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Time-series studies have indicated that there is an associa-
tion between day-to-day variation in ambient air pollution
concentrations and day-to-day variation in numbers of
deaths, after data are controlled for more slowly varying
confounding factors such as weather, seasonality, and long-
term trends. However, the estimated coefficients in the time-
series studies are uninformative as to the amount of life lost
due to pollution exposure, particularly within susceptible
populations (1).

If individuals who were severely ill and were expected to
die shortly were the only people affected by current levels of
air pollution, reducing ambient concentrations would not
necessarily increase life expectancy significantly. This
phenomenon of only brief advancement of the timing of
death has been referred to as “short-term mortality displace-
ment,” as well as by the unfortunate term “short-term
harvesting.” While no lives should be shortened by air pollu-
tion, society suffers a much smaller loss if air pollution
affects only frail persons without great loss of life expec-
tancy. Our paper (2) was motivated by the need to find
methods of assessing short-term harvesting for studies of air
pollution and other environmental agents.

In this rejoinder to the commentary of Dr. Richard Smith
(3), we briefly 1) review the conceptual framework under
which short-term harvesting would occur, 2) illustrate how
our timescale model would detect short-term harvesting, and
3) summarize the statistical evidence supporting short-term
harvesting.

A compartmental model (4–6) sets a biomedical stage for
approaching the assessment of short-term harvesting.
Suppose that the population can be divided into two groups
according to susceptibility to an air pollution episode: low-
risk and high-risk. On any given day, people in the low-risk
pool can become frail and move into the high-risk pool (T1)
and people in the high-risk pool can become healthier and
move into the low-risk pool (T2) or can exit the high-risk
pool by dying (T3). Assuming a steady-state condition, T3 =
T1 – T2; that is, there is equilibrium between the number of
people who die (T3) and the number of people who enter the

susceptible pool (T1), net the number of people who recover
(T2). We assume that under short-term harvesting, an air
pollution episode would affect only transition out of the
high-risk pool (T3), without increasing net recruitment into
the high-risk pool (T1 – T2). Therefore, for some days after
an air pollution episode, the susceptible pool would be
depleted, and the daily death count would be diminished.
(See Schwartz (6) for further details.)

This phenomenon can be further described by a distributed
lag model (7–9) that includes several lags of the pollution
variables:

(1)

where θl represents the percentage increase in mortality
associated with a 10-unit increase in the air pollution level l
days after an air pollution episode. Under short-term
harvesting, we would expect to see an increase in deaths
above the baseline level for L1 days after the air pollution
episode, followed by another L2 days of decrease owing to
the depletion of the pool. If the air pollution episode affected
“only” the high-risk pool, as in the case considered here, the
area above the baseline (the number of deaths attributable to
the episode) would be roughly equal to the area below the
baseline (the number of deaths necessary to replenish the
high-risk pool). Figure 1 illustrates a hypothetical sinusoidal
time course of lagged air pollution effects with L1 = L2 = L
and with rebounds of L = 1, 3, and 7 days, respectively.

To illustrate that our timescale regression approach can
detect short-term harvesting, we implemented a simulation
study as follows. First, we reanalyzed the 1987–1994 data
from Philadelphia, Pennsylvania, to obtain estimates of the
meteorologic (current day) and long-term trend effects,
omitting total suspended particulates (as in Dr. Smith’s
commentary). Second, we simulated Poisson count data
from model 1 with θl = β1/L for l = 1, …, L and θl = –β1/L for
l = L + 1, ..., 2L, and we assumed that β1 = 0.001—that is, a
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1 percent increase in mortality for a 10-µg/m3 increase in
total suspended particulates. We considered three hypothet-
ical time courses of the lagged air pollution effects (wave-
lengths of 2L for L = 1, 3, and 7 days), representing short-
term harvesting.

Figure 2 shows the timescale estimates of particulate
matter effects made with our approach for the three cases.
We found that under a distributed lag model with θl having
wavelengths of 2, 6, and 14 days, we detect air pollution
effects at timescales of <3.5 days, 5–10 days, and 10–20
days, respectively. This indicates that the greatest air pollu-
tion effect occurs at the timescales determined by the true
distributed lag model.

