
UNEQUALLY SPACED PANEL DATA
REGRESSIONS WITH AR(1)

DISTURBANCES

BAAADDDIII H. BAAALLLTTTAAAGGGIII
Texas A&M University

PIIINNNGGG X. WUUU
University of Melbourne

This paper deals with the estimation of unequally spaced panel data regression
models with AR~1! remainder disturbances+ A feasible generalized least squares
~GLS! procedure is proposed as a weighted least squares that can handle a wide
range of unequally spaced panel data patterns+ This procedure is simple to compute
and provides natural estimates of the serial correlation and variance components
parameters+ The paper also provides a locally best invariant test for zero first-order
serial correlation against positive or negative serial correlation in case of unequally
spaced panel data+

1. INTRODUCTION

Some panel data sets cannot be collected every period as a result of lack of re-
sources or cut in funding+ Instead, these panels are collected over unequally spaced
time intervals+ For example, a panel of households could be collected over un-
equally spaced years rather than annually+This is also likely when collecting data
on countries, states, or firms where in certain years, the data are not recorded, are
hard to obtain, or are simply missing+Other common examples are panel data sets
using daily data from the stock market, including stock prices, commodity prices,
futures, etc+These panel data sets are unequally spaced when the market closes on
weekends and holidays+ The model considered in this paper allows for unequally
spaced time-series data for each country, individual, or firm+ This is particularly
useful for housing resale data where the pattern of resales for each house occurs
at different time periods and the panel is unbalanced because we observe different
number of resales for each house+

Panel data with missing observations have been studied by Wansbeek and
Kapteyn~1989! and Baltagi and Chang~1994!+ However, none of these studies
consider the problem of serial correlation with unequally spaced panels+ Estima-
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tion of AR~1! disturbances in time-series regressions with missing observations
has been studied by Wansbeek and Kapteyn~1985!, whereas testing for AR~1!
disturbances in this context has been considered by Shively~1993!, Robinson
~1985!, Dufour and Dagenais~1985!, and Savin and White~1978!+ This paper
proposes a simple, feasible generalized least squares~GLS! estimation method
for unbalanced panels that allows for a variety of patterns of missing data and
serially correlated errors of the AR~1! type+ In addition, this paper provides a
locally best invariant~LBI ! test for zero first-order serial correlation against pos-
itive or negative serial correlation+ This extends the work of King~1985!,Dufour
and Dagenais~1985!, and Shively~1993! to the context of an unequally spaced
panel+ In particular, we consider a random error component regression model
with AR~1! disturbances~see Lillard and Willis, 1978; Bhargava, Franzini, and
Narendranathan, 1982, Baltagi and Li, 1991!+ However, we allow for unequally
spaced patterns for each individual in the time series dimension+Savin and White
~1978! allowed for a gap ofmconsecutive observations in time-series data+Here,
we allow for a general type of unequally spaced panel data for each individual of
the type considered by Shively~1993! in a time-series context+

2. THE MODEL

Consider the following unbalanced panel data regression model~see Wansbeek
and Kapteyn, 1989!:

yit 5 xit
' b 1 uit i 5 1, + + + ,N; t 5 1, + + + ,Ti , (1)

whereb is aK 31 vector of regression coefficients including the intercept andxit

is aK 31 vector of nonstochastic regressors+ The disturbances follow a one-way
error component modeluit 5 m i 1 nit with individual effectsm i ; IID ~0,sm

2! and
the remainder disturbancesnit following a stationary AR~1!, i+e+, nit 5 rni, t21 1
eit with 6r6 , 1 andeit is IID ~0,se

2!+ Them i ’s are independent of thenit ’s, and
ni 0; ~0,se

20~12 r2!!+ Each individuali observes data at timesti, j for j 51, + + + ,ni

with 15 ti,1 , {{{ , ti,ni
5 Ti with ni . K for i 51,2, + + + ,N+ For estimation of the

equally spaced panel data regression model withAR~1! disturbances and no miss-
ing observations, see Baltagi and Li~1991!+ Note that the typical covariance
element ofnit for the observed periodsti, j andti,, is given by cov~ni, ti, j ,ni, ti,,! 5
se

