## Lecture 1 Introduction to Multi-level Models

Course web site

http://www.biostat.jhsph.edu/~fdominic/teaching/bio656/ml.html



- ✓ Main Ideas
- ✓ Accounting for Within-Cluster Associations
- ✓ Marginal & Conditional Models
- ✓ A Simple Example
- ✓ Key MLM components

1





## Example: Alcohol Abuse

## Level:

- 1. Cell: Neurochemistry
- 2. Organ: Ability to metabolize ethanol
- 3. Person: Genetic susceptibility to addiction

5

- 4. Family: Alcohol abuse in the home
- 5. Neighborhood: Availability of bars
- 6. Society: Regulations; organizations; social norms













| (              | Generalize<br>g(µ)<br>(µ | ed Linea<br>= β <sub>0</sub> + β <sub>1</sub> *<br>= E(Y X) = | t <b>r Models</b><br>X <sub>1</sub> + + β <sub>p</sub><br>mean ) | (GLMs)<br>*X <sub>p</sub>                   |
|----------------|--------------------------|---------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| Model          | Response                 | g(μ)                                                          | Distribution                                                     | Coef Interp                                 |
| Linear         | Continuous<br>(ounces)   | μ                                                             | Gaussian                                                         | Change in<br>avg(Y) per unit<br>change in X |
| Logistic       | Binary<br>(disease)      | $\log\left(\frac{\mu}{(1-\mu)}\right)$                        | Binomial                                                         | Log Odds Ratio                              |
| Log-<br>linear | Count/Times<br>to events | log( µ )                                                      | Poisson                                                          | Log Relative<br>Risk                        |
|                |                          | •                                                             |                                                                  | 12                                          |























|                   | Model                           |                         |  |
|-------------------|---------------------------------|-------------------------|--|
| Variable          | Ordinary Logistic<br>Regression | Account for correlation |  |
| Intercept         | 0.66                            | 0.67                    |  |
| (β <sub>0</sub> ) | (0.32)                          | (0.29)                  |  |
| Period            | -0.27                           | -0.30                   |  |
| (β <sub>1</sub> ) | (0.38)                          | (0.23)                  |  |
| Treatment         | 0.56                            | 0.57                    |  |
| (β <sub>2</sub> ) | (0.38)                          | (0.23)                  |  |





















| Margir    | nal -vs- R<br>Cross | andom Inte<br>s-over Exam | rcept Mode    |  |  |
|-----------|---------------------|---------------------------|---------------|--|--|
|           | Model               |                           |               |  |  |
| Variable  | Ordinary            | Marginal (GEE)            | Random-Effect |  |  |
|           | Logistic            | Logistic                  | Logistic      |  |  |
|           | Regression          | Regression                | Regression    |  |  |
| Intercept | 0.66                | 0.67                      | 2.2           |  |  |
|           | (0.32)              | (0.29)                    | (1.0)         |  |  |
| Period    | -0.27               | -0.30                     | -1.0          |  |  |
|           | (0.38)              | (0.23)                    | (0.84)        |  |  |
| Treatment | 0.56                | 0.57                      | 1.8           |  |  |
|           | (0.38)              | (0.23)                    | (0.93)        |  |  |
| Log OR    | 0.0                 | 3.56                      | 5.0           |  |  |
| (assoc.)  |                     | (0.81)                    | (2.3)         |  |  |









- Studies of health services: assessment of quality of care are often obtained from patients that are clustered within hospitals. Patients are level 1 data and hospitals are level 2 data.
- In developmental toxicity studies: pregnant mice (dams) are assigned to increased doses of a chemical and examined for evidence of malformations (a binary response). Data collected in developmental toxicity studies are clustered. Observations on the fetuses (level 1 units) nested within dams/litters (level 2 data)
- The "level" signifies the position of a unit of observation within the hierarchy

39

