first test the sensitivity of the log relative rate esti-
mates to the choice of lag for component exposure series at
timescales shorter than 1 month. We assume that the lag lk is
0 for timescales greater than 1 month, since lags of 4 days
will have little effect on the results for large timescales. We
fit several different lags for each component exposure series

 and choose the best lag lk (the one with the largest t
statistic) rather than assume that lk is 0. The optimal lags
were obtained by including all timescale components in the
models; they are summarized in table 2. Results for total
mortality with an optimal lag compared with the original
model with a zero lag are shown in the upper half of figure 4.
Although the estimates differ at particular timescales, the
overall shape of the curves remains similar and remains
inconsistent with the short-term mortality displacement
hypothesis.

Our model controls for long-term trends in mortality by
including a natural cubic spline of time with 7 degrees of
freedom per year. To assess the sensitivity of the results to
the choice of smoothing parameter, we repeat the analysis
using 3.5 and 14 degrees of freedom per year. The lower half
of figure 4 shows the resulting plots. As expected, when less
flexible curves are used (fewer degrees of freedom), there is
less control for trend and seasonality, and therefore the
effects at the longer timescales tend to be higher.

Our strategy for investigating the impact of the assumption
of homogeneity (τ = 0) of the pollution effects on our results
is based on inspecting the pooled timescale estimates for
total mortality under four alternative values for τ. These
were extracted from Bayesian hierarchical analyses of 20
cities (27) and the 88 largest cities in the United States (28).
The posterior mean values of τ and the corresponding prior
distributions are summarized in table 3.

Results are shown in table 4. The results were all obtained
by using smooth functions (natural cubic splines) of time
with 7 degrees of freedom per year and smooth functions
(natural cubic splines) of temperature and dew point as

Xkt l– k

TABLE 2.   Analysis of the sensitivity of estimated log relative 
rates of mortality due to air pollution to the choice of lag for 
exposure series at timescales shorter than 1 month in four US 
cities, 1987–1994*

* The table summarizes, for each city and each timescale, the lag
associated with the largest t statistic.

City
14–29 
days

7–13 
days

3.5–6 
days

<3.5 
days

Pittsburgh, Pennsylvania 1 2 0 6

Minneapolis, Minnesota 0 5 2 3

Chicago, Illinois 0 0 6 5

Seattle, Washington 0 3 6 4

FIGURE 4. Top: Sensitivity analysis showing stepwise pooled esti-
mates for the total mortality and PM10 (particulate matter with an
aerodynamic diameter ≤10 µg/m3) data series (four US cities, 1987–
1994) and model 1 (see equation 1 in text). Bottom: Sensitivity anal-
ysis showing pooled estimates for the total mortality and PM10 data
series using different numbers of degrees of freedom (df) for time but
the same smooth function for temperature and humidity. The esti-
mates are plotted at ≥60, 40 (not shown on x-axis), 20, 10, 5, and
<3.5 days, denoting approximate midpoints of the intervals ≥60 days,
30–59 days, 14–29 days, 7–13 days, 3.5–6 days, and <3.5 days,
respectively. Bars, 95% confidence interval.
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confounders, as in model 1 (equation 1). Although the confi-
dence intervals widen considerably, the pooled estimates are
not very sensitive to the different values of τ. Even in the
presence of substantial heterogeneity of the relative rates of
mortality across cities, we still found that the pooled esti-
mates at the longer timescales are larger than the pooled esti-
mates at the shorter timescales, but with larger standard
errors.

We now apply timescale and frequency domain log-linear
regression analyses (10, 15) to the Philadelphia data set, and
we estimate relative rates of mortality for exposure to air
pollution at different timescales by using the Poisson regres-
sion model defined in equation 1. Figure 5 shows the
frequency domain estimate of the mortality relative rate
associated with air pollution as a function of Fourier
frequency. Similar to the timescale result, the horizontal axes
denote the Fourier frequencies (lower x-axis) and the time-
scale in days (upper x-axis) at which the association is
measured. The solid curve and dotted curves denote the esti-
mated relative rates ±2 estimated standard errors at each
frequency. The timescale estimates (points connected by line
segments) are plotted on top of the frequency domain results
(continuous curve). Timescale estimates and frequency
domain results are similar, and consistently with our results
for the four cities, relative rate estimates at longer timescales
are larger than relative rate estimates at short timescales.

DISCUSSION

This paper provides additional evidence that the association
between particle indexes and mortality is greater at longer
timescales (10 days to 2 months) than at timescales of a few
days. This suggests that the association of air pollution with
daily mortality counts does not reflect short-term mortality
displacement alone. More specifically, our results are incon-
sistent with the “harvesting only” hypothesis, which contends
that the air pollution-mortality association is caused entirely
by frail persons’ dying a few days earlier than they would have
absent pollution. Under that hypothesis, we would anticipate
little or no association at longer timescales. In fact, we observe
the strongest associations there.

The larger relative rates at longer timescales may partly
reflect a greater biologic impact on chronic exposures than
on acute exposures. In fact, estimated relative risks from the
Harvard Six Cities (7) and American Cancer Society (8)
cohort studies, which address chronic exposures, are larger
than estimates from times-series models (28), which are
constrained to estimate the effects of shorter-timescale expo-
sures.

The estimated relative rate of total mortality for the longest
timescale (2 months) was 1.35 percent per 10-unit increase
in PM10 for the four cities considered. While 1.35 percent is
approximately 8 times larger than the overall pooled esti-

TABLE 3.   Sensitivity analysis of pooled estimates of the log relative rate of 
mortality due to air pollution with respect to the amount of heterogeneity (τ)*

* The table summarizes posterior mean values of τ used to calculate the pooled
effect.

† N denotes the normal distribution.
‡ IG denotes the inverse gamma distribution.

E [τ|data] Prior distribution Published reference

0.15 τ2 ∼ N†(0, 305) 20-city analysis (discussion and rejoinder of 
Dominici et al. (27))

0.38 τ2 ∼ N(0, 1) 88-city analysis (Dominici et al. (28))

0.49 τ2 ∼ IG‡(3, 1) 88-city analysis (Dominici et al. (28))

0.76 τ2 ∼ IG(3, 6) 20-city analysis (Dominici et al. (27))

I
τ2 0>

I
τ2 0>

TABLE 4.   Pooled estimates of the log relative rate of mortality due to air pollution under different values of the heterogeneity 
parameter τ

* The numbers given for the timescale denote the midpoints of the following intervals: ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6
days, and <3.5 days.