2 r 6ti, j2ti,, 60~1 2 r2! for ,, j 5 1, + + + ,ni + In fact, by continuous substitution over
the AR~1! process, one can show that

ni, ti, j 5 r ti, j2ti, j21ni, ti, j21
1 ei, ti, j 1 rei, ti, j21 1 {{{ 1 r ti, j2ti, j2121ei, ti, j2111+ (2)

DefineSi, ti, j 5 ni, ti, j 2 r ti, j2ti, j21ni, ti, j21
5 ei, ti, j 1 rei, ti, j21 1 {{{ 1 r ti, j2ti, j2121 3

ei, ti, j2111 for j 5 2, + + + ,ni , and let Si, ti,1 5 ~1 2 r2 !102ni, ti,1+ For equally
spaced data, with no missing observations, Si, ti, j is equivalent to the Prais–
Winsten transformation for the AR~1! model+ In fact, for ni

'5 ~ni, ti,1, + + + ,ni, ti,ni
!
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andSi
'5 ~Si, ti,1, + + + ,Si, ti,ni

!, this transformation can be written in matrix form as
Si ~ r! 5 Ci ~ r!ni where

Ci ~ r! 5 3
~12 r2 !102 0 0 + + + 0 0 0

2r ti,22ti,1 1 0 + + + 0 0 0

I I I + + + I I I

0 0 0 + + + 2r ti,ni212ti,ni22 1 0

0 0 0 + + + 0 2r ti,ni
2ti,ni21 1

4 (3)

However, for the unequally spaced data the transformed disturbances are still
heteroskedastic+ In fact, var~Si, ti,1! 5 se

2 whereas var~Si, ti, j! 5 se
2~1 1 r2 1

{{{ 1 r2~ti, j2ti, j2121! ! 5 se
2~1 2 r2~ti, j2ti, j21! !0~1 2 r2! for j 5 2, + + + ,ni + Note

that for the no missing observations case withti, j 2 ti, j21 5 1 for all j 5
1,2, + + + ,ni , var~Si, ti, j ! 5 se

2 for all j+ In general, the vector of disturbancesSi

can be easily made homoskedastic by premultiplyingSi by a diagonal matrix

Di ~ r! 5 3
1 0 0 + + + 0 0

0 S 12 r2

12 r2~ti,22ti,1!D102

0 + + + 0 0

I I I I I

I I I I I

0 0 0 + + + 0 S 12 r2

12 r2~ti,ni
2ti,ni21!D1024 +

(4)

Hence, if we let Ci
*~ r! 5 Di ~ r!Ci ~ r!, and defineni

* 5 Ci
*~ r!ni then ni

* ;
~0,se

2 Ini
!+ Note that for equally spaced data with no missing observations, the

diagonal matrixDi ~ r! reverts back to the identity matrix as expected+ Theni 3 ni

matrix Ci
*~ r! 5 Di ~ r!Ci ~ r! is given by1

Ci
*~ r! 5 ~12r2 !1023

1 0 + + + 0 0

2S r2~ti,22ti,1!

12r2~ti,22ti,1!D102 S 1

12r2~ti,22ti,1!D102

+ + + I I

I I + + + I I

I I + + + I I

0 0 + + + 2S r2~ti,ni
2ti,ni21!

12r2~ti,ni
2ti,ni21!D102 S 1

12r2~ti,ni
2ti,ni21!D102

4 +
(5)

Premultiply the panel data regression given in equation~1! by diag@Ci
*~ r!# ,

which is a block-diagonal matrix withCi
*~ r! in theith block+ This transforms the

disturbances as follows:

u* 5 diag@Ci
*~ r!#u 5 diag@Ci

*~ r!# diag~ini
!m 1 diag@Ci

*~ r!#n, (6)
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where ini
is a vector of ones of dimensionni , u' 5 ~u1

' , + + + ,uN
' !, m ' 5

~m1, + + + ,mN!, andn ' 5 ~n1
' , + + + ,nN

' !+ Note thatni
' was defined following~2! and

ui
' is similarly defined+ It can be easily verified that

gi 5 @Ci
*~ r!#ini

5 ~12 r2 !102S1,
12 r~ti,22ti,1!

