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Summary

Modeling of developmental toxicity studies often requires simple parametric analyses of the dose-
response relationship between exposure and probability of a birth defect, but poses challenges
because of non-standard distributions of birth defects for a fixed level of exposure. This paper is
motivated by two such experiments, in which the distribution of the outcome variable is challeng-
ing to both the standard logistic model with Binomial response, and its parametric multi-stage
elaborations.

We approach our analysis using a Bayesian semi-parametric model that we tailored specifically
to developmental toxicology studies. |t combines parametric dose-response relationships with a
flexible non-parametric specification of the distribution of the response, obtained via a Product
of Dirichlet Process Mixtures approach (PDPM). Our formulation achieves three goals: 1) the
distribution of the response is modeled in a general way; 2) the degree to which the distribution
of the response adapts non-parametrically to the observations is driven by the data; 3) the
marginal posterior distribution of the parameters of interest is available in closed form. The
logistic regression model, as well as many of its extensions, such as the beta-binomial model and
finite mixture models, are special cases.

In the context of the two motivating examples and a simulated example, we provide model
comparisons; illustrate over-dispersion diagnostics that can assist model specification; show how
to derive the posterior distributions of the effective dose parameters, and the predictive distribution

of the response; and discuss sensitivity of the results to the choice of prior distribution.

Keywords: Bayesian Semiparametric Model, Beta-Binomial Distribution, Product of Dirich-
let Process Mixtures (PDPM), Dirichlet Distribution, Overdispersion, Developmental toxicity

Teratology.



1 Introduction

Developmental toxicity studies investigate the relationship between the exposure to a potentially
toxic compound, and the frequency of birth defects. In the most common designs, pregnant
laboratory animals (or dams) are exposed to varying doses of the compound. After they have
given birth, the number of birth defects of interest among the offspring (or pups) is recorded.
Inference focuses on the presence and magnitude of a dose effect, and on the so-called effective
doses —defined either as the dose level at which the probability of malformation reaches a
certain value, or that at which it is increased by a certain factor compared to the background
rate. A simple and common approach to the analysis of data arising in developmental toxicology
experiments is the logistic regression model with binomial response, which considers all dams to
be identical, and all pups exposed to the same dose to be independent.

It is well documented that actual data frequently display evidence of departure from the
logistic-binomial model (Catalano and Ryan, 1994). One source of difficulties is the heterogeneity
of the reaction of different dams to the compound studied. For example, dams may vary in a)
whether or not they are susceptible to the exposure; b) the extent to which they are susceptible if
they are; or both. Other litter-specific events, such as those that may be induced by reabsorbings
of implanted pups, can sum to these factors, inducing additional correlations among pups from the
same litter. These correlations can be both positive and negative (e.g. when there is competition
for limited nutrients). When these factors combine, the distribution of the birth defect counts at
each dose will be far from a binomial, and challenging to any parametric approach. Inaccurate
parametric models can seriously affect estimates of interest (Liang and McCullagh, 1993).

This paper is motivated by the analysis of two challenging developmental toxicity studies:
one regarding the effects of diethylhexalphthalate, or DEHP, (Tyl et al., 1983) and the other
regarding the effects of 2,4,5-Trichlorophenoxiacetic, or 2,4,5-T, (Holson et al., 1991). Datasets

are displayed in Figure 1, and discussed in more detail in Section 3. Both studies present hard-



to-model response distributions, displaying combinations of zero inflation, n-inflation (that is an
excessive number of dams with birth defects in n out of n pups,) overdispersion, and kurtosis,
possibly as the result of multiple sources of heterogeneity. In addition, the extent of departures
from the binomial model can vary significantly with the dose.

We approach our analysis using a Bayesian semi-parametric model. The small number of dose
levels used in these experiments, and the interest in inverse problems such as finding effective
doses, naturally lead to parsimonious parametric dose-response relationships between the exposure
and the probability of a defect. On the other hand, the complexity of patterns in the distribution
of birth defect counts strongly argues in favor of a flexible non-parametric specification of the
distribution of the response. We achieve both goals by an approach based on Products of Dirichlet
Process Mixtures (Cifarelli and Regazzini, 1978; Carota and Parmigiani, 1997).