† RR, relative rate; CI, confidence interval.

Timescale* 
(days)

τ = 0 τ = 0.15 τ = 0.38 τ = 0.49 τ = 0.76

Log RR† 95% CI† Log RR 95% CI Log RR 95% CI Log RR 95% CI Log RR 95% CI

≥60 1.35 0.52, 2.17 1.34 0.50, 2.18 1.32 0.39, 2.25 1.31 0.32, 2.30 1.29 0.12, 2.45

40 0.01 –0.58, 0.61 0.01 –0.61, 0.63 0.00 –0.74, 0.73 –0.02 –0.83, 0.79 –0.05 –1.06, 0.96

20 0.18 –0.20, 0.56 0.18 –0.24, 0.60 0.21 –0.36, 0.79 0.24 –0.43, 0.90 0.28 –0.61, 1.18

10 0.30 –0.02, 0.63 0.28 –0.09, 0.66 0.24 –0.31, 0.79 0.23 –0.41, 0.87 0.21 –0.66, 1.09

5 0.16 –0.13, 0.46 0.20 –0.15, 0.55 0.29 –0.25, 0.83 0.32 –0.32, 0.95 0.36 –0.52, 1.23

<3.5 –0.07 –0.40, 0.34 –0.07 –0.46, 0.32 –0.11 –0.69, 0.47 –0.12 –0.80, 0.56 –0.14 –1.07, 0.78

Overall 0.17 –0.01, 0.34 0.18 –0.07, 0.43 0.19 –0.26, 0.64 0.19 –0.35, 0.74 0.20 –0.60, 1.00
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mate of 0.17 percent, it is still an order of magnitude smaller
than the estimated relative risks from the cohort studies (7,
8). Thus, the time-series relative rates, even when restricted
to longer-term exposures, are much smaller than those from
the major cohort studies. This difference might indicate that
the most harmful exposures occur over much larger time-
scales than can be studied with time-series methods.
However, relative rate estimates at the longer timescales
should be interpreted with caution because of the
confounding effects of seasonality and trend.

Our results are consistent with findings from previous
reports for Philadelphia (10), Boston (11), and Chicago (12)
that have used harvesting-resistant estimators. These
methods are based on a conceptually straightforward stratifi-
cation of the air pollution time series into different frequency
bands, allowing assessment of associations on timescales
with differing implications.

Our approach and the approaches proposed by Zeger et al.
(10) and Schwartz (11, 12) address related but different ques-
tions. Zeger et al. (10) and Schwartz (11, 12) decompose both
the air pollution time series and the mortality time series into
different timescales of variation (Xkt and Ykt) and then aim to
identify the timescale component that leads to the strongest
association between time-averaged air pollution and time-
averaged mortality. The timescale analysis proposed in this
paper decomposes only the air pollution time series into
different timescales (Xkt) and then characterizes the timescale
variation of the effect of exposure on daily mortality. For
linear models, these two approaches will provide the same

results. In Poisson regression, with small effects such as those
that occur with air pollution variables, the differences between
results from the two approaches will probably be small. Our
approach, however, is applicable over the range of Poisson or
other generalized linear model applications.

The timescale decomposition shown in figure 2 could have
been performed using wavelet methods. Wavelets are a
natural extension of Fourier analysis; however, in wavelet
analysis, the window or “scale” with which we look at the
information stream is selected automatically. In our context,
this automatic selection of the timescales is not particularly
desirable. One of the advantages of using wavelets is that
functions with discontinuities and functions with sharp
spikes can be represented using substantially fewer wavelet
basis elements than sine-cosine basis elements. Because a
common characteristic of time series of mortality, air pollu-
tion, and weather data is their periodicity without large
discontinuities, Fourier analysis is adequate for our purpose.

The mortality displacement problem that motivated the
development of this method is not unique to air pollution; it
has also been discussed in relation to heat waves and influ-
enza. The statistical approach proposed in this paper is suit-
able for these or other epidemiologic analyses with the focus
of differentiating short-term effects from long-term effects
of a time-varying exposure on a health outcome. The set of
timescales selected should match hypotheses concerning
relations between exposure time and response. We also
provide an alternative strategy with which to control for

FIGURE 5. Change in mortality according to level of total suspended particulates (TSP) (particulate matter with an aerodynamic diameter ≤10 µg/
m3) in Philadelphia, Pennsylvania, 1973–1988. The figure depicts a comparison between frequency domain estimates (continuous curve) and time-
scale estimates (points connected by line segments), showing the log relative rates of total mortality by frequency and frequency grouping. The
dotted lines show ±2 standard errors for the frequency domain estimates, and the bars represent ±2 standard errors for the timescale estimates.
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temporal confounding, since it is likely that confounding
may vary with the timescale.

The timescale estimates from model 1 lead to specific
patterns for the coefficients of a distributed lag model (9, 29,
30). A large effect at timescale k corresponds to an increased
number of deaths for k/2 days after an air pollution episode,
followed by a rebound below the baseline level for another k/2
days, owing to the depletion of the pool of susceptible people.

Unlike the distributed lag model, our approach is
symmetric in time; that is, we use a symmetric time window
(t – lk, t + lk) to estimate Xkt. The temporal symmetry of our
approach does not complicate our inferences, for two
reasons. First, and most importantly, it is not plausible that
mortality causes air pollution; it is only reasonable to
consider the possibility that air pollution causes mortality.
Second, we use a symmetric time window simply to better
estimate the smooth variations of air pollution Xkt.

