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SUMMARY

Marginal models for multivariate binary data permit separate modelling of the relation-
ship of the response with explanatory variables, and the association between pairs of
responses. When the former is the scientific focus, a first-order generalized estimating
equation method (Liang & Zeger, 1986) is easy to implement and gives efficient estimates
of regression coefficients, although estimates of the association among the binary outcomes
can be inefficient. When the association model is a focus, simultaneous modelling of the
responses and all pairwise products (Prentice, 1988) using second-order estimating
equations gives more efficient estimates of association parameters as well. However, this
procedure can become computationally infeasible as the cluster size gets large. This
paper proposes an alternative approach, alternating logistic regressions, for simul-
taneously regressing the response on explanatory variables as well as modelling the associ-
ation among responses in terms of pairwise odds ratios. This algorithm iterates between a
logistic regression using first-order generalized estimating equations to estimate regression
coefficients and a logistic regression of each response on others from the same cluster using
an appropriate offset to update the odds ratio parameters. For clusters of size n, alternating
logistic regression involves evaluation and inversion of matrices of order n® rather than »*
as required for second-order generalized estimating equations. The alternating logistic
regression estimates are shown to be reasonably efficient relative to solutions of second-
order equations in a few problems. The new method is illustrated with an analysis of
neuropsychological tests on patients with epileptic seizures.

Some key words: Clustered data; Generalized estimating equation; Logistic regression.

1. INTRODUCTION

Multivariate binary responses are common in the biological and social sciences. For
example, we might observe the presence/absence of a disease in each of two eyes for an
individual, for all members of a household, or repeatedly over time. The objectives of
statistical analysis of such data include (i) describing the dependence of each binary
response on explanatory variables, and (ii) characterizing the degree of association
between pairs of outcomes as well as the dependence of this association on covariates.

Dale (1986), McCullagh & Nelder (1989), Prentice (1988) and Liang, Zeger & Qagqish
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(1992) have discussed the class of ‘marginal models’ for regression analysis of multivariate
binary data. The central idea is to model separately the marginal expectation of each
binary variable as well as the association between pairs of outcomes in terms of explanatory
variables. In this paper, we will use odds ratios to measure association. Consider binary
data obtained in m clusters. For cluster i = 1,...,m, let ¥, = (¥y,..., Y, )" beann; x 1
response vector with mean E(Y;) =y, and let v, be the odds ratio between responses
Y, and Y, (1 <j <k <n;) defined by

¢ _pr(Y,j=1,Y,k=l)pr(Y,]=0,Y,k=0) (1)
(Y =1,Y,=0)pr(¥;=0,Y,=1)

A marginal model can be specified as follows:

1. h(w;y) = xj; 3, where h(.) is a known link function (McCullagh & Nelder, 1989,
p. 27), x;; is a p X 1 vector of explanatory variables associated with Y;; and 3; are
regression coefficients to be estimated,;

2. logv, = ziTjka, where z,;; is a ¢ x 1 vector of covariates which specifies the form of the
association between Y;; and Y, and o is a g x 1 vector of association parameters to
be estimated.

Throughout this paper we treat explanatory variables as constants and suppress them
in lists of conditioning variables, using for example E(Y};) rather than E(Y}|x,;). The
term ‘marginal’ refers to modelling E(Y;) as opposed to E(Y;|Y,, j#*k) or to
E(Y;| Y,k <j) which is commonly modelled in the time series context.

To further clarify the ideas underlying the marginal model, consider a family study with
binary outcome, Y;;, indicating whether or not member j in family  has pulmonary disease.
The study objectives might include (a) identifying risk factors for disease such as smoking,
presence of a gas stove in the home, age and sex; and (b) assessing whether the disease tends
to aggregate in families after accounting for common environmental factors. In this
example, a marginal model could be used to regress the disease outcome on the vector
x;; of risk factors and to model the odds ratios among family members to test the familial
aggregation hypothesis. Notice that, under a genetic model for familial aggregation, the
odds ratios would be expected to differ for two spouses, a parent and sib, and two sibs.
Hence the vector z,;, would, among other variables, include an indicator for the relation-
ship of family members j and k.

Liang & Zeger (1986) introduced the use of ‘generalized estimating equations’, multi-
variate analogues of quasi-likelihood estimating equations, for estimating 3 in situations
when « is a nuisance parameter. They originally modelled correlations; Lipsitz, Laird &
Harrington (1991) used odds ratios to measure association. Fitzmaurice & Laird (1993)
have used conditional odds ratios given all other responses in the vector to measure associ-
ation. Liang et al. (1992) have shown that solutions to these first-order equations often
have high efficiency for estimating 3.