Our approach consists of a “parametric backbone”, comprising a parametric dose-response
relationship and a mean distribution function for the birth defect counts; and a flexible specifi-
cation for the distribution of the response, allowing departures from the backbone towards the
empirical distribution. The mean distribution provides structure if the data are sparse, but may
be progressively overruled as evidence accrues. An unknown dispersion parameter controls the
extent to which the model is adapting non-parametrically to the data. In discrete models, the
observations generally provide information about this dispersion parameter, so that the degree
to which the model departs from the backbone to fit features of the empirical data is itself data
driven. This flexibility can be important in capturing the results of the combined action of several
biological mechanisms on the response distribution, as described earlier.

While nonparametric modeling can effectively accommodate for any pattern in the distribution
of the response, including overdispersion as well as underdispersion, a natural comparison arises
with models addressing heterogeneity and the resulting overdispersion. A classic approach is the

beta-binomial model (Williams, 1975; Williams, 1982), assuming that each dam has a specific



probability of birth defects, and describing the variation in these probabilities by a beta distri-
bution. This model is simple to fit and interpretable, but the resulting marginal distribution of
birth defects may not be adequately flexible. The beta-binomial model exemplifies a general ap-
proach to correlated teratological data, in which each dam is assigned a dam-specific parameter.
Classical implementations include random—effects and mixed—effects GLM’s (Cox, 1983; Prentice,
1986; Lefkopoulou et al., 1989; Rosner, 1989), latent variable models, and finite mixture models
for zero inflation (Lambert, 1992). Related Bayesian approaches are based on hierarchical mod-
els, in which the distribution of the dam-specific parameters may in turn be parametric (Wong
and Mason, 1985; Zeger and Karim, 1991; Albert and Chib, 1993) or based on more flexible
specifications (Miiller and Rosner, 1997; Mukhopadhyay and Gelfand, 1997).

In these approaches, it can be challenging to model distributions of random effects, mixture
components, or other latent variables, while accurately reflecing the biological variation. In
practice, many of the parametric assumptions made in both Bayesian and standard analysis are
dictated by mathematical convenience. Exceptions (Miiller and Rosner, 1997; Mukhopadhyay
and Gelfand, 1997) tend to require a substantial computational burden. Quasi-likelihood and
generalized estimating equations (GEE) have provided simpler alternatives for accounting for
correlation in binary data, without explicitly modeling higher stage distributions of dam-specific
effects (Williams, 1982; Liang and Zeger, 1986; Lipsitz et al., 1991; Catalano and Ryan, 1992;
Bowman and George, 1995; George and Wu, 1997). However, GEE procedures often rely on
asymptotic approximations, while teratologic experiments involve relatively small samples.

The goal of the methodology described here is to achieve simplicity and flexibility comparable
to those of GEE approaches, while maintaining all the advantages of a full probabilistic model
specification, with associated exact Bayesian analysis. Our approach encompasses the marginal
distributions of birth defect counts obtained under many common random effect models— and

does not require specifying a model for the sources of heterogeneity. A result discussed in



Section 2.2 provides a closed form for the marginal likelihood of the parameters of interest,
which simplifies inference and computing substantially. It is also straightforward to obtain full
probabilistic inference on the unknown distribution of the response. This includes all the quantiles,
which via the parametric backbone, vary with the dose. Therefore this modeling technique can also

be used for exact small-sample inference in quantile regression with correlated binary outcomes.

2 Modeling

2.1 Semi—parametric dose—response model

We will consider an experiment with D groups: one control group and D — 1 groups receiving an
active dose of the compound being studies. M¢ pregnant dams are exposed to dose d. Dam j at
dose d has a litter of size N]‘-i live pups. A common endpoint for the evaluation of developmental
toxicity effects is the number yjl of pups with a certain birth defects of interest. We will denote
by f{(y), with 0 < y < N, the probability distribution functions (pdf) of y¢. If all dams were
identical in their response to the compound, and all pups at dose d were independent, then we
could represent all the variability in the data by choosing f]‘-i to be a binomial pdf with parameter,
say 0%, independent of j, and sample size N]‘-i. In general, this assumption is too restrictive, and
greater flexibility in the distribution of the response is desirable.

Here, we wish to entertain all possible pdf's for y;-i, by treating the whole f]d as an unknown
parameter. The set of all possible values for f{ is the Nf-dimensional simplex. A natural and
flexible distribution on the simplex is the Dirichlet distribution, taking the form p(f|A, fy)
H;,V:() f(y)Af®=1 We omitted the dependence on d and j for notational simplicity. We will use
the notation D(A, fy) to denote the Dirichlet distribution. In this parameterization, f, is the
mean of the random pdf f, while A can be interpreted as a precision parameter, controlling the
amount of variation of f around the mean f;.