Other key methodological issues in time-series studies of
air pollution and mortality are the nonlinearity in the dose-
response curves, the effect of copollutants, and the effect of
measurement error. These issues are discussed elsewhere
and remain a topic of investigation (25, 28, 31, 32). In the
context of mismeasurement of exposure, it is expected that
the relative rate of mortality corresponding to the short time
scales might be more attenuated by the measurement error
than the relative rate of mortality corresponding to longer
timescales. This is because more of the short timescale signal
is actually error, whereas the longer timescale measure has
effectively been smoothed so that measurement error is less
of a contributor and hence less a source of bias. However,
measurement error will not reverse the sign of an estimated
coefficient or reverse the shape of the curve in figure 3.
Therefore, even in the presence of measurement error, our
results still do not support the “harvesting hypothesis” that
the association between particle concentrations and
mortality is entirely due to mortality among very frail
persons who lose a few days of life.
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APPENDIX

Here we outline the approach to decomposing a daily time
series Xt into timescale components {Xkt : 

through the use of the discrete Fourier transform. The
discrete Fourier transform is defined as

where T is the length of the series Xt and ωj = 2πj/T is the jth
Fourier frequency with j cycles in the length of the data.
Note that if j = 1, then ω1 = 2π/T is a Fourier frequency with
one cycle in the length of the data and describes the longest-
term fluctuations. We note that when j ≥ T/2, we have
d(ωT – j) = , where  denotes the complex conju-
gate of d(ωj). If T is even and j = T/2, then ωT/2 = π is a
Fourier frequency with a cycle for 2 days and describes the
shortest-term fluctuations. Similarly, if T is odd and j = (T –
1)/2, then 

is the Fourier frequency describing the shortest-term fluctu-
ations.

Let [0, ω1, …, ωk, …, ωK, π] be a partition of the interval
[0, π], and we define Ik = (ωk–1, ωk] ∪ [ωT – k, ωT – k + 1). The
following holds:

We can decompose the Xt into Xkt’s by implementing the
following algorithm. For k = 1, …, K:

• Taper the data Xt and get 
• Calculate the discrete Fourier transform of  and get

d(ωj).

• Set 

• Get Xkt by applying the inverse of the discrete Fourier
transform to d*(ωj), j = 1, …, T/2.

SAS, S-Plus, and R software for decomposing a time
series into a desired set of frequency components can be
downloaded at http://www.ihapss.jhsph.edu/software/fd/
software_fd.htm.Σk 1=

K Xkt Xt= }

d ωj( ) 1
T
--- Xtexp i– ωjt( ),

t 0=

T 1–

∑=

0 j T 1, 0 ωj 2≤ ≤ π,–≤ ≤

d ωj( ) d ωj( )

ωT 1– 2⁄
T 1–

T
------------π=

Xt Σj 0=
T 1–

d ωj( )exp iωjt( )=

Σk 0=
K Σωj Ik∈ d ωj( )exp iωjt( )[ ]=

Σk 0=
K

Xkt.=

Xt.
Xt

d∗ ωj( ) d ωj( ) for ωj Ik∈
0 otherwise.
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While time-series studies have consistently provided evidence for an effect of particulate air pollution on
mortality, uncertainty remains as to the extent of the life-shortening implied by those associations. In this paper,
the authors estimate the association between air pollution and mortality using different timescales of variation in
the air pollution time series to gain further insight into this question. The authors’ method is based on a Fourier
decomposition of air pollution time series into a set of independent exposure variables, each representing a
different timescale. The authors then use this set of variables as predictors in a Poisson regression model to
estimate a separate relative rate of mortality for each exposure timescale. The method is applied to a database
containing information on daily mortality, particulate air pollution, and weather in four US cities (Pittsburgh,
Pennsylvania; Minneapolis, Minnesota; Seattle, Washington; and Chicago, Illinois) from the period 1987–1994.
The authors found larger relative rates of mortality associated with particulate air pollution at longer timescale
variations (14 days–2 months) than at shorter timescales (1–4 days). These analyses provide additional evidence
that associations between particle indexes and mortality do not imply only an advance in the timing of death by
a few days for frail individuals.

air pollution; Fourier analysis; hierarchical model; mortality; Poisson distribution; time factors; time series

Abbreviations: CI, confidence interval; PM10, particulate matter with an aerodynamic diameter ≤10 µg/m3.

Editor’s note: An invited commentary on this article
appears on page 1066, and the authors’ response appears on
page 1071.

A number of studies over the last decade have shown an
association between particle concentrations in outdoor air
and daily mortality counts in urban locations (1–3). These
associations have been estimated through the use of Poisson
regression methods, and the findings have been reported as

log relative rates of mortality associated with air pollution
levels on recent days. These associations have been widely
interpreted as reflecting the effect of air pollution on persons
who have heightened susceptibility because of chronic heart
or lung diseases (4).

Thus, the increased mortality associated with higher pollu-
tion levels may be restricted to very frail people whose life
expectancy would have been short even without air pollu-
tion. This possibility is termed the “mortality displacement”
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or “harvesting” hypothesis (5). If an effect is evident only at
short timescales, pollution-related deaths are advanced by
only a few days, and in fact, the days of life lost might argu-
ably be of low quality for the frail individuals at risk of
dying. Consequently, the public health relevance of the find-
ings of the daily time-series studies has been questioned (6).
The mortality displacement hypothesis received specific
discussion in the 1996 Staff Paper on Particulate Matter
prepared by the US Environmental Protection Agency
because of its policy implications (4). The findings of two
long-term prospective cohort studies of air pollution and
mortality, the Harvard Six Cities Study (7) and the American
Cancer Society’s Cancer Prevention Study II (8), were
considered to offer critical evidence counter to the mortality
displacement hypothesis.

Several investigators have approached the problem of
mortality displacement using analytical models for daily
time-series data (9–12). If the association between air pollu-
tion and mortality does reflect the existence of a pool of frail
individuals in the population, episodes of high pollution that
lead to increased mortality might reduce the size of this pool,
and days subsequent to high-pollution days would then be
expected to show a reduced effect of air pollution. Therefore,
the occurrence of this phenomenon can be investigated by
assessing interaction between prior high-pollution days and
the effects of subsequent pollution exposure on mortality
counts; under the mortality displacement hypothesis, a nega-
tive interaction is predicted (13, 14).

Recently, Kelsall et al. (15) and Schwartz (11) developed
related methods for analysis of daily time-series data, both
offering approaches to estimating air pollution-mortality
associations at varying timescales. More specifically, Kelsall
et al.’s methodology gives a continuous smooth estimate of
relative risk as a function of timescale (frequency domain
log-linear regression). Zeger et al. (10) applied the frequency
domain log-linear regression to previously analyzed data for
Philadelphia, Pennsylvania, from 1973–1988. Schwartz (11,
12) used a filtering algorithm (16) to separate the time
series of daily deaths, air pollution, and weather into long-
wavelength components, midscale components, and residual,
very short-term components and applied this method to data
on Boston, Massachusetts, from 1979–1986 and Chicago,
Illinois, from 1988–1993. Note that both of these methods
(10, 11) analyze both pollution and mortality on the same
timescales, i.e., shorter-term to longer-term. Both sets of
analyses found effects on longer timescales.