Note that in Dr. Smith’s simulation studies (cases A, B,
and C), data are also generated from model 1, where θl = β1/
L for l = l, …, L, but with θl = 0 for l = L + 1, …, 2L. There-
fore, the time course of the θl does not have a rebound, indi-
cating that an air pollution episode might affect both net
recruitment (Tl – T2) and transition into the high-risk pool
(T3). Although this is a sensible model that estimates air
pollution effects in correspondence with average past expo-
sures, it represents a different compartment model than the
one used here. More specifically, it does not represent the
harvesting case in which the distributed lag coefficients
become negative due to the depletion of the high-risk pool.
Dr. Smith’s model D in his figure 3 is a “harvesting model”
but with longer residence in the pool of susceptible people
(30 days). Zeger et al. (4) performed a similar simulation
study and showed that when data are generated from a
compartment model, the association between deaths and air
pollution becomes nonnegligible only at timescales shorter
than the mean time of residence in the pool of frail persons.

FIGURE 1. Hypothetical time courses of lagged air pollution effects
on mortality under short-term harvesting. Mortality relative rates ini-
tially increase for L days after the air pollution episode, followed by
another L days of immediate rebound, owing to the depletion of the
pool. The three lines indicate time courses of wavelengths of 2, 6,
and 14 days, respectively.

FIGURE 2. Timescale estimates obtained under the true distributed
lag models illustrated in figure 1. The estimates are plotted at ≥60, 40,
20, 10, 5, and <3.5 days, denoting approximate midpoints of the inter-
vals ≥60 days, 30–59 days, 14–29 days, 7–13 days, 3.5–6 days, and
<3.5 days, respectively. The circles, squares, and triangles indicate
timescale estimates obtained under a distributed lag model with wave-
lengths of 2, 6, and 14 days, respectively.

FIGURE 3. Estimated relative rates of mortality due to air pollution at
timescales shorter than 5 days (harvesting-prone) versus relative
rate estimates obtained at timescales longer than 5 days (harvesting-
resistant) for four US cities (Pittsburgh, Pennsylvania; Minneapolis,
Minnesota; Seattle, Washington; and Chicago, Illinois) and three
cause-specific mortality outcomes (total mortality, cardiovascular and
respiratory mortality, and mortality due to other causes) during the
period 1987–1994. The square is placed at the averages of the 12
timescale estimates, with segments representing their 95% confi-
dence intervals.
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Consistently with this result, the timescale coefficients in
part D of Dr. Smith’s figure 3 are statistically significant for
all timescales shorter than 30 days. Additional simulation
studies in which data are generated from several compart-
ment models and reanalyzed using our timescale approach
are detailed in a recent report by Fung et al. (10).

In summary, in response to Dr. Smith’s first conclusion,
we interpret our figures 1 and 2 as showing a correspondence
between the true time-lagged response to an air pollution
event and our timescale estimates and as distinguishing
short-term harvesting from other forms of time-lagged
exposure-response relations with an air pollution event (such
as averages of past exposures).

Is there evidence to support the existence of short-term
harvesting? To address this question, we need to test the
hypothesis that there exists an association between air pollu-
tion and mortality at the shortest timescales. Looking at table
1 of our manuscript (2), we have found that the pooled esti-
mates at timescales shorter than 3.5 days are equal to –0.07
percent (95 percent confidence interval: –0.40, 0.27) for total
mortality, 0.06 percent (95 percent confidence interval:
–0.39, 0.51) for cardiovascular and respiratory mortality,
and –0.26 (95 percent confidence interval: –0.75, 0.24) for
other-causes mortality, providing evidence contrary to the
hypothesis that the pollution-mortality association is largely
or entirely due to short-term harvesting.