The Dirichlet distribution is the natural conjugate distribution for multinomial sampling



(Bernardo and Smith, 1994). More specifically, after observing a sample with counts ko, ... , ky
in the N + 1 categories y = 0,...,y = N, the posterior distribution of f conditional on the
sample and on hyperparameters f, and A is still a Dirichlet with posterior precision A+Z;V:0 ky,

and posterior mean w fy(y) + (1 — w)k,, where w = A (A + Z;V:O ky> ' denotes the prediction
weight. Because the support of the distribution of yjl depends on the litter size N¢, we need to
consider each combination of dose and litter size separately, and we specify separate, although
related, Dirichlet distribution for each combination. To provide the necessary structure to model
the dose-response relationship, we assume that the mean of the random vector f;i is element-
wise equal to a Binomial pdf fo(- | 6%, N). In our application, the #%'s will follow a standard
logistic link, namely logit(6¢) = 3, + B1d. Interest usually focuses on the 3's, which retain their
usual interpretations: [, is the log—odds of malformation at baseline, and (3, is the change in the
log—odds of malformation associated with a unit change in the dose.

The dispersion of f{ around its mean fy(- | 8%, N{) is controlled by a dose-specific precision
parameters A¢. Large values of A? favor the parametric backbone, while small values favor
departures. In our application we either assume a common A, for all doses, or assume that each

A% is different. If desired, it is possible to model the A¢ as a function of the dose, as illustrated

in Carota and Parmigiani (1997) . In summary the model specification for Section 3 is:

gt f4 o~ f j=1,....M® d=1,....D
F;l | A4, 04 ~ D{Ad,fo(ed,N]‘-j)} j=1,...,M? d=1,...,D
logit(69) = Go+pd d=1,...,D
Because a change in the form of the mean pdf often alters the interpretation of the linear
model parameters, and because enough flexibility is gained via the Dirichlet elaboration, for
interpretability we favor the choice of the binomial as the parametric backbone.
Specification (2.1) is an instance of a Product of Dirichlet Process Mixtures (PDPM) (Cifarelli

and Regazzini, 1978; Carota and Parmigiani, 1997). The random cdf F is said to have a Dirichlet



Process distribution (Ferguson, 1973) with parameter «, if for every p < H + 1, and every
partition (0, h4],...,(hy—1, H] of {0,...,H} in p subsets: F(hy),...,F(H) — F(hy_1) ~
D( 21:0 ap, .. - ,Zf:hp_l ah), where a = (a,...,aq) is a fixed vector of non-negative
weights and D is the Dirichlet distribution. A DPM is a Dirichlet process in which some features
of the vector o are unknown, and are assigned a further distribution, as we do here. Approaches
modeling the mean of a Dirichlet process mixture as a function of predictors have precedents in

the pioneering work of Cifarelli, Muliere and Scarsini (1981) for normal linear models.

2.2 Marginal Inference

Inference can be carried out by drawing a sample from the posterior distribution p(3, A,f |
yh oo yP), where y4 = (v, ... y%.), A= (A, ..., A%), and f denotes the ensemble of the
]d, forj=1,...,M% d=1,...,D. A key simplifying feature of the formulation considered
here is that the joint posterior distribution of 3, A and f can be factored into the marginal
posterior distribution of (3, A) and the posterior distribution of f given (3, A), both of which
are available analytically. Thus, we can simulate a draw from the joint posterior by 1) drawing (3
and A from the marginal posterior distribution; and 2) drawing the pdf functions f]?i from their

conditional posterior distribution given (3, A). Step 2 is simple: conditionally on (3, A) each

f]‘-i is, as seen earlier, a Dirichlet distribution:
Md d fd

f]d|5a 7y]aNdND Ad—’_Zf]daT (daN]d)—’_T

In (1), f]‘?l is the empirical frequency of 3¢ among all the dams having litter-size N at dose d.

oo @

Generating de from (1) is straightforward. Step 1 is based on adapting to this context
results of Antoniak (1974) and Carota and Parmigiani (1997), who show how to marginalize the
distribution of data generated by a discrete PDPM with respect to the unknown pdf, for a fixed
o. Let N, I =1,...L% be the unique litter sizes at the dose d, let yi' = (gp,...,Jl.) be

the vector of the 7¢ unique observations corresponding to the litter size N{, and let m{ be the
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number of dams having litter size N. We assume that the generic element 7t occurs nf times.