In problems such as the pulmonary disease example above, the association among
responses is one of the primary scientific focuses. Hence the odds ratio parameters, a,
are no longer nuisance parameters. Liang et al. (1992) have shown that estimates of «
obtained by solving first-order estimating equations can be seriously inefficient. Prentice
(1988) and Zhao & Prentice (1990) proposed quadratic estimating equations for corre-
lation parameters. Asymptotic results from Liang et al. (1992) show that these estimates
are reasonably efficient in simple cases considered.

Estimating pairwise odds ratio parameters using quadratic estimating equations requires
the calculation and inversion of a weighting matrix with order #* elements as detailed in § 2.
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Evaluating the elements of these matrices requires solution of cubic and seventh-degree
polynomials. For small n;, for example n; < 5, this presents no obstacle, but for even
moderate values of n; as routinely arise in longitudinal and survey sampling appli-
cations, solution of second-order equations becomes computationally impractical.

This paper proposes another approach to the estimation of 3 and o which can be reason-
ably efficient for both sets of parameters and which avoids the computational burdens of
the second-order methods. In the simplest case, with log v, = a, the approach is to alter-
nate between two steps:

(i) for a given a, estimate § as a parameter in a marginal logistic regression using a first-
order generalized estimating equation;

(ii) fora given S, estimate the odds ratio parameter « using a logistic regression of Y, on

each Y, (k > j) with offset that involves p,; and v, = E(Y,;Y;,).

We therefore refer to this algorithm as alternating logistic regressions. Section 2 briefly
reviews the generalized estimating equation approaches to regression with multivariate
binary responses. Section 3 details the new methodology and presents asymptotic proper-
ties of alternating logistic regression estimates. We find that alternating logistic regression
estimates of a have efficiency comparable to those of second-order estimates in a few dif-
ferent problems with clusters of size four. The method is illustrated with a brief example in
§ 4 which is followed by discussion.

2. GENERALIZED ESTIMATING EQUATIONS

Generalized estimating equations are multivariate analogues of quasi-likelihood estimat-
ing equations proposed by Wedderburn (1974). With scalar responses, there is usually a
unique integral of the estimating function analogous to the likelihood function, hence
the term ‘quasi-likelihood’. In the multivariate case, it is more common that the integral
is not uniquely defined. In addition, there are often additional nuisance parameters to be
estimated. If we let V;(u;; @) be an n; X n, weighting matrix which approximates the covari-
ance matrix of Y,, the generalized estimating equation for 3 has the form

m a ; T _

Ui(8) = (5 ) Vs o)™ (Y= ) = 0. 2)
=1\08

Liang & Zeger (1986) show that the solution 3, of (2) with « replaced by a m!-consistent

estimate & is asymptotically Gaussian with mean 0 and variance given by

cov (Bl) = 10_11110_1,
where

Q/‘_"TV-I%

_ (') .
=m 1 l_lu’l
IO Z 9,8 i 9,8’

o8
Note that if ¥; = cov (Y}), then cov (3,) = I; . Liang & Zeger used moment estimates of o
in (2). An advantage of this approach is that in many problems, inferences about 3 are
robust to misspecification of ¥ for large m. Furthermore, (3, is reasonably efficient
(Liang et al., 1992) when cov (Y;) is well approximated. Fitzmaurice & Laird (1993)
have shown that (2) is the score equation for 3 corresponding to a log linear model for
Y, when cov (Y,) is correctly specified.

When o is the scientific focus, Prentice (1988) proposed expanding the estimating

T
L= S cov (T



520 V. CAREY, S. L. ZEGER AND P. DIGGLE

equations to model simultaneously the response Y; and , C, cross-products

I/Vi=(YilYi2aYiIYi3a"'aYtlYma © tn,—l )
The resulting estimating equations have the form
2 0u, )} L .
U,(B,a) = ——— ¢ COV Y, W)(yi— nWi— ;) =0,
:0,0) = {GE cov (7, W)= = ) ®

where v, = E(W,). Liang et al. (1992) show that (3,,&,), the solution of U,(B,a) =0, is
highly efficient for both 3 and « in a variety of problems. The problem facing us with
(3) is that, for a cluster of size n, the matrix B=cov (¥, W) has dimensions
(n+,C) x (n+,C,). Forn=4, Bis 10 x 10; for n = 10, B is 55 x 55; for n = 50, still a
small size for many applications, B = 1275 x 1275, making solution of (3) computation-
ally difficult. Furthermore, when pairwise odds ratios are used to measure association,
evaluation of cov (Y, W) requires solving O(r’) cubic and O(n*) seventh-degree polyno-
mial equations for each n-cluster at each iteration of a Newton—Raphson algorithm. In
short, solutions of second-order estimating equations quickly become impractical for mod-
erate or large n.

