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UNEQUALLY SPACED PANEL DATA
REGRESSIONS WITH AR(1)
DISTURBANCES
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Texas A&M University
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University of Melbourne

This paper deals with the estimation of unequally spaced panel data regression
models with AR1) remainder disturbanceA feasible generalized least squares
(GLS) procedure is proposed as a weighted least squares that can handle a wide
range of unequally spaced panel data pattdrhis procedure is simple to compute

and provides natural estimates of the serial correlation and variance components
parametersThe paper also provides a locally best invariant test for zero first-order
serial correlation against positive or negative serial correlation in case of unequally
spaced panel data

1. INTRODUCTION

Some panel data sets cannot be collected every period as a result of lack of re-
sources or cutin fundingnsteadthese panels are collected over unequally spaced
time intervals For examplea panel of households could be collected over un-
equally spaced years rather than annudltys is also likely when collecting data
on countriesstatesor firms where in certain yearthe data are not recordgate
hard to obtainor are simply missingOther common examples are panel data sets
using daily data from the stock markatcluding stock pricescommodity prices
futures etc These panel data sets are unequally spaced when the market closes on
weekends and holiday§he model considered in this paper allows for unequally
spaced time-series data for each counigividual, or firm. This is particularly
useful for housing resale data where the pattern of resales for each house occurs
at different time periods and the panelis unbalanced because we observe different
number of resales for each house

Panel data with missing observations have been studied by Wansbeek and
Kapteyn(1989 and Baltagi and Chan@994. However none of these studies
consider the problem of serial correlation with unequally spaced pdfsisa-
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tion of AR(1) disturbances in time-series regressions with missing observations
has been studied by Wansbeek and Kaptey@85, whereas testing for AR)
disturbances in this context has been considered by Shit893, Robinson
(1985, Dufour and Dagenai§l985, and Savin and Whit€1978. This paper
proposes a simpldeasible generalized least squat€d.S) estimation method

for unbalanced panels that allows for a variety of patterns of missing data and
serially correlated errors of the AR) type In addition this paper provides a
locally best invarianLBI ) test for zero first-order serial correlation against pos-
itive or negative serial correlatioiihis extends the work of KingL985, Dufour

and Dagenai$1985, and Shively(1993 to the context of an unequally spaced
panel In particular we consider a random error component regression model
with AR (1) disturbancessee Lillard and Willis 1978 BhargavaFranzini and
Narendranathari982 Baltagi and Lj 1991). However we allow for unequally
spaced patterns for each individual in the time series dimenSenrin and White
(1978 allowed for a gap o consecutive observations in time-series deere

we allow for a general type of unequally spaced panel data for each individual of
the type considered by Shive($993 in a time-series context

2. THE MODEL

Consider the following unbalanced panel data regression n{edelWansbeek
and Kapteyn1989:

Yie =XgB+uw i=L.. Ny t=1...T, 1)

whereg is aK X 1 vector of regression coefficients including the interceptgnd
is aK X 1 vector of nonstochastic regressarke disturbances follow a one-way
error component model, = u; + v with individual effectsu; ~ 11D (0,02) and
the remainder disturbanceg following a stationary AR1), i.e., vy = pvj —1 +

€ With |p| < 1 ande;; is 1ID (0,02). The u;'s are independent of the,’s, and
vio~ (0,02/(1— p?)). Eachindividual observes data attimgg forj =1,...,n;
withl=t; <..- <t , =Twithn > Kfori=12,...,N. For estimation of the
equally spaced panel data regression model witfl)Risturbances and no miss-
ing observationssee Baltagi and L{1991). Note that the typical covariance
element ofy;; for the observed periods; andt; . is given by covv; ;. . ’Vl,tu;) =
alplii~td/(1— p?)for €,j =1,...,n. In fact, by continuous substitution over
the AR(1) processone can show that

o t—t toi—t o —1
Vi, =P Wiyt €y TP 1T s E T 2

DefineS = Vi,tlj — plitimy, t,. = i, T PEiy e pliThiaml
€1, ,+1 fOr j = 2,...,n;, and letS,, = (1 — pz)l/zv,l . For equally

spaced datawith no mlssmg observationsy ;  is equwalent to the Prais—
Winsten transformation for the AR) model In faci; for v/ = (Vl,ti,l’---”’i ¢ )