The marginal posterior distribution of 3 and A is then proportional to:

D L¢ rd
(8, 4[] H{A?m;l)}_l [T A%Po(a: | 6%, NY{A%po (G | 64, NE) + 1} g1 (2)
d=11=1 i=1

where 2,y = z(z+1) ... (z+n—1), and po (gt | 0%, N{) is the binomial probability mass function.
The derivation of (2) is based on replicating the argument given in Lemma 1 of Antoniak (1974)
for each dose and litter size, and using conditional independence (given a) of the pdf of the
response in different doses. 7(3, A) denotes the prior distribution on 3 and A and it is discussed
in Section 2.3.

Drawing a sample from the joint posterior distribution (2) is typically not challenging for
this model. A practical strategy is to use a Metropolis-Hastings algorithm (Tierney, 1994) with
random walk proposal. In our application, we use a normal proposal with variance obtained from
the output of standard generalized linear model analysis as a rough approximations to the location
and dispersion of 3. This initial approximation is used to obtain a preliminary sample, based on

which we further tune the proposal distribution.

2.3 Prior distributions

Bayesian analysis of (2.1) requires the specification of a prior distributions. One advantage of our
semiparametric formulation is that we only need to elicit a prior distribution on a small number
of parameters B and A. Dispersed but proper priors on 3 will work in many applications, and
are especially attractive in regulatory settings. We adopt them here in Section 3 by assuming
B ~ N»((0,0), 31).

The choice of prior distribution on A is similar to the choice of a smoothness constant in
other nonparametric settings. The more mass is assigned to large values of the A%'s, the more
the model will be close to its parametric backbone. In general, even though the data can provide

relevant information about the vector A, it is important to specify a proper prior distribution. In



particular, it is possible for the likelihood function not to be integrable, so that a proper prior is
required to obtain a proper posterior (Carota and Parmigiani, 1997).

In Section 3 we assign prior distributions on A by considering the implied distribution on
the prediction weights A(/A + N) (Leonard and Novick, 1986; Carota and Parmigiani, 1997)
which control how close the posterior mean of the unknown pdf is to parametric backbone f;.
Here N indicates the number of dams in a litter—size/dose combination. Our prior states that
all possible weights are equally likely a priori for a predictive distribution with a “typical” N. In
our application we specify the typical value to be N = 10, and carry out a sensitivity analysis of
results to the choice of N. When we consider dose-dependent A% we assign them independent

priors such that each A?/(N + A9) is uniform.

3 Data Analysis

In this section, we discuss the analysis of a simulated data set and two developmental toxicity stud-
ies in rodents. The simulated data are from a Binomial(6¢, 15) with logit(0?) = —3+.04d, M? =
20, and dose levels 0,25, 50,100, and 150. The two studies consider respectively the effects of
diethylhexalphthalate or DEHP (Tyl et al., 1983) and the effects of 2,4,5—Trichlorophenoxiacetic,
or 2,4,5-T, (Holson et al., 1991; Bowman and George, 1995). In the DEHP data set the outcome
is the number of malformations among live pups, in the 2,4,5-T data set the outcome is number

of resorbed embryos or dead fetuses plus the number of fetuses with cleft palate malformation.

3.1 Exploratory Analyses

The DEHP and 2,4,5-T datasets are displayed in the top panels of Figure 1. Dose levels are
indicated at the bottom, while the numbers of dams exposed to each dose level are displayed at
the top. Each circle corresponds to a dam. The circles’ areas are proportional to the litter size.

The circles’ coordinates are the dose level and the observed relative frequency of malformations



for the corresponding dam. Both experiments present evidence of overdispersion, at most doses.
There is also evidence of zero inflation and n—inflation. Sometimes these are both occurring at
the same dose, as in the intermediate doses of the 2,4,5-T data.

We performed over-dispersion diagnostics using the convexity-plot (C-plot) (Lambert and
Roeder, 1995). The C-plot for logistic regression is a graph of C(6) versus 6, where: C(0) =
(32 e 5o (/00) {1 - 07— 09} and = {1~ exp(o + Bud)

The shape of the C-plot is used to detect over-dispersion: the more convex C(#) is in the range

-1

(8°,6P), the greater the evidence for over-dispersion. The second row of Figure 1 shows the
C-plots for the two data sets, for s in the range (OAO, éD). The C-plot for both data are convex,

suggesting that the logistic regression model with Binomial error may not be appropriate.