In this paper, we extend the work by Zeger et al. (10) and
Schwartz (11) in the methodological, substantive, and compu-
tational arenas. More specifically, we develop a timescale
decomposition of a time series based on the discrete Fourier
transform; we introduce a two-stage model for combining
evidence across locations for estimation of pooled timescale-
specific air pollution effects on mortality; and we provide the
software for decomposing a time series into a set of desired
timescale components. At the first stage of the model, we use
Fourier series analyses (17, 18) to decompose the daily time
series of the air pollution variable into distinct timescale
components. This decomposition leads to a set of orthogonal
predictors, each representing a specific timescale of variation
in the exposure. We then use this set of predictors in Poisson

regression models to estimate a relative rate of mortality corre-
sponding to each timescale exposure while controlling for
other covariates such as temperature. A comparison between
our approach and the frequency domain log-linear regression
analysis is provided below in the section “Sensitivity analysis
and model comparison.”

The method is applied to concentrations of particulate
matter, based on measurements of particles with an aero-
dynamic diameter less than or equal to 10 µg/m3 (PM10) and
daily mortality counts from four US cities—Pittsburgh,
Pennsylvania; Minneapolis, Minnesota; Chicago, Illinois;
and Seattle, Washington. These were four cities with daily
PM10 measurements that were among the 90 largest US cities
used in the National Morbidity, Mortality, and Air Pollution
Study (19, 20). The analyses are restricted to these cities
because they are the only US locations with daily air pollu-
tion concentrations available in this database for this time
interval, while in most other locations, PM10 levels were
measured only every 6 days as required by the Environ-
mental Protection Agency. Our approach is not suitable for
every-sixth-day PM10 data, for two reasons: 1) no informa-
tion is available from the data for estimation of the short-
term effects of air pollution on mortality and 2) because of
the “aliasing” phenomenon, the effects of air pollution at the
longer timescales are distorted. In our context, the aliasing
phenomenon occurs when the sampling interval is larger
than 1 day, so that variations in the daily time series at the
shortest timescales produce an apparent effect at the longer
timescales.

MATERIALS AND METHODS

Data

We used daily time series of mortality, weather, and air
pollution data for Pittsburgh, Minneapolis, Chicago, and
Seattle for the period 1987–1994 (see figure 1). Daily
mortality counts were obtained from the National Center for
Health Statistics and were grouped by age (<65, 65–75, and
>75 years) and by cause of death according to the Interna-
tional Classification of Diseases, Ninth Revision (cardiovas-
cular-respiratory mortality (cardiac conditions, codes 390–
448; respiratory conditions, codes 490–496; influenza, code
487; and pneumonia, codes 480–486, 507) and mortality due
to other remaining diseases). Accidental deaths were
excluded. Hourly temperature and dew point data were
available from the National Climatic Data Center, assembled
in a compact disk database from EarthInfo, Inc. (21). The air
pollution data were obtained from the Aerometric Informa-
tion Retrieval Service (22) database maintained by the Envi-
ronmental Protection Agency. For the pollutants measured
on an hourly basis, we calculated the 24-hour average. A
more detailed description of the database has been published
elsewhere (19, 20).

Methods

Below we describe our statistical approach to estimation
of the association between air pollution and mortality using
different timescales. We let  be the air pollution timeXt

c
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series and  be the mortality time series in location c. We
first decompose the air pollution series  into distinct
component series , one for each distinct timescale k, and
then we calculate the association between , without
decomposition, and each of the timescale components .
The decomposition is obtained by applying the discrete
Fourier transform to the  series (17, 18). Specifically, we
assume

and

   (1)

where ϕc denotes the overdispersion parameter and the ’s,
the parameters of interest, denote the log relative rate of
daily mortality for each 10-unit increase in the air pollution
level in location c on a timescale k. Our modeling approach
replaces the term , where  is the air pollution time
series and βc is the city-specific log relative rate of mortality,
with the sum , where Xt = ΣkXkt, and the X1t, …, Xkt,
…, XKt is a set of orthogonal predictors. This model estimates
relative rates of mortality at different timescales and charac-
terizes the timescale variation in the air pollution time series
that contributes to the estimate of the overall effect βc. Here
we expect that under a short-term mortality displacement
scenario, mortality would be mainly associated with a short-
term effect of air pollution.

FIGURE 1. Daily time series of mortality (total, cardiovascular disease (CVD) and respiratory (Resp), and other causes (Other)), temperature
(Temp), and levels of particulate matter with an aerodynamic diameter less than 10 µg/m3 (PM10) for Pittsburgh, Pennsylvania, Minneapolis, Min-
nesota, and Chicago, Illinois, during the period 1987–1994. For Seattle, Washington, data for the period 1989–1994 were used.
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To protect the pollution relative rates from confounding by
longer-term trends and seasonality, we also remove the vari-
ation in the time series at timescales approximately longer
than 2 months by including a smooth function of time with 7
degrees of freedom per year. A sensitivity analysis with
respect to selection of the number of degrees of freedom in
the smooth function of time is discussed below. Smooth
functions of temperature and dew point temperature are used
to control for potential confounding by temperature and
humidity. The rationale for and details on the selected
smooth functions are provided by Samet et al. (23–25),
Kelsall et al. (26), and Dominici et al. (27).

Figure 2 illustrates the decomposition of Xt into six time-
scales. From the top of the panel to the bottom are displayed
time series ranging from series that comprise only the more
smooth fluctuations (low frequency components) to time
series that comprise only the less smooth variations (high
frequency components). The actual value of Xt (the last time
series at the bottom) on day t is obtained by summing the
values of the six component series on each day. Details on
the Fourier series decomposition and the URL address for
downloading the software for its implementation are

provided in the Appendix. Using the decomposed time series,
we can estimate timescale coefficients  denoting the rela-
tive change in mortality per 10-µg/m3 increase in the
corresponding timescale components of .
We estimate a vector of regression coefficients

 and their covariance matrix Vc. Although
one might want to allow a latency time for the effect of pollu-
tion, in equation 1 we regress  on  rather than use
lagged pollution series  for some lag lk > 0. We investi-
gate whether a lagged predictor is needed in the sensitivity
analysis.