A related question is: Are air pollution effects at medium
and long timescales (harvesting-resistant) smaller than the
effects of air pollution at shorter timescales (harvesting-
prone)? Figure 3 shows the 12 relative rates of mortality (for
four cities and the three specific mortality groups) at time-
scales less than 5 days ( ) versus estimates calculated at
timescales greater than 5 days ( ). The square is placed at
the weighted averages of the 12 coefficients , with
the weights being equal to the inverse of their statistical vari-
ances. The two segments represent the 95 percent confidence
intervals of the weighted averages. Note that almost all of the
coefficients are above the diagonal. The posterior probability
that  is larger than  is 0.01, and it remains small when
we average the relative rates using a random-effect model
with a substantial amount of heterogeneity. In addition, this
posterior probability is still very small when we choose as
cutoff points timescales smaller than 3.5 days or timescales
smaller than 10 days (equal to 0.006 and 0.12, respectively).
In summary, this data analysis suggests that “harvesting-
resistant” estimates are larger than “harvesting-prone” esti-
mates; this is inconsistent with a phenomenon of short-term
harvesting only. Note that these results are not suggesting
that air pollution affects only healthy people. Rather, our
results are consistent with all persons’ being affected by air
pollution, not only the very frail.

Could a different method of adjusting for weather qualita-
tively change our conclusions? As in any time-series study
of air pollution and health using one city or a few cities,
timescale effects can be sensitive to adjustment for
confounding factors. However, the sensitivity analyses
depicted in figure 4 (bottom) of our paper and Dr. Smith’s
figure 2 suggest that the basic findings obtained by our
timescale method do not change with the different models

for temperature. In any case, additional work on this topic
would be valuable.

Thus, our timescale approach is able to detect short-term
harvesting within the conceptual framework described by a
compartment model with high-risk and low-risk pools of indi-
viduals. Although this is a reasonable starting point and makes
the problem identifiable, the model must be a simplistic
approximation of reality. Additionally, the sensitivity of the
results to the degree of adjustment for confounding factors,
although investigated in many sensitivity analyses, remains an
issue. Because the information in time-series analyses comes
from the variability across time in exposure and outcome, air
pollution effects corresponding to slowly varying exposures
(that is, air pollution components at timescales longer than 30
days and average past exposure of at least 30 days) are very
unstable. Finally, the limited number of cities for which daily
data are available further increases uncertainty. In summary,
we certainly agree with Dr. Smith’s general message: Results
of any model of the relation between air pollution and
mortality require careful interpretation, with consideration of
the assumptions made and the sensitivity of the findings to
those assumptions.

ACKNOWLEDGMENTS

The authors thank Dr. Smith for his thoughtful comments
and for carrying out additional analyses that provided further
insights into their approach.

REFERENCES

1. Kunzli N, Medina S, Kaiser R, et al. Assessment of deaths
attributable to air pollution: should we use risk estimates based
on time series or on cohort studies? Am J Epidemiol 2001;153:
1050–5.

2. Dominici F, McDermott A, Zeger SL, et al. Airborne particu-
late matter and mortality: timescale effects in four US cities.
Am J Epidemiol 2003;157:1055–65.

3. Smith RL. Invited commentary: timescale-dependent mortality
effects of air pollution. Am J Epidemiol 2003;157:1066–70.

4. Zeger SL, Dominici F, Samet JM. Harvesting-resistant estimates
of pollution effects on mortality. Epidemiology 1999;89:171–5.

5. Smith R, Davis J, Sacks J, et al. Regression models for air pol-
lution and daily mortality: analysis of data from Birmingham,
Alabama. Environmetrics 2000;100:719–45.

6. Schwartz J. Is there harvesting in the association of airborne
particles with daily deaths and hospital admission?
Epidemiology 2001;12:55–61.

7. Almon S. The distributed lag between capital appropriations
and expenditures. Econometrica 1965;33:178–96.

8. Zanobetti A, Wand M, Schwartz J, et al. Generalized additive
distributed lag models. Biostatistics 2000;1:279–92.

9. Zanobetti A, Schwartz J, Samoli E, et al. The temporal pattern
of mortality responses to air pollution: a multicity assessment
of mortality displacement. Epidemiology 2002;13:87–93.

10. Fung K, Krewski D, Burnett R, et al. Testing the harvesting
hypothesis by time domain analysis. (Technical report).
Ottawa, Ontario, Canada: Institute of Population Health, Uni-
versity of Ottawa, 2003.

β̂<5
c

β̂>5
c

β̂<5
* β̂>5

*
( , )

β̂<5
* β̂>5

*


