Lecture 4
Linear random coefficients
models



Rats example

30 young rats, weights measured weekly for five weeks
Dependent variable (Y;) is weight for rat “i” at week “j”
Data:

Weights Yij of rat | on day Xi
;=8 15 22 29 36

Rat 1 151 199 246 283 320
Rat 2 145 199 249 293 354

Rat 30 |153 200 244 286 324

Multilevel: weights (observations) within rats (clusters)



Individual & population growth

Data and individual MLE Regression Lines
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Improving individual-level estimates

 Possible Analyses
1. Each rat (cluster) has its own line:
intercept= b,,, slope=b;,
2. All rats follow the same line:
bip =B » by =By
3. A compromise between these two:
Each rat has its own line, BUT...
the lines come from an assumed distribution
E(Y;; | bigs bi1) = big + b X,
bio ~ N(Bg s To?)

“Random Effects”
{ by ~ N(Bs, 142)



A compromise:
Each rat has its own line, but information is
borrowed across rats to tell us about individual
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Bayesian paradigm provides methods for
“borrowing strength” or “shrinking”
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Inner-London School data:
How effective are the different schools?
(gcse.dat,Chap 3)

Outcome: score exam at age 16 (gcse)
Data are clustered within schools

Covariate: reading test score at age 11
prior enrolling in the school (Irt)

Goal: to examine the relationship
between the score exam at age 16 and
the score at age 11 and to investigate
how this association varies across
schools



More about the data...

At age 16, students took their Graduate Certificate of
Secondary Education (GCSE) exams

Scores derived from the GCSE are used for schools
comparisons

However, schools should be compared based upon
their “value added”; the difference in GCSE score
between schools after controlling for achievements
before entering the school

One such measure of prior achievement is the
London Reading Test (LRT) taken by these students
at age 11

Goal: to investigate the relationship between GCSE
and LRT and how this relationship varies across
schools. Also identify which schools are most
effective, taking into account intake achievement



Fig 3.1: Scatterplot of gcse vs Irt for
school 1 with regression line)
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Figure 3.1: Seatterplot of gese versnus 1rt for school 1 with regression line



Linear regression model with random
intercept and random slope

I denotes the child
J denotes the school

/Yi/’ =(by; + o)+ (b + B)x; + &
2
gcse bo i~ N (O, T ) '}t(centered)
blj ~ N(Oa Tg)

cov(b, j,b1 j) =T,



Fig 3.3: Fitted regression lines for
all the schools with at least 5
students
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Figure 3.3: Scatterplot of intereepts and slopes for all schools with at least 5 students



Linear regression model with random
intercept and random slope

Y, =(b,; + 5,)+ (b +,31)X,-j +€,
Yij = (160 +181xij) + (bOj + blj'xij) + &
Gy =(by; +by;x;) + &

var(&,) = T+ 27,,x, + zfx; +0°

The total residual variance is said to be heteroskedastic

because depends on X
7, =17,=0

b, =0

var(g, ) = T+ 0’

Model with random intercept only



Empirical Bayes Prediction
(xtmixed reff*,reffects)

In stata we can calculate:

(b

) EB: borrow strength across schools
0j°

A\ A\

(by ;.

) MLE: DO NOT borrow strength across
1j

Schools



Table 3.1: MLE for the inner-London

Table 3.1 Maxdnenn likelilood estinantes for inner-London =chool data
Mol 1 Neoule] 2
Random interee Ianlonn miereepl

a1l =lope

Prarneney E<timate (S)z) LExtimate (SE)

Fixed pani

correlation 1, |.cons] 0.02  (1.40) —0.12 (0.9
between 4y [1rt] 056 (0.01) 0.5 (0.02)
the random Handonm pant
intercept and  y1pives
slope LDy 3.04  (0.31) 301 (0.30)
Vi (.12 (0.02
T~ Shl s
V't 7.02  (0.84) TA4  (0.08)

Between schools
gllamm

varlances \' 021 (1.85) 0.04  (1.83)
i (0.0)] ()

01 (007
within school 4 nG.57 (1.27) 5537 (1.25)

variance _—

Lo Dikelilyood - 140024.51) 14100361




Fig 3.9: Scatter plot of EB versus ML
estimates

Slopes are shrunk toward the overall mean more heavily
than the intercepts
The resulting graphs are shown in figure 3.9.
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Figure 3.9: Scatterplot of EB predictions versus ML estimates of school-specific intercepts
(left) and slopes (right) with equality shown as reference lines



Interpretation of the random
Intercepts

* The EB estimates of the random
intercepts can be viewed as measures
of how much “value” the schools add for
children with a LRT score equal to zero
(the mean)

* Therefore the left panel of Fig 3.9 sheds
some light on the research question:
which schools are most effective?