RESULTS

Estimation

To estimate the timescale effects  and its covariance
matrix Vc within each location c, we fit the Poisson regres-
sion model (equation 1) with smooth functions of time,
temperature, and dew point modeled as natural cubic splines
and using the function glm( ) in S-Plus (MathSoft, Inc.,
Cambridge, Massachusetts). To combine the coefficients

FIGURE 2. Decomposition into a six-component series of data on particulate matter with an aerodynamic diameter ≤10 µg/m3 (PM10) for
Pittsburgh, Pennsylvania, from the period 1987–1994. The bottom row shows the observed PM10 values with a horizontal line plotted at the mean
value (31.6 µg/m3) and tick marks at the 10th (8.9 µg/m3) and 90th (61.1 µg/m3) percentiles. Time series 1 to 6 (top to bottom) are the timescale
decompositions of the observed data series. A horizontal line is plotted at the mean value, which in all cases is one sixth of the original mean
(5.3 µg/m3), and tick marks show the 10th and 90th percentiles (see vertical axis at right). The decomposition is obtained by applying the function
decompose( ) with breaks equal to 1, 48, 96, 208, 416, 834, and 2,922 days. The internal breaks (48, 96, 208, 416, and 834) were obtained by
dividing the length of the data (e.g., T = 2,922 days) by timescales of 60, 30, 14, 7, and 3.5 days. One should always select the minimum and
maximum breaks to be 1 and T in order to capture the lowest and highest Fourier frequencies.
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across cities, we use a fixed-effect model with weights Wc =
(Vc)–1 and an estimator of the form 

 

with variance 

. 

An alternative approach would be to use as weights Wc =
(D + Vc)–1, where D is a diagonal between-city covariance

matrix with diagonal element τ2. Because of the limited
number of cities in the present analysis, we cannot estimate
τ2 reliably and have assumed τ = 0. A sensitivity analysis of
our results with respect to different values of τ2 obtained
from hierarchical analyses of data from 20 cities (27) and 88
cities (28) is discussed below.

We estimated city-specific and pooled log relative rates of
mortality for the following six timescale variations of PM10:
≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6 days,
and <3.5 days. Figure 3 shows the pooled estimates of the
log relative rates of mortality at different timescales for total

β ΣcW
c( )

1–
W

c

c
∑ β̂

c
=

V β( ) ΣcW c( )
1–

=

FIGURE 3. Pooled estimates of log relative rates of mortality at different timescales for total mortality (top left), cardiovascular-respiratory mor-
tality (top right), and mortality due to other causes (bottom) according to levels of particulate matter with an aerodynamic diameter ≤10 µg/m3 in
four US cities, 1987–1994. The estimates are plotted at ≥60, 40 (not shown on x-axis), 20, 10, 5, and <3.5 days, denoting approximate midpoints
of the intervals ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6 days, and <3.5 days, respectively. The shaded regions represent ±2 stan-
dard errors of the estimates. Bars, 95% confidence interval.
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mortality, cardiovascular and respiratory mortality, and
mortality due to other causes. At the far right are the plotted
estimates of the log relative rate of mortality obtained using
the nondecomposed time series Xt. For all causes and for
cause-specific mortality, we found that estimates of the asso-
ciation between air pollution and mortality obtained using
the smoother variations in the time series (10 days to 1
month) are somewhat larger than those obtained using the
less smooth variations (1–3 days). The largest effects
occurred at timescales greater than 2 months for total
mortality (1.35 percent per 10 µg/m3; 95 percent confidence
interval (CI): 0.52, 2.17), cardiovascular and respiratory
mortality (1.87 percent per 10 mg/m3; 95 percent CI: 0.75,
2.99), and other-cause mortality (0.72 percent per 10 µg/m3;
95 percent CI: –0.55, 1.95). To test the hypothesis that esti-
mated effects at the longer timescales are larger than
those at the shortest timescales, we linearly regress the

pooled  on the timescales and calculated weighted least
squares estimates. The solid lines in figure 3 represent the
fitted linear regressions. In all cases, the estimated slopes are
negative, with t statistics close to the significance level.

Table 1 shows the estimates of the timescale effect for
each city. At the city-specific level, we found a similar
pattern, with larger effects at the longer timescales and
smaller effects at the shorter timescales, with few excep-
tions. Consistent with previous studies (19, 20), the log rela-
tive rates, obtained by averaging across cities and across
timescales, are highest for cardiovascular and respiratory
mortality (0.22 percent per 10 µg/m3; 95 percent CI: –0.02,
0.46) and lowest for other-cause mortality (0.13 percent per 10
µg/m3; 95 percent CI: –0.13, 0.39). These findings suggest
that the estimates of association between air pollution and
mortality at the greater timescales contribute substantially to
the estimation of the overall log relative rate βc.

β̂k

TABLE 1.   Timescale and city-specific estimates of log relative rates of mortality (total, cardiovascular and respiratory, and other 
causes) associated with a 10-unit increase in particulate matter with an aerodynamic diameter less than or equal to 10 µg/m3 in four 
US cities, 1987–1994

* The numbers given for the timescales denote the midpoints of the following intervals: ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6
days, and <3.5 days.

† RR, relative rate; CI, confidence interval.