3.2 Results and sensitivity analysis

We analyzed each data set using the Semiparametric Bayesian (SB), Beta-Binomial (BB) and Bi-
nomial (B) models. All regression coefficients are assigned the same vague prior 3 ~ N»((0,0), 31).
The BB model is parameterized by setting the parameters of the second—stage beta distribution
toad = 04772 — 1) and af = (1 — 0% (772 — 1). The logit of 72 is assigned a flat prior.
The SB model is parameterized with a common precision parameter A for the DEHP analysis,
and dose—dependent precision parameters A¢ for the 2,4,5-T analysis. For each of the analyses
we generated a MCMC sequence of 10,000 iterations. Standard convergence diagnostics do not
reveal convergence problems.

Table 1 compares posterior medians and quartiles of the posterior distribution of the probability
of malformations at dose d, god, in each of the nine model / data combinations. In the B model,
¢? = 0% in the BB model ¢? ~ Beta{#¢(t72 — 1),(1 — 0%) (772 — 1)}; in the SB model,
¢ ~ Beta{0?A¢, (1 — %) A?}. Samples of §, 72 and A¢ are available from the MCMC runs.

Obtaining samples of ¢? in the BB and SB models requires an additional draw from the beta



distributions above, which is straightforward.

While means of the sampled ¢ estimate the posterior means of the malformation probability
in all three models, their variances are not directly comparable. On the other hand, the entire
distributions of probabilities of malformations are directly comparable across model. As expected,
for the simulated data set, results are similar across the three models. For the other two data sets,
differences are more pronounced at the low and high doses, possibly as the result of the presence
of zero—inflation and or n—inflation in the data. The IQR’s obtained with the SB approach are
the widest and they often encompass the union of those obtained using the B and BB model,
highlighting the model-robustness of the approach.

A parameter of interest in toxicology studies is the dose level at which the probability of
malformation is k& times larger than it is at background, or ED(k). Formally, §7P®*) = Eg°,
so that ED(k) = —{log(k~'(1 + exp(—0)) — 1) + Bo}/B1 for k > 1 + exp(—f). Using the
samples available from the MCMC runs, it is straightforward to evaluate the distribution of the
ED(k). The top panels of Figure 2 show boxplots of samples from these posterior distributions
for plausible ranges of k.

Posterior inference on the precision parameters A% quantifies the extent to which the data
favor the parametric backbone model. The bottom left panel of Figure 2 shows the posterior
(histogram) and prior (solid line) distributions of the parameter log(A) for the DEHP analysis.
The prior is such that A/(A + 10) is uniform, so log(A) is a logistic with location log(/N). This
is a rather dispersed prior, as it encompasses values such as A = 1, where the backbone has very
little weight, and A = exp(5) where the model is close to the backbone. The posterior is more
concentrated than the prior on both tails, indicating that the data provide valuable information
about A. The solid vertical line is placed at the posterior mean.

The bottom right panel of Figure 2 shows boxplots of posterior samples of the precision

parameters log(A?) corresponding to the six doses for the 2,4,5-T data set. The six priors are
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independent and identical to the prior in the bottom left panel. Here the posterior medians of
the log(A?) decrease with the dose, indicating that the data favor the non-parametric model as
the dose increases. The distributions of log(A°) and log(A%) are the most extreme. The reason
is that the data (see Figure 1) are highly compatible with the binomial model at baseline, while
they display an extreme deviation at dose 90. The probability of malformation at dose 90 under
the B model from Table 1 is .87, with a narrow IQR, clearly a poor fit of the data. Using the SB
model, the probability of malformation is .99, with IQR from .76 to 1, a much closer fit.

Using (1), we can draw samples of the cdf functions Fjd from the posterior distribution given
the sampled values of 3 and A. These can be use for prediction (future data would be draws
from such distributions) and for assessing goodness of fit. In Figure 3 we compare samples of
Fjd’s from SB, BB and B, for the two cells defined by doses 100 (DEHP) and 90 (2,4,5-T) and
litter-sizes 11 (DEHP) and 12 (2,4,5-T). The empirical frequencies of the malformation counts
are displayed at the top. For example in DEHP there were 3 dams with 6 out of 11 malformations,
1 with 5 out of 11, and so on.

