Some key statistical
ideas for 655 and 656



Longitudinal data

e Each subject gives rise to a vector of
measurements representing the
same response measured at a
sequence of observation times

e Repeated responses over time on
independent units (persons or
cluster)



Topics in LDA

Basic issues and exploratory analyses

— Definition and examples of LDA

— Approaches to LDA

— Exploring correlation
Statistical methods for continuous measurements

— General Linear Model with correlated data
e Weighted Least Squares estimation
¢ Maximum Likelihood estimation
e Parametric models for covariance structure
Generalized linear models for continuous/discrete
responses

— Marginal Models w
- Log Linear Model and Poisson Model for count responses
- Logistic model for binary responses Key topics
- GEE estimation methods ' to be
- Estimation techniques reviewed
- Random Effects Models (Multi-level models) for 656
)

— Transition Models



Why special methods for LDA?

» Repeated observations y;1,¥;2,. .., Yin,
are likely to be correlated, so assumption
of independence is violated

e What if we used standard regression
methods anyway (ignore correlation)?

— Correlation may be of scientific focus
— Incorrect inference

- Inefficient estimates of the association
between the predictors x and the
outcome y



Characteristics of a LDA data set
(an example of a clustered data set)

e There are repeated observations on each
experimental unit

e Units (clusters) can be assumed
independent of one another

e Multiple responses within each unit
(cluster) are likely to be correlated

e The objectives can be formulated as
regression problems whose purpose is to
describe the dependence of the response
on explanatory variables

e The choice of the statistical model must
depend on the type of the outcome
variable



Why LDA?
(A special case of a multilevel data set)
 Repeated measures made on the same subject

will be correlated.

— John’s cholesterol in 1989 will be related to John's
cholesterol in 1999.

S Time 1

« For subject: at time ;:
- Y; = XB+¢g; with Corr(g;,e;) #0 <

Ij
 To have correct inferences, must account for




Generalized Linear Models for
Longitudinal Data

e Generalized Linear Models: A Review
e The Logistic Regression Model
- Marginal model ) Regression

- Random effects model gﬁ;g'r’;itters have a

interpretation




GLM Examples

e Linear regression
i = X0 gp;) = p;
Y; ~ N(u;,0%)

e Logistic regression

log (1£4-) = X:8: glu;) = log (-

}’; ~ BernOU”i(,U:i)
e Poisson regression

log p; = X;08: g(p;) = log p;

Y; ~ Poisson( ;)




Note for GLMs

e var(Y;) may be a function of y,
- Logistic: var(Y;) = w(1- ;)
— Poisson: var(Y;) =



1. Marginal Logistic Regression Model

(use GEE for parameter estimation)

e Goal: To assess the dependence of respiratory
infection on vitamin A status in the Indonesian
Children’s Health Study

rij=1 if child 7 i1s vitamin A deficient at visit
;5 = 1 child i has respiratory infection at visit j
uij = E(Yjj) = P(Yyj = 1)

logity;j = 5y + Br;;

;oo - {‘}{]}ii_,.'j’oJr_,'j)'l Lij )

var(Y;;) = pi (1 — p5)

corr(Y;;, Vi) = «



@ C
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Parameter Interpretation

o D) P(Y;;=1]x;; =0) probability of infected

I+exp(50) _ _ _
children among the subpopulation that i1s not vitamin

A deficient

exp(fo+13 -
o DUt P(Y;; =1 | x;; = 1) probability

1+exp( Fo+/71)

of infected children among the subpopulation that is
vitamin A deficient
o — g(}}h__l(l'“jj_("g ratio (odds) of the probabilities of
infected to uninfected children among the subpopula-

tion that 1s not vitamin A deficient

idy  PO=lm=l)
e = 1j_n\;f_1 ratio (odds) of the probabilities

of infected to uninfected children among the subpop-

ulation that is vitamin A deficient
= OX&;{"TD)M — odds of infection among vitamin A
deficient children divided by the odds among children

replete with vitamin A (odds ratio)

e 31 = log odds ratio



Correlation between binary outcomes within
the cluster

Two options:
1. Specify pairwise correlations

corr(Y;;, Yir) = «

2. Model association among binary data
using the odds ratio

. . P(Y;;=1.Yy=1)P(Y;;=0.Y;;=0)
) Vi VAR Ve i :
OR(Yij, Yir) = pry=1v,=0) P =07, =T)

Which is better? Option 2.