Type of mortality and 
timescale* (days)

Pittsburgh, Pennsylvania Minneapolis, Minnesota Chicago, Illinois Seattle, Washington Pooled data

Log RR† 95% CI† Log RR 95% CI Log RR 95% CI Log RR 95% CI Log RR 95% CI

Total mortality

≥60 1.34 0.18, 2.86 0.51 –1.90, 2.93 1.57 0.37, 2.77 1.37 –0.98, 3.72 1.35 0.52, 2.17

40 0.95 –0.23, 2.13 –1.11 –2.97, 0.75 –0.14 –0.97, 0.69 –0.33 –1.98, 1.32 0.01 –0.58, 0.61

20 –0.57 –1.30, 0.15 1.21 –0.10, 2.51 0.36 –0.15, 0.87 0.38 –0.92, 1.69 0.18 –0.20, 0.56

10 0.19 –0.45, 0.83 0.06 –1.03, 1.15 0.42 –0.01, 0.84 0.11 –1.19, 1.40 0.30 –0.02, 0.63

5 0.27 –0.27, 0.81 0.92 –0.12, 1.95 –0.01 –0.40, 0.37 0.43 –1.15, 2.00 0.16 –0.13, 0.46

<3.5 0.09 –0.57, 0.75 –0.67 –1.86, 0.52 –0.06 –0.47, 0.36 0.02 –2.30, 2.33 –0.07 –0.40, 0.27

Overall 0.15 –0.19, 0.49 0.24 –0.37, 0.84 0.16 –0.07, 0.38 0.26 –0.45, 0.98 0.17 –0.01, 0.34

Cardiovascular 
and 
respiratory 
mortality

≥60 1.19 –0.86, 3.24 0.99 –2.36, 4.35 2.54 0.90, 4.17 1.86 –1.44, 5.15 1.87 0.75, 2.99

40 1.00 –0.59, 2.59 –1.80 –4.38, 0.78 0.35 –0.78, 1.48 –2.67 –4.95, –0.39 –0.08 –0.89, 0.74

20 –0.33 –1.31, 0.64 1.00 –0.80, 2.79 0.45 –0.24, 1.14 1.04 –0.76, 2.85 0.32 –0.19, 0.84

10 0.44 –0.42, 1.31 –0.12 –1.62, 1.38 0.63 0.05, 1.20 0.24 –1.56, 2.03 0.48 0.04, 0.92

5 0.22 –0.50, 0.95 0.51 –0.92, 1.94 –0.24 –0.77, 0.28 0.84 –1.34, 3.01 –0.01 –0.41, 0.39

<3.5 0.23 –0.65, 1.11 –0.48 –2.13, 1.16 0.05 –0.51, 0.61 0.22 –2.99, 3.44 0.06 –0.39, 0.51

Overall 0.25 –0.20, 0.70 0.07 –0.77, 0.90 0.23 –0.08, 0.53 0.22 –0.76, 1.21 0.22 –0.02, 0.46

Mortality due to 
other causes

≥60 1.45 –0.85, 3.74 –0.83 –4.36, 2.69 0.75 –1.02, 2.52 0.56 –2.83, 3.96 0.72 –0.50, 1.94

40 0.85 –0.92, 2.61 0.02 –2.70, 2.73 –0.74 –1.98, 0.50 2.04 –0.38, 4.47 0.11 –0.77, 0.99

20 –0.93 –2.01, 0.16 1.26 –0.65, 3.17 0.31 –0.44, 1.07 –0.23 –2.13, 1.68 0.03 –0.54, 0.59

10 –0.10 –1.06, 0.86 0.33 –1.26, 1.93 0.22 –0.41, 0.84 0.30 –1.59, 2.19 0.16 –0.33, 0.64

5 0.40 –0.42, 1.21 1.39 –0.13, 2.90 0.32 –0.25, 0.90 0.28 –2.02, 2.58 0.44 0.00, 0.88

<3.5 –0.14 –1.14, 0.86 –1.03 –2.77, 0.72 –0.20 –0.81, 0.42 –0.45 –3.82, 2.91 –0.26 –0.75, 0.24

Overall 0.02 –0.49, 0.53 0.38 –0.50, 1.27 0.11 –0.23, 0.45 0.38 –0.66, 1.43 0.13 –0.13, 0.39
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Sensitivity analysis and model comparison

Below we investigate the sensitivity of our results with
respect to: 1) lag choice in the air pollution time series;
2) adjustment for long-term trends and seasonality; and
3) the degree of heterogeneity of the true relative rates
among cities. We also apply our timescale approach to the
Philadelphia database for 1973–1988 that was previously
analyzed by Zeger et al. (10), to compare methods used here
with the frequency domain log-linear regression estimates
previously published.

We first test the sensitivity of the log relative rate esti-
mates to the choice of lag for component exposure series at
timescales shorter than 1 month. We assume that the lag lk is
0 for timescales greater than 1 month, since lags of 4 days
will have little effect on the results for large timescales. We
fit several different lags for each component exposure series

 and choose the best lag lk (the one with the largest t
statistic) rather than assume that lk is 0. The optimal lags
were obtained by including all timescale components in the
models; they are summarized in table 2. Results for total
mortality with an optimal lag compared with the original
model with a zero lag are shown in the upper half of figure 4.
Although the estimates differ at particular timescales, the
overall shape of the curves remains similar and remains
inconsistent with the short-term mortality displacement
hypothesis.

Our model controls for long-term trends in mortality by
including a natural cubic spline of time with 7 degrees of
freedom per year. To assess the sensitivity of the results to
the choice of smoothing parameter, we repeat the analysis
using 3.5 and 14 degrees of freedom per year. The lower half
of figure 4 shows the resulting plots. As expected, when less
flexible curves are used (fewer degrees of freedom), there is
less control for trend and seasonality, and therefore the
effects at the longer timescales tend to be higher.

Our strategy for investigating the impact of the assumption
of homogeneity (τ = 0) of the pollution effects on our results
is based on inspecting the pooled timescale estimates for
total mortality under four alternative values for τ. These
were extracted from Bayesian hierarchical analyses of 20
cities (27) and the 88 largest cities in the United States (28).
The posterior mean values of τ and the corresponding prior
distributions are summarized in table 3.

Results are shown in table 4. The results were all obtained
by using smooth functions (natural cubic splines) of time
with 7 degrees of freedom per year and smooth functions
(natural cubic splines) of temperature and dew point as

Xkt l– k

TABLE 2.   Analysis of the sensitivity of estimated log relative 
rates of mortality due to air pollution to the choice of lag for 
exposure series at timescales shorter than 1 month in four US 
cities, 1987–1994*

* The table summarizes, for each city and each timescale, the lag
associated with the largest t statistic.

