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Review

• Introduction to multi-level models

• The two-stage normal-normal model

• Two-stage linear models with random 
effects

• Three-stage linear models

• Two-stage logistic regression with 
random effects

• Three stage logistic regression



Multi-level Models: Idea
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Key Points

• “Multi-level” Models:

– Have covariates from many levels and their interactions

– Acknowledge correlation among observations from 

within a level (cluster)

• Random effect MLMs condition on unobserved random 

effects to account for the correlation

• Assumptions about the random effects determine the 

nature of the within cluster correlations

• Information can be borrowed across clusters (levels) to 

improve individual estimates



Fixed and Random Effects

• Standard regression models:  εij ~ N(0,σ2) 

Yij = µ + εij E(Yij)=µ (overall average)

Yij = µ +  b*
j + εij E(Yij)=θj (observed school avgs)

• A random effects model:

Yij | bj = µ +  bj + εij,    where:  bj ~ N(0,τ2)

Fixed Effects

Random Effects:



Testing in Schools: Shrinkage Plot
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Relative Risks for Six Largest Cities
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Two-stage normal normal 

model

y j = θ j + ε j

ε j ~ N(0,σ j

2)

θ j ~ N(θ,τ 2)

RR estimate in city j True RR in city j

Within city statistical

Uncertainty (known)

Heterogeneity across

cities in the true RR



Two Extremes

• Natural variance >> Statistical variance

– Weights wj approximately constant

– Use ordinary mean of estimates regardless 

of their relative precision

• Statistical variance >> Natural variance

– Weight each estimator inversely 

proportional to its statistical variance



Empirical Bayes Estimation

ˆ θ j = λ j y j + (1− λ j )y 

λ j =
τ 2

τ 2 + σ j

2
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Key Ideas

• Better to use data for all cities to estimate the 
relative risk for a particular city

– Reduce variance by adding some bias

– Smooth compromise between city specific 
estimates and overall mean

• Empirical-Bayes estimates depend on 
measure of natural variation

– Assess sensitivity to estimate of NV



Inner-London School data:
How effective are the different schools? 

(gcse.dat,Chap 3)

• Outcome: score exam at age 16 (gcse)

• Data are clustered within schools

• Covariate: reading test score at age 11 
prior enrolling in the school (lrt)

• Goal: to examine the relationship 
between the score exam at age 16 and 
the score at age 11 and to investigate 
how this association varies across 
schools



Linear regression model with random
intercept and random slope

Yij = b0 j + b1 j x ij + εij

b0 j ~ N(β0,τ1

2)

b1 j ~ N(β1,τ 2

2)

cov(b0 j ,b1 j ) = τ12

centered



Empirical Bayes Prediction

(xtmixed reff*,reffects)

In stata we can calculate:

( ˜ b 0 j ,
˜ b 1 j )

( ˆ b 0 j ,
ˆ b 1 j )

EB: borrow strength across schools

MLE: DO NOT borrow strength across
Schools   



Fig 3.10: EB predictions of school-specific 
lines



Three levels models

• In three levels models the clusters 
themselves are nested in superclusters, 
forming a hierarchical structure.

• For example, we might have repeated 
measurement occasions (units) for 
patients (clusters) who are clustered in 
hospitals (superclusters).





Table 1.1: Peak respiratory flow rate measured on two occasions 

using both the Wright and the Mini Wright meter ( Bland and Altma, 
Lancet 1986)

Level 1: occasion (i)
Level 2: method (j)

Level 3: individual 
(k)



Model 3: three-level variance 

component models

y ijk = β1 + ζ jk

(2) + ζ k

(3) + εijk

εijk ~ N(0,σ 2)

ζ jk

(2) ~ N(0,τ 2

2
)

ζ k

(3) ~ N(0,τ 3

2
)

Variance of the

measurements

across the two methods

for the same subject

Variance of the 

measurements 

across subjects 

account for between-method

within-subject heterogeneity



ML models for binary data 



Marginal and Individual 

Probabilities

• Marginal (ordinary) logistic regression 
models the overall (population-

averaged) probabilities

• Random effects logistic regression 
models the individual (subject-specific) 
probabilities



Marginal and Individual 

probabilities 

logit P(y ij =1 | x ij ,ς j ){ }= (β1

* + ς j ) + β2

*
x ij

ς j ~ N(0,τ 2)

logit P(y ij =1 | x ij ){ }= β1 + β2x ij

A:Marginal Logistic regression

B:Random Intercept Logistic regression

marginal 
prob

individual prob



Average of individual

level probabilities IS NOT equal to marginal probability

P
*

y ij =1 | x ij( )=

= P y ij =1 | x ij ,ς j( )φ(ς j ;0, ˆ τ 2)dς j∫ =

exp(β1

* + ς j + β2

*
x ij )

1+ exp(β1

* + ς j + β2

*
x ij )

φ(ς j;0, ˆ τ 2)dς j∫ ≠

exp(β1 + β2x ij )

1+ exp(β1 + β2 x ij )

Normal density



Figure 4.11: Subject-specific versus 
population averaged logistic 

regression

Pop average slope
is attenuated
with respect to the
subject-specific slopes



Outline
• What is profiling?

– Definitions

– Statistical challenges

– Centrality of multi-level analysis

• Fitting Multilevel Models with Winbugs:

– A toy example on institutional ranking

• Profiling medical care providers: a case-study

– Hierarchical  logistic regression model

– Performance measures

– Comparison with standard approaches



Borrowing strength
• Reliability of hospital-specific estimates: 

– because of difference in hospital sample sizes, the precision 

of the hospital-specific estimates may vary greatly. Large 

differences between observed and expected mortality rates 

at hospitals with small sample sizes may be due primarily to 

sampling variability

• Implement shrinkage estimation methods: hospitals 
performances with small sample size will be shrunk toward the 
mean more heavily



Toy example on using 

WinBUGS for hospital 
performance ranking



Hierarchical logistic regression 

model

• I: patient level, within-provider model

– Patient-level logistic regression model with 

random intercept and random slope

• II: between-providers model

– Hospital-specific random effects are 

regressed on hospital-specific 

characteristics



Interpretation of the Random 

Effects

• A model with a random intercept 
indicate inter hospital differences in 
baseline mortality rates

• A model with random slope indicate that 
the effect of clinical burden (patient 
severity) on mortality differs across 
hospitals



Posterior distributions of the ranks – who is the worst?



In summary
• Multilevel models are a natural approach to analyze 

data collected at different level of aggregation

• Provide an easy framework to model sources of 
variability (within county, across counties, within 
regions etc..)

• Allow to incorporate covariates at the different levels 
to explain heterogeneity within clusters and estimate 
cross-level interactions

• Allow flexibility in specifying the distribution of the 
random effects, which for example, can take into 
account spatially correlated latent variables (only in 
Winbugs)


