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Logistic Regression with 

Random Intercept



Logistic Regression
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Odds: expected number of successes for each failure

log Od(y i =1 | x i = a +1){ }− log Od(y i =1 | x i = a){ }= β2
Od(y i =1 | x i = a +1)
Od(y i =1 | x i = a)

= exp(β2) Odds ratio

Log-odds ratio



Women Employment status
(womenlf.dta)

• “Workstat”: employment status (0: not 
working, 1: working part-time, 2: 
working full time)

• “Husbinc”: husband income in $1000

• “Childpres”: child present in the 
household (dummy variable)



Logistic regression model

logitP(y i =1 | x2i,x3i) = β1 + β2x2i + β3x3i
Table 4.1: Maximum likelihood estimates for women
Labor’s force participation



Parameter’s interpretation in 
logistic regression

• Women who don’t have a child at home are 5 
times more likely to be working (1/0.21) than 
women that have a child at home controlling 
for husbands income

• Within the two groups of women (the ones 
that have a don’t have a child), each extra 
$1,000 of husband’s income reduces the 
odds of working by about 4% [(1-0.96)X100]



Standard errors 

• Standard errors of exponentiated regression 
coefficients should generally not be used for 
confidence intervals or hypothesis tests. 

• Instead the  95% confidence intervals of the 
above output were computed by taking the 
exponentials of the confidence limits for the 
regression coefficient  

exp{ ?β ±1.96× SE( ?β )}



Visualization of the predictive 
probabilities

?π i =
exp( ?β 1 + ?β 2x2i + ?β 3x3i)

1+ exp( ?β 1 + ?β 2x2i + ?β 3x3i)

Women without a child

Women with a child



Figure 4.2: predicted probabilities from 
logistic regression model, extrapolating 

outside the range of the data



Latent Response formulation of a logistic

regression model

• These models assume that underlying the observed 
dichotomous response (whether the women works or not), there 
is an unobserved or latent continuous response, 
representing the propensity to work. If this latent response is 
greater than zero, then the observed response is 1:

y i
* = β1 + β 2x 2 i + β 3x 3 i + ε i
y i
* > 0⇒ y i = 1

y i
* ≤ 0⇒ y i = 0

E (ε i | x i) = 0

Latent 

continuous

response



Latent Response formulation of a logistic

regression model

• In logistic regression the error        is 
assumed to have a logistic cumulative 
density function given x, 

εi

Pr εi < τ | x i( )= exp(τ)
1+ exp(τ )

E[εi | x i] = 0

Var[εi | x i] =
π 2

3
≈ 3.29



Probit Regression

• When a latent-response formulation is used, it seems 

natural to assume that has a normal distribution 

given x, as is usually done in linear regression. If a 
standard (mean zero variance 1) normal distribution 

is assumed, the model becomes a probit model

εi

Pr(y i =1 | x i) = Pr(y i
* >1 | x i) =

Pr(β1 + β2x i + εi > 0) = Pr(εi > −(β1 + β2x i)) =
Pr(−εi ≤ β1 + β2x i) = Pr(εi ≤ β1 + β2x i) = Φ(β1 + β2x i)

Standard normal

cumulative distribution

function



Which treatment is best for toenail 
infection (toenail.dat)?

• Randomized, double-blind clinical trial of two 
competing antifungal treatments for toenail 
infection (250mg/day terbinafine and 200 
mg/day itraconazole)

• 378 patients were randomly allocated to two 
treatment groups and evaluated at seven 
visits at weeks (0,4,8,12,24,36, and 48)

• Outcome: onycholosis (the degree of 
separation of the nail plate from the nail bed) 
which has been dichotomized (“moderate or 
severe” versus “none or mild”)



The data set includes the 
following variables

• Patient: patient identifier

• Outcome: onycholosis (0, none to mild, 
1 moderate or severe)

• Treatment: 0:itraconazole; 1:terbinafine

• Visit: visit number (1,2,….,7)

• Month: exact timing of the visit in 
months



Research question
• Do patients receiving one treatment 

experience a greater decrease in their 
probability of having onycholosis than those 
receiving the other treatment?

• The data set is not balanced since all patients 
did not attend all planned visits.