3. ALTERNATING LOGISTIC REGRESSIONS
3-1. General

The alternating logistic regressions procedure combines the first-order generalized esti-
mating equations for § with new logistic regression equations for estimating o. We
retain the first-order approach for 3 because it gives robust and reasonably efficient esti-
mates when the assumed form of cov (Y;) is close to the true covariance matrix. The new
equations for « are designed to avoid the computational burden of second-order equations
that results from evaluating and inverting the (,, C, + n;) x (,, C, + n;) matrix, cov (¥;, ;).
Our strategy is to estimate « using the , C, conditional events, Y; given Y, = y,. In the
simple case with log ¢ = o, we estimate « by regressing Y on Yy, for 1 <j<k<n
with an appropriate offset. Our prior hypothesis is that Welghtmg the conditional elements
as if independent of one another and of Y;; will yield reasonably efficient estimates of « in
many problems.

The alternating logistic regression strategy follows from suggestions by Firth (1992) and Diggle
(1992) in the discussion of Liang et al. (1992). Before detailing the algorithm, we motivate the
approach to estimating a. Let v, be the log odds ratio between outcomes Y;; and Y, let

=pr(Y;=1)and v, = pr(Y;; = 1,Y,, = 1). Then, following Diggle (1992)

Hij — Vij
logitpr (Y = 1|Yix = yu) = Vil + log< ET—— Vijk) (4)
Suppose we assume that ;;, = o.. Then the pairwise log odds ratio o is the regression coef-
ficient in a logistic regression of ¥; on Y;, as long as the second term on the right-hand side
in (4) is used as an ‘offset’. Note that the offset depends on the current value of § = (37, a")"
so that iteration is required.

More generally, we assume ~,;, = jka where the vector z;; is a known set of the pair-
specific covariates. For example, in the pulmonary dlsease problem above, z;;, would
encode the type of family relationship for Y;; and Y;;: husband-wife, parent-sib, or sib-
sib. Here, a can be estimated by regressing y,J on z;; y;, with the same offset as above.
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To be specific, the alternating logistic regression procedure iterates between the following
two steps-until convergence.

Step 1. Given the current values of 69, calculate V) and solve the estimating equation
(2) for an updated 3+V.

Step 2. Given " and &, evaluate the offset in equation (4) and perform the offset
logistic regression of y;; on z;; y;, with a total of 3. ,C, observations, where the summation

is over the range i = 1,...,m, to obtain &V,

The details are provided in § 3-2.

3-2. Alternating logistic regression estimating equations
We describe the procedure for a collection of m clusters of differing sizes n;. Let
v; = E(W,) denote an , C,-vector whose elements are v, = E(Y,Y,,) for 1 <j <k <n,
The elements of v; are ordered so that the rightmost indices of v, vary fastest. Let (; be
the , C,-vector with elements

. Kij — Vijg
o =FE(Y. Y., =v.,) =logit ¢ ~.. v, +1 J J
G = E(Yy| Yy = yu) = logi {%ky,k+ og(l—uy—uik +v,~,-k)}’ (5)

and let R, be the vector of residuals with elements

Rijk = Yij - E(Yij | Y= yik) = Yij - Cijk-
We let S; denote the , C, x ,,C, diagonal matrix with diagonal element ¢, (1 — 1), and let
T; denote the , C, x g matrix 9¢;/0c. Finally, we let

A=Y, —p, By=cov(Y), C :?9—#5'

Note that, when the elements of Y; are permuted, so are the elements of W, given our
pairwise indexing scheme. In addition, some elements of the vectors ¢; and R, will
change values when elements of Y; are permuted. Despite this, the proposed estimation
procedure is invariant to permutation of the elements of Y; as shown by V. Carey in an
unpublished Ph.D. thesis of Johns Hopkins University.