EB estimates

» We could also produce plots for children
with a different value of the LRT scores

(by, +,5’0)+(51j + B)x,

Note: xtmixed does not provide standard errors of the EB
estimates



Fig 3.10: EB predictions of school-specific

lines
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Figure 3.10: Empirical Baves predictions of school-specific regression lines for th
random-intercept model (left) and the random-intercept and random-slope model (right



Random Intercept EB estimates and
ranking (Fig 3.11)

This school has only two
students

20 a0 60
Hank

Figure 3.11: Random-intercept predictions and approximate 95% confidence intervals
versus ranking (school identifiers shown on top of confidence intervalg)



Growth-curve modelling
(asian.dta)

‘Measurements of weight were recorded for children
up to 4 occasions at 6 weeks, and then at 8,12, and 27
months

*Goal: We want to investigate the growth trajectories of
children’s weights as they get older

-Both shape of the trajectories and the degree of variability
are of interest



Fig 3.12: Observed growth trajectories for
boys and girls
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What we see in Fig 3.127

» Growth trajectories are not linear

* We will model this by including a
quadratic term for age

« Some children are consistent heavier
than others, so a random intercept
appears to be warranted



Quadratic growth model with random
intercept and random slope

Y, =B +fx,+0x.+6,+6 %, +&(A)
Y, =P +162xij +:B3x; +:B4Wj TG TGy X, T glj(B)

Niimmys far Airle
\ i / / I.JUIIIIIIy IT\UJI1 HIIIO \ ﬁ
Fixed effects Random effects

We included a dummy for the girls to reduce the random
Intercept standard deviation



Table 3.2: MLE for children’s growth data

Table 3.2: Maximum likelihood estimates for children’s growth data

Model 1: Mode] 2:
Random intercept Random intercept
and slope
Est (SE) Est (SE)
Fixed pan
3, |-cons] 3.43 (0.18) 3.40 (0.14)
Fa :agl:] T.82 (0.29) 7.70 (0.24)
Gy |age2] ~1.71 (0.11) ~1.66 (0.09)
Random part
ximixed
Random slope LB 092  (0.10) 064 (013)
standard deviation " 7% 050 (0-09)
. = 0.27 (0.33)
Level-1 residual Tf’ﬁ 0.73 (0.05) 0.58 (0.05)
standard deviation
pllamm
1 0.84 (0.18) 0.40 (0.16)
Vg9 0.26 ('D[]g}
1y (.09 (0.09)
é 0.54 (0.06) .33 (0.06)

Log likelihood -276.83 —258.08




Two-stage model formulation

Model C

_ 2
yij_n1j+772jxij+ﬁ3xij+gij Stage 1
;=Y T VW, T6;
;=116 |
y]_ 11+7/12W1]+g1]+7/21xz]+g2]‘xl]+163x +8

y]_ 11+7/21xl]+183x1]+184w1]+g1]+g2]x +8

—

 Stage 2

"
Fixed effects

Model C is the same as model B

Random effects



Cross-level interactions

=1, +1,,x, +,B3x +€,
771]' =Y T oWy TG

T, = 7 ++ Coj
Vi = T 7’12W1j+§1j+ 7/21x,-j + gzjxl] +,B3x +8
N _J

N— 7

Y —~"
771]' 772]'




Table 3.3: Maximum likelihood estimates for models including both random intercept
and slope for children’s growth data (reduced-form notation)

Mol 2 Model 3 Mode] 4

Est  (SE) Est (SE) Est (SE)
Fixed part
3 |-cons] 3.49 (0.14) 3.79 (0.17) 3.75  (0.17)
33 |age] 7.70  (0.24) 7.70  (0.24) 7.81 (0.25)
34 |age2) ~1.66 (0.09) —1.66 (0.09) ~1.66 (0.09)
B [girl] —0.60  (0.20) —0.54  (0.21)
Gy lgirl xage] -0.23  (0.17)
Handom part
xtmixed
Vi 0.64 (0.13) 0.59 (0.13) 0.59 (0.13)
a1 0.27 (0.33) 0.6 (0.32) 0.19 (0.34)
Ve 0.58  (0.05) 0.57 (0.05) 0.57  (0.05)
gdlamm
o 0.40  (0.16) 0.35 (0.15) 0.35 (0.15)
Vg 0.25  (0.09) 0.26  (0.09) 0.25  (0.09)
Vg 0.09 (0.00) 0.05 (0.09) 0.05  (0.09)
f 0.33 (0.06) 0.33 (0.06) 0.33  (0.06)

Log likelihood —258.08 —253.87 -252.99