2, n
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ands§ = (S,
S(p) = C(p)v.where
[(1-p?)¥2
_pt|,2_t|,1

Ci(p) = :

0

| o0

BADI H. BALTAGI AND PING X. WU

) this transformation can be written in matrix form as

00
10
0 0
0 0

—pti,n,flfti,nfz

0

1
—ptl,n,_ti,nlfl

0
1

®3)

However for the unequally spaced data the transformed disturbances are still
heteroskedastidn fact var(§, t ) = o2 whereas vdlS, t ) = 02(1 + p? +

c o+ p2littiiam Dy = g2(1 — p2ti '11))/(1—p2) forj—2 . Note
1 for aII j =

that for the no missing observatlons case Wwith —
L, var(S ¢

1,2,..

Ijl_

) = ¢2 for all j. In general the vector of disturbance§

can be easily made homoskedastic by premultipyingy a diagonal matrix

1

o

Di(p) =

Hence if we let C*(p) = Di(p)Ci(p), and definer; =

0
1-—p?
1 pz(tlz |1)
0

0

1/2
)" o

0

0

[

0

0

ZI.—p2
1 p |nI |nI 1)

>1/2

Ci*(p)vi then Vi* ~

(4)

(O,o-flni). Note that for equally spaced data with no missing observatites
diagonal matridD; ( p) reverts back to the identity matrix as expectEden; X n;
Di(p)Ci(p) is given by

matrix C*(p) =

C(p) = (1-p?)¥?

1

0

p2((‘_2*(‘,1) 1/2 1 1/2
\1—p2tein 1-p2tizto)

1

e

2t tin-1) \1/2
2(t,n—tin 1) 1-p

P

1/2
20t tin-0 ) |

(5)

Premultiply the panel data regression given in equaftnby diad C*( p)],
which is a block-diagonal matrix witg;*( p) in theith block This transforms the
disturbances as follows

u* = diag G(p)Ju = diag Ci"( p)] diag(cr, ) u + diag Ci*( p)]w,

(6)
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where ¢, is a vector of ones of dimension;, u’" = (ui,...,uy), u' =
(m1y...r mn), @nde’ = (v,...,v{). Note thaty/ was defined following2) and
u; is similarly defined It can be easily verified that

1— p(ti,zfti,l) 1— p(t\,nfﬁ,n‘—l) '
gi = [Ci*(p)]l*n, = (1_ P2)1/2 <17 (1_ pz([l,Zill.l))l/z’..., (1 _ pz(tl,nifll.nrl) )l/2>' (7)
Therefore u* = diag(g)u + diagC¥(p)lv, and Q* = E(u*u*) =

ozdiag(g gf) + oZdiag(l,), because didd(p)]E(vr’)diag Ci(p)]" =
afdiag(lni). This can be rewritten as

0" = oz diag(g/ g)diag(Py) + o2 diag(Py, + Qg),

whereP, =gi(9/9) '/, Qg =In, — Py, 9/ = 2L 07 = (1—p?) + (1—p?) X
o1 = ptiThi-0)2/(1 — p2ti~hu-2)) and g ; is thejth element ofg =
[Ci*(p)]en, given in(7) for j = 1,2,...,n;. This replaces,, by (Qq + P,) (see
Wansheek and Kapteyi982. Collecting terms with the same matriceme
obtains