Both empirical distributions display bimodality, resulting from dam heterogeneity that would
be difficult to capture using parametric random—effects models. The 2,4,5-T data show both
zero and n—inflation. The results highlight the flexibility of the SB model, which adapts to the
observations and fits the data better than the BB and B counterparts. The SB prediction are
a data—driven compromise between the parametric backbone and the empirical distribution, and
are both adaptable and smooth. In the 2,4,5-T the parametric models are forced to effectively
choose among the subpopulations of dams, and make a prediction that ignores the presence of
the subpopulation that appears to be less sensitive to the compound. The opposite error could
also happen in a different configuration. Figure 3 also stresses the strength of the SB approach in
making inferences about any of the quantiles of the distribution of the response given the dose.

Finally, we have assessed the sensitivity of our results to the choice of the prior distributions.

11



The parameters that are of interest from a regulatory standpoint can be assigned vague, or even
flat priors in this model. So our efforts concentrated on the specification of the prior on the
precision parameters A's. We have assumed a uniform distribution on the weight A/(A + N).
This still requires the choice of a “target” sample size IN. For our sensitivity analysis we selected
three additional alternative scenarios, with the goal of covering a very broad spectrum of values:
N =10 (baseline); N = 5; N = 20; N = 50. The results are summarized in Table 2. Our model
revealed little sensitivity of these parameters to the choice of NV, and even less for the parameters
B3, not shown. The most sensitive parameter is A°. At dose 0 the data are in agreement with

the binomial model, and support large values of A°.

4 Discussion

In this paper we introduced a Bayesian semiparametric approach to dose-response models for
teratological data. Our model is designed to address situations in which the scientific focus is on
a simple parametric dose response curve, and the distribution of the response needs to be modeled
flexibly. Our formulation achieves several goals: 1) the distribution of the response is modeled in
a general way; 2) the degree to which the distribution of the response adapts non-parametrically
to the observations is driven by the data; 3) the parameters of teratological interest maintain
their usual interpretation; 4) the marginal posterior distribution of the parameters of interest is
available in closed form; 5) the specification of the prior distribution is very low—dimensional,
interpretable, and amenable to “default” choices. The logistic regression model, as well as many
extensions are special cases of the model proposed here. Our model is not designed to address
estimation of the dam-to-dam variability in the response. Random—effects and hierarchical model
are more appropriate in that case.

Our model specification is simple to handle and to interpret. Inference about any of the quan-

tiles of the distribution of the response is easily available. While estimation requires an MCMC
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approach, the simulation involved is typically not challenging and can be programmed easily.
Extensions to more complex models for the birth defect probability for the precision parameter
can be implemented without adding substantial complexity to the analysis. For example, it is
possible to use the alternative parametric forms for fy. Similarly, alternative to the linear logit
specification are straghtforward.

Some practitioners may be dissatisfied with methodology that requires specification of a priori
distributions. In this context however, the parameters that are of interest from a regulatory stand-
point can be assigned vague, or even flat priors. The specification of the precision parameters A's
effectively replaces the specification of a probability distribution in standard parametric analyses.
It can be viewed as a probabilistic, non-binding, alternative to specifying a family of marginal
probability distributions. In this sense it requires less stringent subjective input than parametric
models, be they classical or Bayesian, fixed— or random—effect.

For our analysis we chose a Bayesian approach. However, the general modeling strategy of
Section 2 is also amenable to maximum likelihood inference based on the marginal likelihood in
expression (2). More generally, standard advantages of the Bayesian approach apply, including:
1) an accurate assessment of parameter uncertainty, that does not depend on asymptotic ap-
proximations, even in the presence of a semi-parametric specification; 2) practical computation
of the predictive distribution for birth defects at a given dose, including accurate assessment of
uncertainty about any feature of the predictive distribution; 3) ease of inference on nonlinear

transformations of the parameters, such as the ED.
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SIMULATED BINOMIAL

Bo = —3, B1 x

100 =4

990

9925

50

P ¥ ¥

100 150

SB
BB

0.047 (0.020,0.087)
0.046 (0.039,0.051)
0.047 (0.043,0.051)

0.13 (0.079,0.19)
0.12 (0.110,0.13)
0.12 (0.110,0.13)

0.28 (0.21,0.35)
0.27 (0.26,0.28)
0.27 (0.26,0.28)