2. Logistic model with random effects

Assume:

The propensity for respiratory infections varies
across children, reflecting their different genetic
predispositions and unmeasured influences of
environmental factors

Each child has his/her own propensity for
respiratory disease [, + T’,,, but that the effect
of vitamin A def|C|ency (37) on this probability is
the same for every child, i.e.

U, ~ N(0,0?)
Given j, we further assume that the repeated

observations for the jith child are independent of
one another



Logistic model with random effects (cont’d)

35 = log odds of respiratory infection for a
“typical” child (with random effect U, =0)



Logistic model with random effects (cont’d)

exp(/3') = odds of infection for a child with random
effect UU; when he/she is vitamin A
deficient relative to when the same child is

not vitamin A deficient |
. exp( F5+U+37) Ratio of
exp(¥y) = - oD 'L’ ﬂ#[;ﬂl o Iindividual
odds

12 = degree of heterogeneity across the
children in the propensity of disease, not

attributable to x

. P(Y;;=1|r;;=1)/P(Y;j=0|x;;=1) __ Ratoof
XU ) = = — - lation odd
exp(1) P(Y,;=1];;=0)/P(Y;;=0]x;,=0) popuiation 0ces




Random effects (RE) model:
Basic ideas

e There is natural heterogeneity across individuals
in their regression coefficients, and this
heterogeneity can be explained by a probability
distribution

e RE models are most useful when the objective is
to make inference about /individuals rather than
the population average

e 3 represents the effects of the explanatory
variables on an individual child’s chance of
infection

— ...this is in contrast with the marginal model
coefficients, which describe the effect of
explanatory variables on the population
average



Parameter Interpretation of a Logistic
Regression Model with Random Effects

¢ I-:::'gVuD(Y;;r =1 (E ;= 0) = 35+ U;

- P(} _j:1 {1_-;";,;?.'.'__,‘}:
@ Od({g Ilj T J‘) o PI:} j—U L'rli;,;?!.‘gj:

= exp ( 35 + U; + 31*)

+

= exp(4; + U;)

_ P(Y,;=1|U;,z;j=
@ Od(( 19 Iij U) p(}szo [f"r;'.i‘-‘gj:U

¢ Od(U;, x;j = 1) = e’ x Od(U, 25 =0) «

Note: The odds of respiratory infection for a 7
hypothetical child with random effect U. and with
vitamin A deficiency, are equal to ¢”i tlmes the odds
of respiratory infection for the same hypothetical
child with random effect Ui without vitamin A
deficiency.




Parameter Interpretation of a Logistic
Regression Model with Random Effects

(cont’d)
Compare the individual odds from the previous slide:
e Od(U;,z;;=1) = igj ;é [*T‘jj; = exp( 4y + U + 57)
 0d(U;, 1y = 0) = py'=grr == = exp(% + Ui)
¢ Od(Uj, z;j =1) = et x Od(U;, x;; = 0) L"dd;‘s’id”a'

...with the population average odds below:
’ _ Yii=1|z;:=1 oy
e Od(z;; =1) = PETE::- =2 ) _ expl o + 1)
(
(

e Od(z;; =0) =5

° Od( =1)=¢€ P % Od( = () population average odds




In summary
Marginal model:

logit P(Y;; = 1) = By + Py

J’l describes the effect of explanatory variables on the chance of infection
in the entire population.

Random effects model

3 logit P(Y;; = 1| U;) = 3y +U; + B[

describes the effect of the explanatory variables on an individual
chance of infection.



Contrasting Approaches

e In linear models, the interpretation of B is
essentially independent of the correlation
structure.

e In non-linear models for discrete data, such as
logistic regression, different assumptions about
the source of correlation can lead to regression
coefficients with distinct interpretations.

e Two examples:
— Infant growth
— Respiratory disease data



In summary
Marginal model:
E[Y:] = Bo 4 B,
jl describes the change in the average response for a unit change in x;
for the entire population
Random effects model
E[}f}j] = E[Ec 5 \ [;J] = Gy + E|U;] + Bfxij = 5§ + Bixi;

)k
1 describes the change in the average response for a unit change in x;

for a particular subject, and for the entire population



Marginal Model vs. Random Effects

e The interpretation of the model parameters is

different in marginal and random effects models
for binary outcomes parameters

— Marginal: ratio of population odds
— Random Effects: ratio of individuals’ odds

e Marginal parameter values are small in absolute
values than their random effects analogues

| O <] 51 |



Key concepts

e What is a longitudinal data set?
e What is a GLM?

e What is a marginal (population
average) model?

e What is a conditional (random
effects) model?

e Parameter interpretation under a
marginal and a conditional model