0* = diag(wf)diag(Py,) + o2 diag(Qy), (8)
wherew? = ¢/ g o2 + o2. Note thatP, andQ, are idempotentre orthogonal to
each otherand sum to the identity matriXherefore

o Y2 = g_diag(1/w;)diag(R, ) + diag(Q,) = diag(l,) — diag(6; Py), (9)

whered, = 1 — (o./w;). For equally spaced panel data with no missing observa-
tions and no serial correlatiphe., p = 0, this reduces to the familiar Fuller and
Battese(1974 transformationPremultiplyingy* = diag[ Ci*( p)]y by o.Q*~1/2

one gety** = ¢.0* Y2y* The typical elements of** are given by

n; n
Yit, = Yy, — 00 < > gi,syst.,s>/( > gi?s>~ (10)
s=1 s=1

Quadratic unbiased estimators of the variance components arise naturally from
(8) (for the balanced panel data casee Baltagi and Li1991). In fact,
diag(Py)u* ~ (0,diag(w{*Py,)) and diadQ, ) u* ~ (0,02 diag(Qg)). Therefore
quadratic unbiased estimators@f = 3 ; w? ando2 are given by

N
572 = u* diag(P,)u* and &2=u* diag(Qy)u*/ > (n — 1), (11)
i=1

where t(P,) =1 and t(Qy) = n; — 1. Using =1 w2 = S, g/ g o2 + No2, an
estimator foroZ can be obtained as follows

N
57 = (u* diag(Py)u* — N&f)/;l 9g- (12)
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Using a consistent estimate @fone can estimate this model by feasible GLS
using the following steps

Step 1 Perform the diafiCi*( p)] transformation given ii§5) on equatior(1) to get rid
of serial correlation and ensure homoskedastigitys yieldsy;" =[C*( p)]y;, where
Yi = (yit,vlw“vyit,_n‘)-

Step 2 Compute the residuals’ obtained from the ordinary least squafed.S) re-
gression of/* onX* in step 1 Using these&l*’s, compute estimates of? ando 2 from
(11) and(12). Deduced, = 1 — (6. /@;), whered? = g/ g 62 + G2.

Step 3 Obtainy** as described i110) using they*'s in step 1 and, from step 2
Perform OLS ofy** on X** to obtain the feasible GLS estimate @f In the next
sectionwe consider the problem of testing for zero first-order serial correlation and
in the process provide a natural estimatorgor

3. LOCALLY BEST INVARIANT (LBI) TEST

In this sectionwe derive a locally best invariafLBl) test forHy; p = 0 versus
HX; p > 0o0rHg; p <0, for the unequally spaced panel data regression model
described in Section.2Ve assume normality of the disturbances and rewtite

in matrix form as

y = XB + diag(en ) + v, (13)

wheret,,, u, and» have been defined followingg). Also X, (p) = E(vv') =
c2diag(V)) = 029, (p), wherea?V, has a typical element given precedi(®y.
Consider the orthogonal matri®, of dimensionn; and letO,, = (¢n,/VT, B)),
whereB; is ann; X (n; — 1) matrix that by definition satisfies the following prop-
erties B/v, =0, B/B; =1, _4, andB; B/ = I, — J,, whereJ, = J, /n; andJ,, is a
matrix of ones of dimension,. Premultiplying the preceding model by didgj)
yields diad B/)y = diag(B/) X8 + diag(B/) v. Note thatu is swept away because
Bty = 0. If we let§ = diag(B/)y, X = diag(B/)X, and# = diag(B!) v, then this
transformed model can be rewritten as

§=XB+ 7, (14)
where3;(p) = E(#9') = g2diag(B/V; B;) = ¢2Q,(p). UnderHoy; p = 0, we
haveV; =I,,, and>;( p) reduces ter? diag(l,,-1). This means that undet,, 7 ~
N(O,O'f'zni—N)-