0.71 (
0.74 (
0.74 (

0.64,0.78) | 0.95 (0.91,0.98)

0.73,0.76) | 0.96 (0.95,0.96)

0.72,0.75) | 0.95 (0.95,0.96)

DEHP

970

9925

9950

100 150
14 Y

SB
BB

0.0017 (0.00,0.017)
0.00026 (0.00,0.011)
0.019 (0.016,0.023)

0.022 (0.0039,0.07)
0.012 (0.00,0.065)
0.045 (0.04,0.05)

0.09 (0.037,0.17)
0.077 (0.022,0.18)

0.11 (0.09,0.12)

0.45 (0.34,0.57) | 0.86 (0.77,0.93)

0.47 (0.32,0.63) | 0.90 (0.78,0.97)

0.43 (0.41,0.45) | 0.82 (0.79,0.85)

2,4,5-T

o0

9930

9945

gQGO

9975 gDQO

SB
BB

0.042 (0.02,0.063)
0.003 (0.00,0.065)
0.031 (0.029,0.033)

0.16 (0.10, 0.24)
0.14 (0.026 0.40)
0.16 (0.150, 0.16)

0.32 (0.24, 0.40)
0.34 (0.12, 0.63)
0.31 (0.31, 0.32)

0.51 (0.36, 0.66)
0.58 (0.30, 0.83)

0.53 (0.52, 0.53)

0.72 (0.54, 0.86) | 0.99 (0.76,1.00)

0.80 (0.52, 0.95) | 0.94 (0.73,0.99)

0.73 (0.72, 0.74) | 0.87 (0.86,0.87)

Table 1:

Comparison of estimated malformation probabilities ¢ using the Semiparametric

Bayesian (SB), the Beta-binomial (BB), and the Binomial (B) models, for each data set. En-

tries are the median and, in parenthesis, the quartiles of the distribution of the probability of

malformation in a pup for a hypothetical new dam.




2,4,5-T

log(A°) | log(4®) | log(A®) | log(A%®) | log(A™) | log(A®)
N=5 | 3.71 (1.05) | 2.41 (0.60) | 2.71 (0.39) | 1.67 (0.31) | 1.28 (0.38) | -0.30 (0.72)
N=10 | 3.73 (1.04) | 2.47 (0.59) | 2.75 (0.38) | 1.67 (0.31) | 1.35 (0.41) | -0.31 (0.74)
N=20 | 3.87 (1.20) | 2.63 (0.65) | 2.84 (0.38) | 1.72 (0.30) | 1.31 (0.39) | -0.14 (0.92)
N=50 | 4.55 (1.39) | 2.63 (0.67) | 2.83 (0.43) | 1.70 (0.29) | 1.34 (0.39) | -0.12 (0.81)

Table 2: Sensitivity analysis for the 2,4,5-T data set. Entries are posterior means and standard

deviations (in parenthesis) of log(A®) under 4 alternative choices of the prior hyperparameter N.
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Figure 1: The DEHP (left) and 2,4,5-T (right) data sets, used in Section 3. The top panels
display the raw data. Each circle corresponds to a dam. The circles’ areas are proportional to
the litter sizes; the circles’ coordinates are the dose level and the observed relative frequency of
malformations. In addition, the numbers of dams exposed to each dose level is displayed at the
top. The bottom panels are the corresponding C-plots. Convexity suggests over-dispersion for

both data sets.
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Figure 2: Inference on the ED(k) (top) and precision parameters (bottom) for the DEHP and
2,4,5,-T data. Top panels are boxplots of samples from the posterior distributions of effective
doses ED(k) corresponding to a k—fold increase of the probability of malformations above the
background rate. The bottom left panel displays the posterior (histogram) and prior (solid line)
distributions of the precision parameter log(A) for the DEHP data set. The bottom right panel
shows boxplots of posterior samples of the precision parameters log(A?) corresponding to the six

doses for the 2,4,5-T data set.
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Figure 3: Samples of 20 cumulative distributions functions F]d obtained using the Semiparametric
Bayesian (SB), the Beta-binomial (BB), and the Binomial (B) models. For the DEHP data set we
choose a dose of 1004,/m? and a litter size of 11; for the 2,4,5-T we choose a dose of 90u,/m?
and a litter size of 12. Empirical frequencies corresponding to the selected dose/litter size are

displayed at the top of each picture.
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