The alternating logistic regression estimate of é is the simultaneous solution of the
following unbiased estimating equations:

Uﬁ == Z Cl:rBi_lAi == 0, (6)
i=1 '

m

U, =Y T'S 'R =0. (7)

i=1

We solve the estimating equations (6) and (7) for 3 and « using the nonlinear Gauss—
Seidel algorithm (Thisted, 1986, p.181). The updating sequence and the formulae linking
product-moments and pairwise odds ratios are as in formulae (8), (9) and (6) of Lipsitz
et al. (1991). As a Gauss—Seidel procedure with positive-definite expected derivative
matrix, alternating logistic regression converges given starting values sufficiently close to
the solution. In practice, this algorithm converges very quickly when ordinary logistic
regression estimates are used as starting values for 3, and 0 is used for a.

Alternating logistic regression is computationally feasible for very large clusters;
equation (3) is not. For each cluster of size n, the calculation of the diagonal ‘weighting
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matrix’ S; in alternating logistic regression involves O(n?) closed form computations of the
expression (5), whereas the calculation of the weighting matrix cov (Y;, W;) of equation (3)
with associations measured in terms of pairwise odds ratios requires solution of O(#*) cubic
and O(n’) seventh-degree polynomials. The weighting matrix in (3) has dimension of order
O(n*) so that O(n°) computations are required for its inversion. In alternating logistic
regression, only the weighting matrix, cov (Y;), which has dimension # must be inverted
using O(n*) operations. To illustrate the computational savings of alternating logistic
regression, we have fitted a simple logistic regression with ziTjka = qa, to a simulated data
set comprising of 100 clusters of sizes n, = 2, 4 and 8. Each procedure was run 10 times
on each data set; computations were performed on a SunSparcStation 2 in single-user
mode. The average ‘user’ times over the 10 runs are in Table 1. For »n; = 2, alternating logis-
tic regression provides little saving. For n; = 4, alternating logistic regression is 5 times
faster than solving equation (3); for n; = 8, alternating logistic regression is 40 times faster.

Table 1. Average time (seconds) to
convergence of alternating logistic
regression (ALR) and a second-order
estimating equation procedure (GEE2)

Cluster size

Model 2 4 8
ALR 1-6 32 83
GEE2 1-7 163 347-5

3-3. Asymptotic properties
The estimates 5ALR obtained from the alternating logistic regression algorithm are
consistent and asymptotically follow a Gaussian distribution. The following notation
simplifies the statement of the asymptotic results:

=,CTB 4, . =,.CTB'C, 0

with D; = 9¢;/08. Here U’ (6) is an approximation to dU, /96, ignoring terms of size 0,(1).

Following results of Fahrmeir & Kaufmann (1985) and Liang & Zeger (1986),
m%(SALR —6) is asymptotically (p + g)-variate Gaussian as m — oo, with covariance
matrix given by

Var = lim m[E{U?(8)}]7 E{U.(6)U.(6) }E{U:(8)}"]". (8)
A consistent estimate of the variance of &, is

P = (U G {Z UG UE) MU G) 9)

3-4. Efficiency
In this section, we compare the asymptotic efficiency of & as estimated by alternating
logistic regression and second-order generalized estimating equations following Liang
et al. (1992) for a few simple designs. To evaluate asymptotic variances, we must compute
the probabilities of each of the 2" possible configurations of the n-vector, Y. We restrict
attention to the case n = 4 where to specify the full distribution we require, in addition
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to 6, third and fourth moment parameter values. We adopt the convention used by Liang
et al. (1992, §3.3) of setting contrasts of log odds ratios equal to 0. With these additional
assumptions, it is possible to evaluate the asymptotic variance of G,;x given in (8).

To examine the asymptotic efficiency of alternating logistic regression relative to the
solution of the second-order estimating equation, we consider two regression designs.

Two-sample design: logitp,; = By + B 1,5 (j=1,...,4),
where 1, is 1if {.} is true, and is 0 otherwise.
Trend design: logit p,; = By + Bix;, x,=-2,—-1,1,2 (j=1,...,4).

In each model, we set 3, = —1:386 and 3, = 0-69. The odds ratio regression was assumed to
be

log Yy = ap + oyl jmiensyy (1 <j<k<4).