City
14–29 
days

7–13 
days

3.5–6 
days

<3.5 
days

Pittsburgh, Pennsylvania 1 2 0 6

Minneapolis, Minnesota 0 5 2 3

Chicago, Illinois 0 0 6 5

Seattle, Washington 0 3 6 4

FIGURE 4. Top: Sensitivity analysis showing stepwise pooled esti-
mates for the total mortality and PM10 (particulate matter with an
aerodynamic diameter ≤10 µg/m3) data series (four US cities, 1987–
1994) and model 1 (see equation 1 in text). Bottom: Sensitivity anal-
ysis showing pooled estimates for the total mortality and PM10 data
series using different numbers of degrees of freedom (df) for time but
the same smooth function for temperature and humidity. The esti-
mates are plotted at ≥60, 40 (not shown on x-axis), 20, 10, 5, and
<3.5 days, denoting approximate midpoints of the intervals ≥60 days,
30–59 days, 14–29 days, 7–13 days, 3.5–6 days, and <3.5 days,
respectively. Bars, 95% confidence interval.
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confounders, as in model 1 (equation 1). Although the confi-
dence intervals widen considerably, the pooled estimates are
not very sensitive to the different values of τ. Even in the
presence of substantial heterogeneity of the relative rates of
mortality across cities, we still found that the pooled esti-
mates at the longer timescales are larger than the pooled esti-
mates at the shorter timescales, but with larger standard
errors.

We now apply timescale and frequency domain log-linear
regression analyses (10, 15) to the Philadelphia data set, and
we estimate relative rates of mortality for exposure to air
pollution at different timescales by using the Poisson regres-
sion model defined in equation 1. Figure 5 shows the
frequency domain estimate of the mortality relative rate
associated with air pollution as a function of Fourier
frequency. Similar to the timescale result, the horizontal axes
denote the Fourier frequencies (lower x-axis) and the time-
scale in days (upper x-axis) at which the association is
measured. The solid curve and dotted curves denote the esti-
mated relative rates ±2 estimated standard errors at each
frequency. The timescale estimates (points connected by line
segments) are plotted on top of the frequency domain results
(continuous curve). Timescale estimates and frequency
domain results are similar, and consistently with our results
for the four cities, relative rate estimates at longer timescales
are larger than relative rate estimates at short timescales.

DISCUSSION

This paper provides additional evidence that the association
between particle indexes and mortality is greater at longer
timescales (10 days to 2 months) than at timescales of a few
days. This suggests that the association of air pollution with
daily mortality counts does not reflect short-term mortality
displacement alone. More specifically, our results are incon-
sistent with the “harvesting only” hypothesis, which contends
that the air pollution-mortality association is caused entirely
by frail persons’ dying a few days earlier than they would have
absent pollution. Under that hypothesis, we would anticipate
little or no association at longer timescales. In fact, we observe
the strongest associations there.

The larger relative rates at longer timescales may partly
reflect a greater biologic impact on chronic exposures than
on acute exposures. In fact, estimated relative risks from the
Harvard Six Cities (7) and American Cancer Society (8)
cohort studies, which address chronic exposures, are larger
than estimates from times-series models (28), which are
constrained to estimate the effects of shorter-timescale expo-
sures.

The estimated relative rate of total mortality for the longest
timescale (2 months) was 1.35 percent per 10-unit increase
in PM10 for the four cities considered. While 1.35 percent is
approximately 8 times larger than the overall pooled esti-

TABLE 3.   Sensitivity analysis of pooled estimates of the log relative rate of 
mortality due to air pollution with respect to the amount of heterogeneity (τ)*

* The table summarizes posterior mean values of τ used to calculate the pooled
effect.

† N denotes the normal distribution.
‡ IG denotes the inverse gamma distribution.

E [τ|data] Prior distribution Published reference

0.15 τ2 ∼ N†(0, 305) 20-city analysis (discussion and rejoinder of 
Dominici et al. (27))

0.38 τ2 ∼ N(0, 1) 88-city analysis (Dominici et al. (28))

0.49 τ2 ∼ IG‡(3, 1) 88-city analysis (Dominici et al. (28))

0.76 τ2 ∼ IG(3, 6) 20-city analysis (Dominici et al. (27))

I
τ2 0>

I
τ2 0>

TABLE 4.   Pooled estimates of the log relative rate of mortality due to air pollution under different values of the heterogeneity 
parameter τ

* The numbers given for the timescale denote the midpoints of the following intervals: ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6
days, and <3.5 days.

† RR, relative rate; CI, confidence interval.

Timescale* 
(days)

τ = 0 τ = 0.15 τ = 0.38 τ = 0.49 τ = 0.76

Log RR† 95% CI† Log RR 95% CI Log RR 95% CI Log RR 95% CI Log RR 95% CI

≥60 1.35 0.52, 2.17 1.34 0.50, 2.18 1.32 0.39, 2.25 1.31 0.32, 2.30 1.29 0.12, 2.45

40 0.01 –0.58, 0.61 0.01 –0.61, 0.63 0.00 –0.74, 0.73 –0.02 –0.83, 0.79 –0.05 –1.06, 0.96

20 0.18 –0.20, 0.56 0.18 –0.24, 0.60 0.21 –0.36, 0.79 0.24 –0.43, 0.90 0.28 –0.61, 1.18

10 0.30 –0.02, 0.63 0.28 –0.09, 0.66 0.24 –0.31, 0.79 0.23 –0.41, 0.87 0.21 –0.66, 1.09

5 0.16 –0.13, 0.46 0.20 –0.15, 0.55 0.29 –0.25, 0.83 0.32 –0.32, 0.95 0.36 –0.52, 1.23

<3.5 –0.07 –0.40, 0.34 –0.07 –0.46, 0.32 –0.11 –0.69, 0.47 –0.12 –0.80, 0.56 –0.14 –1.07, 0.78

Overall 0.17 –0.01, 0.34 0.18 –0.07, 0.43 0.19 –0.26, 0.64 0.19 –0.35, 0.74 0.20 –0.60, 1.00
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mate of 0.17 percent, it is still an order of magnitude smaller
than the estimated relative risks from the cohort studies (7,
8). Thus, the time-series relative rates, even when restricted
to longer-term exposures, are much smaller than those from
the major cohort studies. This difference might indicate that
the most harmful exposures occur over much larger time-
scales than can be studied with time-series methods.
However, relative rate estimates at the longer timescales
should be interpreted with caution because of the
confounding effects of seasonality and trend.

Our results are consistent with findings from previous
reports for Philadelphia (10), Boston (11), and Chicago (12)
that have used harvesting-resistant estimators. These
methods are based on a conceptually straightforward stratifi-
cation of the air pollution time series into different frequency
bands, allowing assessment of associations on timescales
with differing implications.