~12 r2~ti,22ti,1! !102 , + + + ,
12 r~ti,ni

2ti,ni21!

~12 r2~ti,ni
2ti,ni21! !102D'+ (7)

Therefore, u* 5 diag~gi !m 1 diag@Ci
*~ r!#n, and V* 5 E~u*u*' ! 5

sm
2 diag~gi gi

'! 1 se
2 diag~Ini

!, because diag@Ci
*~ r!#E~nn ' !diag@Ci

*~ r!# ' 5
se

2 diag~Ini
!+ This can be rewritten as

V* 5 sm
2 diag~gi

'gi !diag~Pgi
! 1 se

2 diag~Pgi
1 Qgi

!,

wherePgi
5gi ~gi

'gi !
21gi

' ,Qgi
5 Ini

2Pgi
, gi
'gi 5(j51

ni gi, j
2 5 ~12r2!1 ~12r2! 3

(j52
ni ~1 2 r~ti, j2ti, j21! !20~1 2 r2~ti, j2ti, j21! !, and gi, j is the j th element ofgi 5

@Ci
*~ r!#ini

given in ~7! for j 5 1,2, + + + ,ni + This replacesIni
by ~Qgi

1 Pgi
! ~see

Wansbeek and Kapteyn, 1982!+ Collecting terms with the same matrices, one
obtains

V* 5 diag~vi
2!diag~Pgi

! 1 se
2 diag~Qgi

!, (8)

wherevi
25 gi

'gi sm
21 se

2+Note thatPgi
andQgi

are idempotent, are orthogonal to
each other, and sum to the identity matrix+ Therefore,

se V*2102 5 se diag~10vi !diag~Pgi
! 1 diag~Qgi

! 5 diag~Ini
! 2 diag~ui Pgi

!, (9)

whereui 512 ~se0vi !+ For equally spaced panel data with no missing observa-
tions and no serial correlation, i+e+, r 5 0, this reduces to the familiar Fuller and
Battese~1974! transformation+ Premultiplyingy* 5 diag@Ci

*~ r!#y by seV*2102

one getsy**5 seV*2102y*+ The typical elements ofy** are given by

yi, ti, j
** 5 yi, ti, j

* 2 ui gi, jS(
s51

ni

gi,syi, ti,s
* DYS(

s51

ni

gi,s
2 D+ (10)

Quadratic unbiased estimators of the variance components arise naturally from
~8! ~for the balanced panel data case, see Baltagi and Li, 1991!+ In fact,
diag~Pgi

!u* ; ~0,diag~vi
2Pgi

!! and diag~Qgi
!u* ; ~0,se

2 diag~Qgi
!!+ Therefore,

quadratic unbiased estimators ofsv
2 5 (i51

N vi
2 andse

2 are given by

[sv
2 5 u*' diag~Pgi

!u* and [se
2 5 u*' diag~Qgi

!u*Y(
i51

N

~ni 2 1!, (11)

where tr~Pgi
! 51 and tr~Qgi

! 5 ni 21+ Using(i51
N vi

2 5 (i51
N gi

'gi sm
2 1 Nse

2, an
estimator forsm

2 can be obtained as follows:

[sm
2 5 ~u*' diag~Pgi

!u* 2 N [se
2!Y(

i51

N

gi
'gi + (12)
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Using a consistent estimate ofr, one can estimate this model by feasible GLS
using the following steps+

Step 1+ Perform the diag@Ci
*~ r!# transformation given in~5! on equation~1! to get rid

of serial correlation and ensure homoskedasticity+ This yieldsyi
*5 @Ci

*~ r!#yi ,where
yi
'5 ~ yiti,1

, + + + , yiti,ni
!+

Step 2+ Compute the residuals[u* obtained from the ordinary least squares~OLS! re-
gression ofy* onX* in step 1+Using these[u* ’s, compute estimates ofsm