This testing problem is invariant to transformations of the fgrm yoy + Xy,
wherey,is a positive scalar angis K X 1. This means that if we change the scale
of yand add a known linear combination of the regressors to the resgaled
does not change the truth of eithég or H,. This is the transformation used by
Durbin and Watso1(1971) to establish optimal properties of the Durbin—Watson
test(see Dufour and Kingl991). Letm= SN.(n—1)—K, Pg= ls(n-v — Px,
wherePy = X(X'X) X', andz = Pxy be the OLS residuals fromon X. Let
R be them X 3(n; — 1) matrix such thaRR = I, andR'R = Px. Note that the
m X 1 vectorRzis a linear unbiased residual vector with a scalar covariance
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matrix (see Theil 1971 Ch. 5) with zero mean and variance-covariance matrix
21, under Hy. As noted by King and Hillier(19859, the vectors = Rz/
(z’R'R2)Y? is a maximal invariant under the preceding group of transformations
for our testing problemAlso, the LBI test which is also known as the locally
most powerful invariant tests of the formd = z2’Ayz/z'z < c,, whereAy =
{095 (p)/9p}l,—0 = —(99;(p)/3p)| ,—0 andc, is thea-level critical value ofd.
This test has the steepest sloping power curddatp = 0 within the class of
invariant tests of the same significance levetan also be viewed as the test that
has optimal power within the neighborhoodHy. King and Hillier (1985 also
demonstrated the equivalence of this test to a one-sided version of the Lagrange
multiplier test Note that the denominator of the test statistis easy to compute
Infact 2'z=§'Pgy =§'y — y'Pgy = y'Qy — y'QX(X'QX)*X'Qy, whereQ =
diag(l,, — Jy). Thisis the within residuals sum of squares obtained from the fixed
effects modeli.e., assuming the.;'s are fixed parameters to be estimatikadan
be obtained from the OLS residuals sum of squargd.®for in caseN is large
from the regression dfy; 4, ~ i )on(X; t, —Xi. W fork=2,...,K.Inthis case
EJ 1Yig, /N andX; k|s defined 5|m|IarIy
For the numerator aof, we note tha®V; /dp|,—o = Vi°, where the typical ele-

ments ofV;° are
voio < [F b=t ifj=¢ forj,¢= 15

PG0 =10 ity —t,>1 O M= fori=l..n, (15
so that z’Agz = —z'diag(B/V°B;)z. Let z = diag(B))z then z’Ayz =
7' diag(V,%) z. It can be easily shown that OLS ¢1¥) yieldsB = (X’QX) 1X'Qy,
the within estimator oB, andz =y — X8 = diag(B/)(y — XB). This means that
z = diag(B;B))(y — XB) = Qy — QXB, which is exactly the within residuals
described previously using the deviation from individual means regreSdias
also proves that'z = 2'2. Thereforethe LBI test statistic can be written as

d*=d+2=2diag(2l, — V%) 2/z'z, (16)

and our test statistic can be expressed as the sum of four:terms

:EE ,Jll( IJ 1_1)] 2122””’
=1j=1 i=1j
k=3 2 2 (1= 1t )1~ t; = D] 21212” ,
=1 j=1 i=1j
dB_Ezm,l ZZZ and d4_22|t,rI EZZM i’
i=1j=1 i=1j=1

wherel (t; ; — t; j—; = 1) is the indicator function that takes the value 1 when the
proposition in parentheses is true and zero elsewlethe time-series context
d* reduces to the LBI test suggested by Dufour and Dagéh8&5. Some com-
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ments are in orde(i) When there are no missing observatiares, t; , —t; , 1=
tin-1—tin2=--=1t,—t1=1thend, =0 and our test statistic reduces to
d; + d; + d,. Note that in this casel; reduces to the Durbin—Watson test statistic
proposed by Bhargava et. 411982 p. 535 for the fixed effect AR1) model
Bhargava et alclaimed thatd, is a locally most powerful invariant test in the
neighborhood ofp = 0. They argued that exact critical values fiy are both
impractical and unnecessary because they involve the computation of nonzero
eigenvalues of a largd T X NT matrix. Insteadthe 5% upper and lower bounds
for d, were tabulated for various values Nf T, andK. Note that the Bhargava
et al test statistic ignored; andd, and is therefore approximately locally best
invariant This is the same criticism for the Durbin—Watson statistic in the time-
series context pointed out by Ki(d981). Whereas terms such dgandd, are
negligible whenT is very large they are less likely to be so in typical panels
whereT is usually small(ii) In practice one can insert zeros in betwean
andz i if ti ;-1 —t ;> 1 Thenone gets a new residuals series that may look
|lke&—(2.t,1,002m 30,00 Ziy s 2y, )|ft,1—J,t|2— ,andt , =T
(see Dufour and Dagena|35985 p 375; Shlvely 1993 p. 248) The terme is