Table 2 presents the asymptotic efficiencies for estimation of (g, ;) for these two
models with exp (o) and exp (o;) = 1, 2 and 5. Table 2 indicates that, for both designs,
the efficiency-of &, from alternating logistic regression is 90% or better relative to the sol-
ution of (3) throughout the parameter range considered. The efficiency of &, is also high
except when o, becomes large in the two-sample design.

Table 2. Asymptotic efficiency of estimates of o from alternating
logistic regression relative to second-order estimating equation

Two-sample problem Trend
exp (o) exp (a;)
exp (o) 1 2 5 1 2 5
1 1000, 1000 991,960 958,771 998,999 990,974 964,905
2 995,989 986,913 959,675 983,982 962,932 938,881
5 985,956 979,847 958,578 944,940 927,899 915,893

Cell entries are asymptotic efficiencies of (&, &,) times 1000.

4. EXAMPLE

We illustrate the alternating logistic regression procedure with an analysis of tests of cog-
nitive function in patients with medically intractable epileptic seizures. Partial lobectomy,
removal of a portion of the brain (Engel, 1987), is an effective treatment for such seizures.
Prior to such a radical intervention, the consequences to neuropsychological function must
be assessed. ‘Wada testing” (Wada & Rasmussen, 1960) is a method of identifying brain
regions whose absence will impair specific cognitive functions. In Wada testing, sodium
amobarbital is injected into the carotid artery to deaden temporarily a hemisphere of the
brain. Cognitive function tests are administered to assess the likely effects of removing indi-
vidual regions.

We analyze test data collected on 52 individuals at Johns Hopkins Hospital (Hart et al.,
1993). The patients received amobarbital in the right hemisphere. After drug effect was
established, each patient was given a sequence of up to 22 language test items, falling
into six broad classes. The classes are, in order of administration: object-naming (abbre-
viated to OBJ; six items), word-reading (WOR; two items), picture-naming (PIN; two
items), semantic picture-word matching (ptw; four items), concrete and abstract word-read-
ing (coa; four items), and categorization (CAT; four items). All subjects performed perfectly
on the categorization items, and these tests are omitted from analysis, reducing the size of a
complete cluster to 18. The total number of test responses under analysis is 930.
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Table 3. Marginal regression analyses of Wada test results for GLIM (independence
model) and alternating logistic regression with three association models

Model A Model B Model C Model D
Variable Est. Z Est. Rob. Z Est. Rob. Z Est. Rob. Z
Intercept 3-31 612 3-13 428 3-19 4-36 2:69 4-11
1 (right handed) 0-82 311 0-80 224 0-86 248 0-85 2:66
1 (right seizure focus) 0-26 1-03 0-23 0-79 0-18 0-65 026  0-86
log (age of onset) -0-14 -1-78 -012  -142 -0-13  -1-64 -0-11 -1-39
1 (lesion) -0-16 —0-69 -0-15  -0'53 -0-08 —0-28 -0-09 -0-32
1 (log time to mid-test) -2-41 —6-89 -2:24 —431 -2:28  —4-46 -1-89 —4-30
1 (WOR) 0-44 1-20 043 1-74 042 1-58 062 2:64
1 (PIW) 024  0-68 025 0-68 0-19 0-51 0-28 0-78
1 (PIN) 0-33 1-17 0-35 0-96 0-19 0-53 0-25 0-76
1 (COA) 1-14 3-36 1-14 212 1-07 219 096 2:34
Within-subject - - 0-26 1-18 - - - -
Within-class - - - - 1-22 4-34 - -
OBJ - - - - - - 1-38 323
WOR - - - - - - 212 220
PIN - - - - - - 1-05 1-07
PIW - - - - - - 0-65 1-50
COA - - - - - - 1-80 1-89
Between-class - - - - -0-04 -0-13 - -
OBJx WOR - - - - - - 193 3-59
OBJ *PIN - - - - - - 0-57 1-02
OBJ « PIW - - - - - - -0:06 -0-14
OBJ x COA - - - - - - -1:03 -0-28
WOR * PIN - - - - - - 0-75 1-15
WOR * PIW - - - - - - -1-:01 -0-25
WOR x COA - - - - - - -1-68 -0-43
PIN « PIW - - - - - - -0-32 -0-21
PIN « COA - - - - - - -0-32 017
PIW x COA - - - - - - 0-38 0-96

In Table 3 we present four marginal models: model A, a model which ignores association
of test responses within a subject, fitted using GLIM; model B, an alternating logistic regres-
sion model assuming a constant pairwise log odds ratio; model C, an alternating logistic
regression model assuming different within-test-class and between-test-class pairwise log
odds ratios; model D, a model in which the 15 separate within- and between-test-class
association parameters are fitted using alternating logistic regression. In model A we use
naive standard errors based on the independence assumption to demonstrate the potential
for incorrect inferences. Note that Z-statistics from model A tend to be too large as can be
seen by comparing model A with any of the others in Table 3.