2 andse
2 from

~11! and~12!+ Deduce Zui 5 1 2 ~ [se0 [vi !, where [vi
2 5 gi

'gi [sm
2 1 [se

2+
Step 3+ Obtainy** as described in~10! using they*’s in step 1 and Zui from step 2+

Perform OLS ofy** on X** to obtain the feasible GLS estimate ofb+ In the next
section, we consider the problem of testing for zero first-order serial correlation and
in the process provide a natural estimator forr+

3. LOCALLY BEST INVARIANT (LBI) TEST

In this section, we derive a locally best invariant~LBI ! test forH0; r 5 0 versus
Ha

1 ; r . 0 or Ha
2 ; r , 0, for the unequally spaced panel data regression model

described in Section 2+We assume normality of the disturbances and rewrite~1!
in matrix form as

y 5 Xb 1 diag~ini
!m 1 n, (13)

whereini
, m, andn have been defined following~6!+ Also Sn~ r! 5 E~nn ' ! 5

se
2 diag~Vi ! 5 se

2Vn~ r!, wherese
2Vi has a typical element given preceding~2!+

Consider the orthogonal matrixOni
of dimensionni and letOni

5 ~ini
0!ni ,Bi !,

whereBi is anni 3 ~ni 21! matrix that by definition satisfies the following prop-
erties: Bi

' ini
5 0, Bi

'Bi 5 Ini21, andBi Bi
'5 Ini

2 NJni
, where NJni

5 Jni
0ni andJni

is a
matrix of ones of dimensionni + Premultiplying the preceding model by diag~Bi

'!
yields diag~Bi

'!y5 diag~Bi
'!Xb 1 diag~Bi

'!n+ Note thatm is swept away because
Bi
' ini

5 0+ If we let Iy 5 diag~Bi
'!y, FX 5 diag~Bi

'!X, and In 5 diag~Bi
'!n, then this

transformed model can be rewritten as

Iy 5 FXb 1 In, (14)

whereS In~ r! 5 E~ In In ' ! 5 se
2 diag~Bi

'Vi Bi ! 5 se
2V In~ r!+ UnderH0; r 5 0, we

haveVi 5 Ini
, andS In~ r! reduces tose

2 diag~Ini21!+ This means that underH0, In ;
N~0,se

2 ISni2N!+
This testing problem is invariant to transformations of the formyr g0y1 Xg,

whereg0 is a positive scalar andg isK31+ This means that if we change the scale
of y and add a known linear combination of the regressors to the rescaledy, this
does not change the truth of eitherH0 or Ha+ This is the transformation used by
Durbin and Watson~1971! to establish optimal properties of the Durbin–Watson
test~see Dufour and King, 1991!+ Let m5 (i51

N ~ni 2 1! 2 K, OP FX 5 IS~ni21! 2 P FX,
whereP FX 5 FX~ FX ' FX !21 FX ', andz 5 OP FX Iy be the OLS residuals fromIy on FX+ Let
R be them3 S~ni 2 1! matrix such thatRR' 5 Im andR'R5 OP FX+ Note that the
m 3 1 vectorRz is a linear unbiased residual vector with a scalar covariance
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matrix ~see Theil, 1971, Ch+ 5! with zero mean and variance-covariance matrix
se

2 Im under H0+ As noted by King and Hillier~1985!, the vectors 5 Rz0
~z'R'Rz!102 is a maximal invariant under the preceding group of transformations
for our testing problem+ Also, the LBI test, which is also known as the locally
most powerful invariant test, is of the formd 5 z'A0z0z'z , ca, whereA0 5
$]V In

21~ r!0]r%6r50 5 2~]V In~ r!0]r!6r50 andca is thea-level critical value ofd+
This test has the steepest sloping power curve atH0; r 5 0 within the class of
invariant tests of the same significance level+ It can also be viewed as the test that
has optimal power within the neighborhood ofH0+ King and Hillier ~1985! also
demonstrated the equivalence of this test to a one-sided version of the Lagrange
multiplier test+Note that the denominator of the test statisticd is easy to compute+
In fact, z'z5 Iy' OP FX Iy 5 Iy' Iy 2 Iy'P FX Iy 5 y'Qy2 y'QX~X 'QX!21X 'Qy, whereQ 5
diag~Ini