aT X 1 vector of within residuals for thigh individual whose element is zero if
the data for that period are not availabMow it is easy to compute the test
statistic in the usual wayd, = S, 30 ,(6, — 6, ) Y21 31 6% This
also suggests a natural estimator gfi.e, p = (SL1 3, €8, 1/M)/
(3L, 31 €?/n), wherem, is the number of consecutive pairs of nonzeys.

(iii) Note that our test statistid* in (16) can be rewritten asl* = 2 —

7' diag(V,%)z/2'2z = 2 — 7' diag(B! V;°B;)z/z'z wherez = Pg§ = Pgi from (14)
with # ~ N(0, 5’2 Is(n,—1)) underHo; p = 0. Substituting this in the test statistige
getd* = 2 — (#'PgAPgi7/v'Pgi), whereA = diag(B; Vi°B;). This statistic is in
the form of a ratio of quadratic forms of normal variatgs. For a givenA,
bounds for critical values can be constructed just like the Bhargava et al
Durbin—Watson test statisticslowever different patterns of missing observa-
tions imply a differenty/;° matrix and therefore a differeAtmatrix.? Areasonable
and practical way to approximate these critical values is to standardize this test
statistic Using the results in Evans and Kiri$985, we computeE(d*) = 2 —
tr(PgA)/mand vafd*) = 2[mtr(PgA)? — {tr(PgA)}2]/m?(m + 2), wherem =
SN.(n — 1) — K, and then use the test statistic

= [d* — E(d*)]/y var(d*). (17)

For testingHp; p = 0 versuH,; p > 0 (or p < 0), one compared* to the critical
value from the lowefuppe tail of anN(0,1) distribution AlthoughB; appears
in the preceding standardized test statjstics matrix is not needed for the actual
computationslin fact,

tr(PgA) = tr[ P diag(B/)diag(V;°)diag(B;)]
=tr{[Q — QX(X'QX) *X'Q]diag(\Vi%)}.
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Aweakness of the preceding LBI test is that for unequally spaced observations
that are two or more periods apgitie LBI test statistic if(16) degenerates to 2
becauséV)'/dp evaluated at the maximum likelihood estimatbi_E ) underH,
is equal to zeroEven in situations that are not as extreme as thisbig portion
of the sample has observations that are two or more periods épamtthe LBI
test will still be ineffective because it ignores these observations in the compu-
tations Clearly this difficulty can be removed if we do not evaluaié/dp at the
null hypothesis in the test constructigktest that is particularly suitable for this
situation is the POl test suggested by Kiii®85. In fact, King’s point optimal
invariant test for the ARL) case has been generalized to the missing data case in
time-series regressions by Shivélyp93. This POl test can be easily generalized
for the unequally spaced panel data model and is available upon request from the
authorsAlso, our proposed estimator pfbreaks down if there are no consecu-
tive observationdn this caseone may want to use maximum likelihood methods
that do not throw away nonconsecutive observatidgos MLE in the serially
correlated time-series model with missing observatiaee Wansbeek and
Kapteyn 1985.