The regression results for models B, C and D are qualitatively similar. For a right-
handed individual with right-hemisphere seizure focus, no lesion, and mean values for
age of seizure onset (5-6 years), and time to mid-test (2-2 minutes), the probability of
correct response to an object-identification question is estimated to be 0-89 in each of
the models. This high success probability is consistent with prevailing theory that language
functions are concentrated in the left hemisphere, and thus are relatively unimpaired by a
right-hemisphere amobarbital injection. The reduction in success probability for left-
handed patients may indicate presence of right-hemisphere language dominance for
these patients; as 85% of the sample was right-handed, this interpretation is in need of
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further supporting evidence. That success probability is reduced in the presence of longer
times elapsed to mid-test is to be expected, as accumulated delays in responding to test
items would be indicative of language impairment. Higher success probabilities for items
on concrete/abstract word reading probably reflect the fact that the amobarbital effect
has diminished by this point in the testing scheme.

Turning to the association model B, the common within-person odds ratio does not
appear to be significant. In model C, however, the within-test-class odds ratio is found
to be highly significant, while there is little evidence of common between-class associ-
ation. In the expanded model D, we allow for class-specific within-class association. Signifi-
cant positive pairwise association was observed on responses within the object-naming
(oBs) and word-reading (WOR) test classes. Positive association was also detected for
pairs of responses in which one element of the pair is an OBJ response, and the other is a
WOR response. No other significant between-class associations were observed. Detection
of test-classes such as 0BJ and wWOR which are highly concordant may aid in the pursuit
of a more parsimonious testing scheme.

5. DISCUSSION

First-order and second-order estimating equations permit estimation of first- and
second-moment parameters in regression models for multivariate binary data. When associ-
ation among the observations is of scientific importance and is measured using marginal
odds ratios, the second-order methods are more efficient, but the computations required
will preclude their application in studies with large clusters. This paper has proposed an
alternative approach which overcomes the computational limitations encountered in
many problems. The new method, alternating logistic regressions, involves matrices
whose dimension is O(n) as opposed to O(n”) for second-order estimating equations. Alter-
nating logistic regression is reasonably efficient relative to solving equation (3) in the cases
considered. In alternating logistic regression, we estimate the association parameters by
modelling the conditional distribution of one response given another. Here, use of a
diagonal weighting matrix in the odds ratio regression of one response on another gives
a reasonably optimal weighting. In alternating logistic regression, we do not include
w; — v; in the estimating equation for 3 so that the solution § remains consistent in
many problems even when E(W)) = v,.

Zhao & Prentice (1990) and Prentice & Zhao (1991) have studied estimating equations
for (B3, «) where the pairwise association parameters « describe correlations rather than
odds ratios. Here, the computations are simpler but there are more complicated con-
straints on the values of .. Further work is necessary to compare this approach with alter-
nating logistic regression. Fitzmaurice & Laird (1993) parameterize the log linear model for
multivariate binary data in terms of marginal means and conditional pairwise odds ratios
given all other responses in the vector. Here, the first-order generalized estimating equation
for (3 is the maximum likelihood score equation. One limitation of this approach is that it
applies only when #; = n for all clusters.

We illustrated our procedure with an application to neuropsychological test data in
which clusters were typically of size 18. To confirm informally the finite sample validity
of alternating logistic regression inferences, we conducted a simulation study in which
samples of 52 clusters (individuals) were taken with replacement from the original example
data. For each of 1086 such samples, we computed the alternating logistic regression esti-
mates of model B and determined whether the nominal 95% confidence interval covered
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the parameter values estimated on the original data set. The actual coverage probabilities
for the nominal 95% intervals ranged from 0-84 to 0-98 over the 12 parameters and had
median value 0-90. Hence there is only a small degree of undercoverage with m = 52.

Self contained software implementing alternating logistic regression in the C program-
ming language, interfaced to S (Becker, Chambers & Wilks, 1988), is to be made available
through the STATLIB public domain distribution service.
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