2 NJni
!+ This is the within residuals sum of squares obtained from the fixed

effects model, i+e+, assuming them i ’s are fixed parameters to be estimated+ It can
be obtained from the OLS residuals sum of squares of~13! or in caseN is large
from the regression of~ yi, ti, j 2 Syi+! on~Xi, ti, j ,k2 PXi+ ,k! for k52, + + + ,K+ In this case,
Syi+5 (j51

ni yi, ti, j 0ni and PXi+ ,k is defined similarly+
For the numerator ofd, we note that]Vi 0]r6r50 5 Vi

0, where the typical ele-
ments ofVi

0 are

Vi
0~ j,,! 5 H1 if 6 ti, j 2 ti,, 65 1

0 if 6 ti, j 2 ti,, 6 . 1
or if j 5 , for j,, 5 1, + + + ,ni , (15)

so that z'A0z 5 2z' diag~Bi
'Vi

0Bi !z+ Let Iz 5 diag~Bi !z; then z'A0z 5
Iz' diag~Vi

0! Iz+ It can be easily shown that OLS on~14! yields Db5 ~X 'QX!21X 'Qy,
the within estimator ofb, andz5 Iy2 FX Db 5 diag~Bi

'!~ y2 X Db!+ This means that
Iz 5 diag~Bi Bi

'!~ y 2 X Db! 5 Qy 2 QX Db, which is exactly the within residuals
described previously using the deviation from individual means regression+ This
also proves thatz'z5 Iz' Iz+ Therefore, the LBI test statistic can be written as

d* 5 d 1 2 5 Iz' diag~2Ini
2 Vi

0! Iz0 Iz' Iz, (16)

and our test statistic can be expressed as the sum of four terms:

d1 5 (
i51

N

(
j51

ni

@ Izi, ti, j 2 Izi, ti, j21
I ~ti, j 2 ti, j21 5 1!# 2Y(

i51

N

(
j51

ni

Izi, ti, j
2 ,

d2 5 (
i51

N

(
j51

ni21

Izi, ti, j
2 @12 I ~ti, j11 2 ti, j 5 1!#Y(

i51

N

(
j51

ni

Izi, ti, j
2 ,

d3 5 (
i51

N

Izi, ti,1
2 Y(

i51

N

(
j51

ni

Izi, ti, j
2 and d4 5 (

i51

N

Izi, ti,ni

2 Y(
i51

N

(
j51

ni

Izi, ti, j
2 ,

whereI ~ti, j 2 ti, j21 51! is the indicator function that takes the value 1 when the
proposition in parentheses is true and zero elsewhere+ In the time-series context,
d* reduces to the LBI test suggested by Dufour and Dagenais~1985!+ Some com-
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ments are in order: ~i! When there are no missing observations, i+e+, ti,ni
2 ti,ni215

ti,ni21 2 ti,ni22 5 {{{ 5 ti,2 2 ti,1 5 1, thend2 5 0 and our test statistic reduces to
d11 d31 d4+Note that in this case, d1 reduces to the Durbin–Watson test statistic
proposed by Bhargava et al+ ~1982, p+ 535! for the fixed effect AR~1! model+
Bhargava et al+ claimed thatd1 is a locally most powerful invariant test in the
neighborhood ofr 5 0+ They argued that exact critical values ford1 are both
impractical and unnecessary because they involve the computation of nonzero
eigenvalues of a largeNT3 NTmatrix+ Instead, the 5% upper and lower bounds
for d1 were tabulated for various values ofN, T, andK+ Note that the Bhargava
et al+ test statistic ignoresd3 andd4 and is therefore approximately locally best
invariant+ This is the same criticism for the Durbin–Watson statistic in the time-
series context pointed out by King~1981!+Whereas terms such asd3 andd4 are
negligible whenT is very large, they are less likely to be so in typical panels
whereT is usually small+ ~ii ! In practice, one can insert zeros in betweenIzi, ti, j
and Izi, ti, j11

if ti, j11 2 ti, j . 1+ Then one gets a new residuals series that may look
like ei