4. EMPIRICAL ILLUSTRATION

Table 1 applies the LBI test statistic given 8 in (16) and the Bhargava et.al
modified Durbin—Watson test statistic given thyfollowing (16) to the Grunfeld
data on investmenT his is the same data set used for time-series illustration by
Wansbeek and Kapteyri985. It consists of 10 large 1$. manufacturing firms
observed from 1935 to 1954&eal gross investment of firmin yeart (1) is
regressed on the real value of the fi¢F ) and the real value of the capital stock
(Cip):

liy = a + B1Fy + B2Cit + Uy (18)

The assumption of normality of the disturbances and nonstochastic regressors
may be untenable for this empirical examdat we use these data for illustrative
purposesThe null hypothesis ibly; p = 0 versuHy ; p > 0, and various patterns

of missing observations are consider@d clear from the tablghe LBI statistic

is greater than the Bhargava etsthtistic for all patterns consider€the differ-

ence between the LBI and BFN test statistics highlights the contributiods of

ds, andd, defined following(16) to the LBI statistic This difference is substan-

tial depending on the pattern of missing observatidrable 1 also gives the
standardized LBI statistic given lif defined in(17). The null hypothesis of no
serial correlation is rejected in all cases

5. SUMMARY AND CONCLUSION

This paper derives a simple method of correcting for serial correlation and ran-
dom individual effects in the context of unequally spaced panel data madtlels
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TaBLE 1. Testing for Zero Serial Correlation in Unequally Spaced Panels
Grunfeld Dat&

Bhargava

Pattern Missing periods LBl  etal ds n

A 9 10 1022 Q706 —7.870 180
B 17 18 1139 Q807 —-6.994 180
C 3 4 5 1162 Q738 —-6.751 170
D 7 8 9 1013 Q701 —=7.796 170
E 13 14 15 82 Q674 —7.986 170
F 3 4 5 6 1188 Q733 —6.455 160
G 12 13 14 15 ®20 Q612 —-8.254 160
H 2 4 5 14 1237 0694  —6.493 160
| 8 9 16 17 19 1499 Q968 —4.447 150
J 2 3 15 16 17 19 580 Q911 —3.842 140
K 2 3 15 18 19 20 174 Q813 —-6.471 140
L 2 3 5 7 15 20 1330 0689 —5.899 140
M 3 5 8 9 16 17 19 B0O7 1031 —2.290 130
N 2 4 5 14 15 16 19 541 Q901 —3.459 130
@) 2 3 4 8 9 16 17 19 .x09 1005 —2.998 120
P 2 3 5 7 15 18 19 20 .389 0866 —-3.881 120
Q 2 4 5 8 14 15 16 19 .656 Q0873 —3.430 120

aThis testsHy; p = 0 versusH,; p > 0. The LBI statistic is given if(16). The Bhargava et abtatistic is given by
d, following (16). The termds is given in(17). Heren denotes the total number of observations in the panel

also provides an LBI test for zero first-order serial correlation against positive or
negative serial correlatioAlthough exact critical values can be computationally
prohibitive with panel dateadvances in computing exact critical values follow-
ing Shively et al (1990 can be usedAlternatively one can approximate these
critical values by standardizing the LBI statistic using the results of Evans and
King (1985 on quadratic normals-inally, the LBI test statistic is illustrated for
various missing observations panels using the Grunfeld investment-detae
work should generalize the results to allow for stochastic regressors

NOTES

1. An alternative derivation of this matrix in a time-series context is given by Wansbeek and
Kapteyn(1985.

2. To take advantage of the power optimality of the LBI tebt), one should compute the exact
critical valuesUnfortunatelythis needs the nonzero eigenvalueé\B%, which is a large (n; — 1) X
S(m — 1) matrix. This requiresO([=(n; — 1)]°) operations Here advances in computing exact
critical values by ShivelyAnsley and Kohn(1990 can be usedAlternatively one can easily com-
pute bounds for the exact critical values as described in the Appendix that is available upon request
from the authors
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