• 224 have complete data

• 21 missed the 6-th visit

• 10 missed the 5-th visit

• Monotone pattern of missing data: most of the 
patients dropped at one of the visit and never 
returned



MLE and Missing at Random

• A nice feature of MLE for incomplete 
data is that all the information is used. 
Thus not only patients who attended all 
the visits, but also patients with missing 
visits contribute information

• This is true as long as the data are 
Missing at Random (MAR)



Missing at Random and

Missing Completely at Random

• MAR: used to describe situations where 
response and explanatory variables are 
recorded but the response may be 
missing with a probability independent 
of its unobserved value

• MCAR: if the probability is also 
independent of the explanatory 
variables



Barplot of the proportion of patients with toenail 

infection by visit and treatment group

itraconazole terbinafine



Marginal or Population 
average probabilities

• The figure shows the estimated average (or 
marginal) probabilities of oncholysis given: 1) 
time since randomization; and 2)treatment 
group

• We are not attempting to estimate individual 
subject’s personal probabilities, which might 
well vary substantially, but are considering 
the population averages, given the covariates



Marginal logistic regression model

logit P(y ij =1 | x2 j ,x3ij ){ }= β1 + β2x2 j + β3x3ij + β4x2 jx3ij

treatment month

This model allows for :
• difference between groups at baseline (beta2)
• linear changes in the log-odds of infection over time with 
slopes (beta3)  for the itraconozole group and slope 
(beta3+beta4) for the terbinafine group
•beta4 is the difference in the rate of improvement (on the 
log odds scale) between treatment groups (treatment 
effect)

(i) Is the occasion, (j) is the patient

treat effect



Fig 4.8: Proportions and fitted probabilities 

using ordinary logistic regression

This model makes the unrealistic assumption that the responses
for a given patient are conditionally independent given the covariates



Logistic regression with random 
intercept

(xtlogit,xtmelogit,gllamm)

y ij |π ij ~ Binomial(1,π ij )

π ij = P(y ij =1 | x2 j ,x3ij ,ς j )

logit π ij{ }= β1 + β2x2 j + β3x3ij + β4x2 jx3ij + ς j
ς j ~ N(0,ψ)

The random intercept represents the combined effect of 
all omitted subject-specific covariates that causes 
some subjects to be more prone to the disease than 
others 



Table 4.2: Estimates for toenail data

Variance of the random effects ICC



Results

• Random Intercept model: significant 
treatment effect, with terbinafine having a 
greater downward slope for the log odds than 
itraconazole

• Odds ratio is 0.68 per month in the 
itraconozole group and 13% lower  (equal to 
0.68x0.87=0.59) in the terbinafine group (for 
a patient with random intercept equal to zero)



Parameters Interpretation
Odds(y ij =1 | x2 j = 0,x3ij = a +1,ς j )
Odds(y ij =1 | x2 j = 0,x3ij = a,ς j )

= exp(β3)

Odds(y ij =1 | x2 j =1,x3ij = a+1,ς j )
Odds(y ij =1 | x2 j =1,x3ij = a,ς j )

= exp(β3 + β4 )

Odds of infection per month in the itraconazole group 

for each patient

Odds of infection per month in the terbinafine group 

for each patient

Results: The odds decrease by 32% (100*(1-OR)) in the itraconazole

group and by 42% in the terbinafine group and this difference is

statistically significant at the 5% level



Marginal and Individual 
Probabilities

• Marginal (ordinary) logistic regression 
models the overall (population-
averaged) probabilities

• Random effects logistic regression 
models the individual (subject-specific) 
probabilities



Marginal and Individual 
probabilities 

logit P(y ij =1 | x2 j ,x3ij ,ς j ){ }= β1 + β2x2 j + β3x3ij + β4x2 jx3ij + ς j

logit P(y ij =1 | x2 j ,x3ij ){ }= β1 + β2x2 j + β3x3ij + β4x2 jx3ij

A:Marginal Logistic regression

B:Random Intercept Logistic regression 

marginal prob

individual prob



The population average probabilities implied by the random-intercept 
model can be obtained by averaging the subject-specific probabilities 
over the random-intercept distribution. Since the random intercepts are 
continuous, this averaging is accomplished by integration