'5 ~ Izi, ti,1,0,0, Izi, ti,2,0, + + + , Izi, ti, j , + + + , Izi, ti,ni
! if ti,1 51, ti,2 5 4, + + + , andti,ni

5 T
~see Dufour and Dagenais, 1985, p+ 375; Shively, 1993, p+ 248!+ The termei is
a T 3 1 vector of within residuals for theith individual whose element is zero if
the data for that period are not available+ Now it is easy to compute the test
statistic in the usual way, dc 5 (i51

N (t52
T ~ei, t 2 ei, t21!20(i51

N (t51
T ei, t

2 + This
also suggests a natural estimator ofr, i+e+, [r 5 ~(i51

N (t52
T ei, t ei, t210mc!0

~(i51
N (t51

T ei, t
2 0n!, wheremc is the number of consecutive pairs of nonzeroeit ’s+

~iii ! Note that our test statisticd* in ~16! can be rewritten asd* 5 2 2
Iz' diag~Vi

0! Iz0 Iz' Iz5 2 2 z' diag~Bi
'Vi

0Bi !z0z'z wherez5 OP FX Iy 5 OP FX In from ~14!
with In;N~0,se

2 IS~ni21! ! underH0; r50+Substituting this in the test statistic,we
getd* 5 2 2 ~ In ' OP FXA OP FX In0 In ' OP FX In!, whereA 5 diag~Bi

'Vi
0Bi !+ This statistic is in

the form of a ratio of quadratic forms of normal variates~ In!+ For a givenA,
bounds for critical values can be constructed just like the Bhargava et al+ or
Durbin–Watson test statistics+ However, different patterns of missing observa-
tions imply a differentVi

0 matrix and therefore a differentAmatrix+2 A reasonable
and practical way to approximate these critical values is to standardize this test
statistic+ Using the results in Evans and King~1985!, we computeE~d* ! 5 2 2
tr~ OP FXA!0m and var~d* ! 5 2@m tr~ OP FXA!2 2 $tr~ OP FXA!%2#0m2~m1 2!, wherem5

(i51
N ~ni 2 1! 2 K, and then use the test statistic

ds
* 5 @d* 2 E~d* !# 0% var~d* !+ (17)

For testingH0; r 5 0 versusHa; r . 0 ~or r , 0!, one comparesd* to the critical
value from the lower~upper! tail of anN~0,1! distribution+ AlthoughBi appears
in the preceding standardized test statistic, this matrix is not needed for the actual
computations+ In fact,

tr~ OP FX A! 5 tr@ OP FX diag~Bi
'!diag~Vi

0!diag~Bi !#

5 tr$@Q 2 QX~X 'QX!21X 'Q# diag~Vi
0!%+
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A weakness of the preceding LBI test is that for unequally spaced observations
that are two or more periods apart, the LBI test statistic in~16! degenerates to 2
because]Vi

'0]r evaluated at the maximum likelihood estimator~MLE ! underH0

is equal to zero+ Even in situations that are not as extreme as this, if a big portion
of the sample has observations that are two or more periods apart, then the LBI
test will still be ineffective because it ignores these observations in the compu-
tations+Clearly, this difficulty can be removed if we do not evaluate]Vi 0]r at the
null hypothesis in the test construction+A test that is particularly suitable for this
situation is the POI test suggested by King~1985!+ In fact, King’s point optimal
invariant test for the AR~1! case has been generalized to the missing data case in
time-series regressions by Shively~1993!+This POI test can be easily generalized
for the unequally spaced panel data model and is available upon request from the
authors+ Also, our proposed estimator ofr breaks down if there are no consecu-
tive observations+ In this case, one may want to use maximum likelihood methods
that do not throw away nonconsecutive observations~for MLE in the serially
correlated time-series model with missing observations, see Wansbeek and
Kapteyn, 1985!+