Our approach and the approaches proposed by Zeger et al.
(10) and Schwartz (11, 12) address related but different ques-
tions. Zeger et al. (10) and Schwartz (11, 12) decompose both
the air pollution time series and the mortality time series into
different timescales of variation (Xkt and Ykt) and then aim to
identify the timescale component that leads to the strongest
association between time-averaged air pollution and time-
averaged mortality. The timescale analysis proposed in this
paper decomposes only the air pollution time series into
different timescales (Xkt) and then characterizes the timescale
variation of the effect of exposure on daily mortality. For
linear models, these two approaches will provide the same

results. In Poisson regression, with small effects such as those
that occur with air pollution variables, the differences between
results from the two approaches will probably be small. Our
approach, however, is applicable over the range of Poisson or
other generalized linear model applications.

The timescale decomposition shown in figure 2 could have
been performed using wavelet methods. Wavelets are a
natural extension of Fourier analysis; however, in wavelet
analysis, the window or “scale” with which we look at the
information stream is selected automatically. In our context,
this automatic selection of the timescales is not particularly
desirable. One of the advantages of using wavelets is that
functions with discontinuities and functions with sharp
spikes can be represented using substantially fewer wavelet
basis elements than sine-cosine basis elements. Because a
common characteristic of time series of mortality, air pollu-
tion, and weather data is their periodicity without large
discontinuities, Fourier analysis is adequate for our purpose.

The mortality displacement problem that motivated the
development of this method is not unique to air pollution; it
has also been discussed in relation to heat waves and influ-
enza. The statistical approach proposed in this paper is suit-
able for these or other epidemiologic analyses with the focus
of differentiating short-term effects from long-term effects
of a time-varying exposure on a health outcome. The set of
timescales selected should match hypotheses concerning
relations between exposure time and response. We also
provide an alternative strategy with which to control for

FIGURE 5. Change in mortality according to level of total suspended particulates (TSP) (particulate matter with an aerodynamic diameter ≤10 µg/
m3) in Philadelphia, Pennsylvania, 1973–1988. The figure depicts a comparison between frequency domain estimates (continuous curve) and time-
scale estimates (points connected by line segments), showing the log relative rates of total mortality by frequency and frequency grouping. The
dotted lines show ±2 standard errors for the frequency domain estimates, and the bars represent ±2 standard errors for the timescale estimates.
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temporal confounding, since it is likely that confounding
may vary with the timescale.

The timescale estimates from model 1 lead to specific
patterns for the coefficients of a distributed lag model (9, 29,
30). A large effect at timescale k corresponds to an increased
number of deaths for k/2 days after an air pollution episode,
followed by a rebound below the baseline level for another k/2
days, owing to the depletion of the pool of susceptible people.

Unlike the distributed lag model, our approach is
symmetric in time; that is, we use a symmetric time window
(t – lk, t + lk) to estimate Xkt. The temporal symmetry of our
approach does not complicate our inferences, for two
reasons. First, and most importantly, it is not plausible that
mortality causes air pollution; it is only reasonable to
consider the possibility that air pollution causes mortality.
Second, we use a symmetric time window simply to better
estimate the smooth variations of air pollution Xkt.

Other key methodological issues in time-series studies of
air pollution and mortality are the nonlinearity in the dose-
response curves, the effect of copollutants, and the effect of
measurement error. These issues are discussed elsewhere
and remain a topic of investigation (25, 28, 31, 32). In the
context of mismeasurement of exposure, it is expected that
the relative rate of mortality corresponding to the short time
scales might be more attenuated by the measurement error
than the relative rate of mortality corresponding to longer
timescales. This is because more of the short timescale signal
is actually error, whereas the longer timescale measure has
effectively been smoothed so that measurement error is less
of a contributor and hence less a source of bias. However,
measurement error will not reverse the sign of an estimated
coefficient or reverse the shape of the curve in figure 3.
Therefore, even in the presence of measurement error, our
results still do not support the “harvesting hypothesis” that
the association between particle concentrations and
mortality is entirely due to mortality among very frail
persons who lose a few days of life.
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APPENDIX

Here we outline the approach to decomposing a daily time
series Xt into timescale components {Xkt : 

through the use of the discrete Fourier transform. The
discrete Fourier transform is defined as

where T is the length of the series Xt and ωj = 2πj/T is the jth
Fourier frequency with j cycles in the length of the data.
Note that if j = 1, then ω1 = 2π/T is a Fourier frequency with
one cycle in the length of the data and describes the longest-
term fluctuations. We note that when j ≥ T/2, we have
d(ωT – j) = , where  denotes the complex conju-
gate of d(ωj). If T is even and j = T/2, then ωT/2 = π is a
Fourier frequency with a cycle for 2 days and describes the
shortest-term fluctuations. Similarly, if T is odd and j = (T –
1)/2, then 

is the Fourier frequency describing the shortest-term fluctu-
ations.

Let [0, ω1, …, ωk, …, ωK, π] be a partition of the interval
[0, π], and we define Ik = (ωk–1, ωk] ∪ [ωT – k, ωT – k + 1). The
following holds:

We can decompose the Xt into Xkt’s by implementing the
following algorithm. For k = 1, …, K:

• Taper the data Xt and get 
• Calculate the discrete Fourier transform of  and get

d(ωj).

• Set 

• Get Xkt by applying the inverse of the discrete Fourier
transform to d*(ωj), j = 1, …, T/2.

SAS, S-Plus, and R software for decomposing a time
series into a desired set of frequency components can be
downloaded at http://www.ihapss.jhsph.edu/software/fd/
software_fd.htm.Σk 1=

K Xkt Xt= }

d ωj( ) 1
T
--- Xtexp i– ωjt( ),

t 0=

T 1–

∑=

0 j T 1, 0 ωj 2≤ ≤ π,–≤ ≤

d ωj( ) d ωj( )

ωT 1– 2⁄
T 1–

T
------------π=

Xt Σj 0=
T 1–

d ωj( )exp iωjt( )=

Σk 0=
K Σωj Ik∈ d ωj( )exp iωjt( )[ ]=

Σk 0=
K

Xkt.=

Xt.
Xt

d∗ ωj( ) d ωj( ) for ωj Ik∈
0 otherwise.
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