P* y ij =1 | x2 j ,x3ij( )=
= P y ij =1 | x2 j ,x3ij ,ς j( )φ(ς j;0, ?ψ )dς j∫ ≠

≠ P y ij =1 | x2 j ,x3ij ,ς j( )

Normal density

Subject-specific curves for different values of the 
random
effect can be obtained with the stata command gllapred

The difference between the population-averaged and subject

specific effects is due to the fact that average of non linear

function is not the same as the non linear function of the average



Logistic regression as a Latent 
variable model

y ij
* = β1 + β2x2 j + β3x3ij + β4x2 jx3ij + (ς j + εij )

y ij =1⇔ y ij
* > 0

ξ ij = (ς j + εij )

var(ξ ij ) = τ
2 +
π 2

3

ρ =
τ 2

τ 2 + π 2 /3

Residual variance of a 
marginal logistic regression

Intraclass correlation 
coefficient



Subject-specific versus population 

averaged logistic regression

Pop average slope
is attenuated
with respect to the
subject-specific slopes



Conditional and marginal probabilities for 

the random intercept logistic regression 

model



Logistic regression as a Latent 
variable model

y ij
* = β1 + β2x2 j + β3x3ij + β4x2 jx3ij + (ς j + εij )

y ij =1⇔ y ij
* > 0

ξ ij = (ς j + εij )

var(ξ ij ) = τ
2 +
π 2

3

ρ =
τ 2

τ 2 + π 2 /3

Residual variance of a 
marginal logistic regression

Intraclass correlation 
coefficient



Clinical Trial of Contracepting
Women

• In this trial, women received an injection of 
either 100mg or 150mg of depot-
medroxyprogesterone acetate (DMPA) on the 
day of the randomization and three additional 
injection at 90-day intervals.

• There was a final follow-up visit 90 days after 
the four injections, this is, one year after the 
first injection

• Throughout the study, each women 
completed a menstrual diary which was used 
to determine whether a women experience 
amenorrhea, the absence of menstrual 
bleeding for a specified number of days



Drop-out

• A total of 1151 women completed the 
menstrual diaries.

• More than 1/3 of the women dropped out 
before the completion of the trial; 17% 
dropped out after receiving only one injection 
of DMPA; 13% dropped out after receiving 
only 2 injections; and 7% dropped out after 
receiving 3 injections

• For women who dropped out before the end 
of the 90-day injection interval, a 
determination of whether or not they 
experienced amenorrhea was made



Goal of the analysis

• To determine subject-specific changes
in the risk of amenorrhea over the 
course of the study (12 months), and 
the influence of the dosage of DMPA on 
changes in a woman’s risk of 
amenorrhea.



A Mixed effects logistic regression model

• (i) is the women, (j) is the injection interval 

• Time =(1,2,3,4) for the 4 consecutive time intervals

• Dose =1, if randomized to 150mg DMPA and 0 
otherwise

• Note that there is not baseline measure of amenorrhea prior 

receiving the treatment. However, due to randomization, we 

assume that the baseline risk (at time =0) is the same in both 

groups and omit a main effect of dose from the model

logitP(Yij =1 |bi) = β1 + β2timeij + β3timeij
2 +

+β4 (dosei × timeij )+ β5(dosei × timeij
2 )+ b1i

b1i ~ N(0,τ
2)



A Mixed effects logistic regression model

• By including a random intercept we 
assume that there is a random 
heterogeneity in women’s propensity or 
underlying risk of amenorrhea that 
persists throughout the entire duration 
of the study



Table: parameter estimates and standard errors 
from a mixed effects logistic regression model, 
with random intercept for the amenorrhea data

Variance of the random intercept



Parameters interpretation
• There is evidence that the subject-specific 

log-odds of amenorrhea increase over the 12 
months of the trial, and that subject-specific 
changes in the risk of amenorrhea depend on 
the dose of DMPA.

• For example, for a women assigned to the 
low dose of DMPA, the log odds of 
amenorrhea increase approximately linearly, 
with an increase in the log odds of 1.09 
(1.1332-0.0419) at 3 months, 2.10 
(2x1.13320-4x0.0419) at 6 months, 3.02 
(3x1.1332-9x0.0419)at 9 months, and 3.86 
(4x1.1332 - 16x0.0410) at 12 months.