4. EMPIRICAL ILLUSTRATION

Table 1 applies the LBI test statistic given byd* in ~16! and the Bhargava et al+
modified Durbin–Watson test statistic given byd1 following ~16! to the Grunfeld
data on investment+ This is the same data set used for time-series illustration by
Wansbeek and Kapteyn~1985!+ It consists of 10 large U+S+ manufacturing firms
observed from 1935 to 1954+ Real gross investment of firmi in year t ~Iit ! is
regressed on the real value of the firm~Fit ! and the real value of the capital stock
~Cit !:

Iit 5 a 1 b1Fit 1 b2Cit 1 uit + (18)

The assumption of normality of the disturbances and nonstochastic regressors
may be untenable for this empirical example, but we use these data for illustrative
purposes+The null hypothesis isH0; r50 versusHa

1 ; r . 0, and various patterns
of missing observations are considered+As clear from the table, the LBI statistic
is greater than the Bhargava et al+ statistic for all patterns considered+ The differ-
ence between the LBI and BFN test statistics highlights the contributions ofd2,
d3, andd4 defined following~16! to the LBI statistic+ This difference is substan-
tial depending on the pattern of missing observations+ Table 1 also gives the
standardized LBI statistic given byds

* defined in~17!+ The null hypothesis of no
serial correlation is rejected in all cases+

5. SUMMARY AND CONCLUSION

This paper derives a simple method of correcting for serial correlation and ran-
dom individual effects in the context of unequally spaced panel data models+ It
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also provides an LBI test for zero first-order serial correlation against positive or
negative serial correlation+Although exact critical values can be computationally
prohibitive with panel data, advances in computing exact critical values follow-
ing Shively et al+ ~1990! can be used+ Alternatively, one can approximate these
critical values by standardizing the LBI statistic using the results of Evans and
King ~1985! on quadratic normals+ Finally, the LBI test statistic is illustrated for
various missing observations panels using the Grunfeld investment data+ Future
work should generalize the results to allow for stochastic regressors+

NOTES

1+ An alternative derivation of this matrix in a time-series context is given by Wansbeek and
Kapteyn~1985!+

2+ To take advantage of the power optimality of the LBI test~d* !, one should compute the exact
critical values+Unfortunately, this needs the nonzero eigenvalues ofAP FX,which is a largeS~ni 21!3
S~ni 2 1! matrix+ This requiresO~ @S~ni 2 1!# 3! operations+ Here, advances in computing exact
critical values by Shively, Ansley, and Kohn~1990! can be used+ Alternatively, one can easily com-
pute bounds for the exact critical values as described in the Appendix that is available upon request
from the authors+

Table 1. Testing for Zero Serial Correlation in Unequally Spaced Panels:
Grunfeld Dataa

Pattern Missing periods LBI
Bhargava

et al+ ds
* n

A 9 10 1+022 0+706 27+870 180
B 17 18 1+139 0+807 26+994 180
C 3 4 5 1+162 0+738 26+751 170
D 7 8 9 1+013 0+701 27+796 170
E 13 14 15 0+982 0+674 27+986 170
F 3 4 5 6 1+188 0+733 26+455 160
G 12 13 14 15 0+920 0+612 28+254 160
H 2 4 5 14 1+237 0+694 26+493 160
I 8 9 16 17 19 1+499 0+968 24+447 150
J 2 3 15 16 17 19 1+580 0+911 23+842 140
K 2 3 15 18 19 20 1+174 0+813 26+471 140
L 2 3 5 7 15 20 1+330 0+689 25+899 140
M 3 5 8 9 16 17 19 1+807 1+031 22+290 130
N 2 4 5 14 15 16 19 1+641 0+901 23+459 130
O 2 3 4 8 9 16 17 19 1+709 1+005 22+998 120
P 2 3 5 7 15 18 19 20 1+589 0+866 23+881 120
Q 2 4 5 8 14 15 16 19 1+656 0+873 23+430 120

aThis testsH0; r 5 0 versusHa; r . 0+ The LBI statistic is given in~16!+ The Bhargava et al+ statistic is given by
d1 following ~16!+ The termds

* is given in~17!+ Heren denotes the total number of observations in the panel+
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