Lecture 3 Linear random intercept models

Example: Weight of Guinea Pigs

- Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ)
- The response is measures at n different times, or under n different conditions. In the guinea pigs example the time of measurement is referred to as a "within-units" factor. For the pigs n=9
- Although the pigs example considers a single treatment factor, it is straightforward to extend the situation to one where the groups are formed as the results of a factorial design (for example, if the pigs were separated into males and female and then allocated to the diet groups)

A) Linear model with random intercept

$$Y_{ij} = U_i + \beta_0 + \beta_1 t_j + \varepsilon_{ij}$$

$$U_i \sim N(0, au^2)$$
 Variance between

$$\varepsilon_{ij} \sim N(0,\sigma^2)$$
 Variance within

$$\rho = \frac{\tau^2}{\tau^2 + \sigma^2}$$
 Intraclass correlation coefficient

Example: Weight of Pigs

For this type of repeated measures study we recognize two sources of random variation

- 1. Between: There is heterogeneity between pigs, due for example to natural biological (genetic?) variation
- 2. Within: There is random variation in the measurement process for a particular unit at any given time. For example, on any given day a particular guinea pig may yield different weight measurements due to differences in scale (equipment) and/or small fluctuations in weight during a day

B) Marginal Model With a Uniform correlation structure

$$E[Y_{ij}] = \beta_0 + \beta_1 t_j \qquad \text{Model for the mean}$$

$$cov(Y_{ij}) = (\tau^2 + \sigma^2)[\rho 1 \cdot 1' + (1 - \rho)I]$$

Model for the covariance matrix

Models A and B are equivalent

$$\begin{split} E[Y_{ij} \mid U_{i}] &= U_{i} + \beta_{0} + \beta_{1}t_{j} \\ E[Y_{ij}] &= E[E[Y_{ij} \mid U_{i}]] = \beta_{0} + \beta_{1}t_{j} \\ \operatorname{cov}(Y_{ij}) &= \operatorname{cov}[E[Y_{ij} \mid U_{i}]] + E[\operatorname{cov}[Y_{ij} \mid U_{i}]] \\ \operatorname{cov}[E[Y_{ij} \mid U_{i}]] &= \operatorname{cov}(1U_{i}) = \tau^{2}11' \\ E[\operatorname{cov}[Y_{ij} \mid U_{i}]] &= E[\sigma^{2}I] = \sigma^{2}I \\ \operatorname{cov}(Y_{ij}) &= (\tau^{2} + \sigma^{2})[\rho 11' + (1 - \rho)I] \\ \rho &= \frac{\tau^{2}}{\tau^{2} + \sigma^{2}} \end{split}$$

Pigs – RE mod	el			
xtreg weight time, re i(Id) mle				
Random-effects ML regression Group variable (i): Id		f obs f groups	= 432 = 48	
Random effects u_i ~ Gaussian		Obs per	group: min avg max	= 9.0
Log likelihood = -1014.9268		LR chi2(Prob > c	•	= 1624.57 = 0.0000
weight Coef. Std. Err.	z	P> z	95% Conf	. Interval]
time 6.209896 .0390124	159.18 32.40		6.133433 18.18472	
/sigma_u 3.84935 .4058114 /sigma_e 2.093625 .0755471 rho .771714 .0393959				4.732863 2.247056 .8413114
"Population Average", Margina Exchangeable Correlation struc				

Pigs data model 1 – GEE fit

- . xtgee weight time, i(Id) corr(exch)
- . xtcorr

Estimated within-Id correlation matrix R:

GEE fit – Marginal Model with

Exchangeable Correlation structure results

One group polynomial growth curve model

• Similarly, if you want to fit a quadratic curve $E[Y_{ij} | U_i] = U_i + \beta_0 + \beta_1 t_i + \beta_2 t_i^2$

$$E(\mathbf{Y}_i) = \begin{pmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ & \ddots & \\ 1 & t_n & t_n^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

Pigs - RE model, quadratic trend . gen timesq = time*time . xtreg weight time timesq, re i(Id) mle Random-effects ML regression Number of obs Group variable (i): Id Number of groups Random effects u_i ~ Gaussian Obs per group: min = avg = 9.0 max = LR chi2(2) 1625.32 Log likelihood = -1014.5524Prob > chi2 0.0000 weight | Std. Err P> | z | [95% Conf. Interval] time 6.358818 .1763799 36.05 0.000 6.01312 -.0148922 .017202 -0.87 0.387 -.0486075 .0188231 timesa 19.08259 .675483 28.25 0.000 17.75867 20.40651 _cons /sigma_u 3.849473 .4057983 3.130909 4.732951 /sigma_e 2.091585 .0754733 1.948769 7720686 .0393503 .6880712 rko | .8415775 Exchangeable Correlation structure results

Pigs – Mar	g. mo	del,	qua	adratic	;
trend . xtgee weight time timesg,	i(Id) corr(exch)			
GEE population-averaged mode		,	Number	of obs	= 432
Group variable:	Id			of groups	
Link:	identity		Obs per	group: min	= 9
Family:	Gaussian			avg	= 9.0
Correlation:	exchangeable			max	= 9
	_			i2(2)	
Scale parameter:	19.19	317	Prob >	chi2	= 0.0000
weight Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
time 6.358818	.1763801	36.05	0.000	6.013119	6.704517
timesq 0148922	.017202	-0.87	0.387		.0188231
_cons \ 19.08259	.6754833	28.25	0.000	17.75867	20.40651
Exchangeable Correl	ation struc	ture re	sults		

Pigs data model 1 – GEE fit

. xtcorr

Estimated within-Id correlation matrix R:

```
        c1
        c2
        c3
        c4
        c5
        c6
        c7
        c8
        c9

        r1
        1.0000
        c
        c
        c
        c
        c
        c
        c9

        r2
        0.7721
        1.0000
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
        c
```

GEE fit – Marginal Model with Exchangeable Correlation structure results

Pigs – RE model:	AR(1)
RE GLS regression with AR(1) disturbances Group variable (i): Id	Number of obs = 432 Number of groups = 48
R-sq: within = 0.9851 between = 0.0000 overall = 0.9305	Obs per group: min = 9 avg = 9.0 max = 9
corr(u_i, Xb) = 0 (assumed)	Wald chi2(2) = 12688.55 Prob > chi2 = 0.0000
weight Coef. Std. Err. z	P> z [95% Conf. Interval]
time 6.257651 .0555527 112.64 _cons 19.00945 .6281622 30.26	0.000 6.14877 6.366533 0.000 17.77827 20.24062
sigma_u 3.583343	relation coefficient)
sigma_e / 1.5590851 rho_fov .84082696 (fraction of variation of vari	ance due to u_i)
GEE-fit Marginal Model with AR1 C	orrelation structure

Important Points

- Modelling the correlation in longitudinal data is important to be able to obtain correct inferences on regression coefficients β
- There are correspondences between random effect and marginal models in the linear case because the interpretation of the regression coefficients is the same as that in standard linear regression