Parameters Interpretation
• These increases in risk corresponds to odds of 3 (or 

exp(1.09)), 8.2 (or exp(2.10)), 20.5 (or exp(3.02), and 
47.5 (or exp(3.86)) at 3,6,9, and 12 months.

• On the other end, for the women assigned to the high 
dose of DMPA, the log odds of amenorrhea 
increases quadratically, with an increase in 1.55 
((1.1332-0.0419) + (0.5644-0.1095 ) ) at 3 months, 
2.79 at 6 months, 3.73 at 9 months, and 4.37 at 12 
months.

• That is, the early trend shows a decline toward the 
end. These increases in risk correspond to odds 
equal to 4.7 (or exp(1.55)), 16.3 (or exp(2.79), 41.7 
(or exp(3.73)), and 79 (or exp(4.37)) at 3,6,9, and 12 
months.



Interpretation of the interaction 
terms

• Because treatment (high versus low doses of 
DMPA) is a subject-specific variable, this 
makes the interpretation of the fixed effects 
for the (dose x time) interactions more 
difficult.

• The interaction effects must be given an 
interpretation in terms of a contrast of the 
increases in log odds of amenorrhea for two 
different women, who happen to have the 
same underlying risk of experiencing 
amenorrhea prior randomization, but who 
differ in terms of dose (i.e. one assigned to 
low dose and the other to high dose).



Interpretation of the interaction 
term

• From the estimates of the fixed effects in the 
Table, the ratio of increased odds of 
amenorrhea (odds ratio) at 12 months for a 
women assigned to the high dose, versus 
another women - who happen to have the 
same risk of amenorrhea prior the 
randomization (e.g. the same value of the 
random effect)- but who was assigned to the 
low dose, is 1.66 (or exp(4.37-3.86)), with 
95% CI 1.03 to 2.66



Variance of the random 
intercept

• The estimated variance of the random 
intercept is 5.06. This implies that there is 
substantial variability in the propensity to 
experience amenorrhea, since approximately 
95% of the women have a baseline risk of 
amenorrhea that varies within the range

exp(−3.8 −1.96 5.06)

1+ exp(−3.8 −1.96 5.06)
= 0.0003

exp(−3.8 +1.96 5.06)

1+ exp(−3.8 +1.96 5.06)
= 0.65



Variance of the random intercept: latent 
variable formulation

• Marginal intra-class correlation coefficient 
between the “latent” responses

y ij
* = β1 +β 2timeij + β3timeij

2 +

+β4 (dosei × timeij ) + β5(dosei × timeij
2 ) + b1i + εij

E[εij ] = 0

Var[εij ] = π
2 /3

ρ = corr(y ij
* ,y ik

* ) =
τ 2

τ 2 + π 2 /3
?ρ =

5.06

5.06+ 3.29
= 0.61



A cautionary note

• There is usually not much information 
available on the random effects, beyond a 
random intercept, when the number of 
repeated measurements is relatively small.

• Thus convergence problems during 
estimation are often encountered when 
random effects beyond a random intercept 
are included in the logistic regression for 
longitudinal data.



Marginal logistic regression

logitP(y ij =1) = β1 +β 2timeij + β3timeij
2 +

+β4 (dosei × timeij ) + β5(dosei × timeij
2 )

logOR(y ij ,y ik ) =α jk

OR(y ij ,y ik ) =
P(y j =1,yk =1)P(y j = 0,yk = 0)

P(y j =1,yk = 0)P(y j = 0,yk =1)



Table: Parameter estimates and 
standard errors, obtained using GEE 

approach



Marginal versus random 
effects logistic regression

• The estimated regression coefficients from a 
Marginal model are smaller (in absolute 
value) than the estimated regression 
coefficients from a random effects model

• The ratio of population odds of amenorrhea at 
12 months (odds ratio) for women on the high 
versus low dose is 1.30 (95% CI 0.98,1.71)

• These differences in odds ratio are due to 
different interpretation of the parameters 
between these two classes of models



Marginal versus random 
effects logistic regression

• The estimates of the fixed effect dose in the 
RE model describe the effect of a high versus 
low dose conditionally to a specific women’s 
risk of amenorrhea

• The corresponding effect in the M model 
describe the effects of dose on the 
prevalence of amenorrhea in the population 
of women assigned to high versus low doses


