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SUMMARY

Recent advances in statistical software have led to the rapid diffusion of new methods for modelling
longitudinal data. Multilevel (also known as hierarchical or random effects) models for binary outcomes
have generally been based on a logistic–normal specification, by analogy with earlier work for normally
distributed data. The appropriate application and interpretation of these models remains somewhat unclear,
especially when compared with the computationally more straightforward semiparametric or ‘marginal’
modelling (GEE) approaches. In this paper we pose two interrelated questions. First, what limits should
be placed on the interpretation of the coefficients and inferences derived from random-effect models
involving binary outcomes? Second, what diagnostic checks are appropriate for evaluating whether such
random-effect models provide adequate fits to the data? We address these questions by means of an
extended case study using data on adolescent smoking from a large cohort study. Bayesian estimation
methods are used to fit a discrete-mixture alternative to the standard logistic–normal model, and posterior
predictive checking is used to assess model fit. Surprising parallels in the parameter estimates from the
logistic–normal and mixture models are described and used to question the interpretability of the so-
called ‘subject-specific’ regression coefficients from the standard multilevel approach. Posterior predictive
checks suggest a serious lack of fit of both multilevel models. The results do not provide final answers
to the two questions posed, but we expect that lessons learned from the case study will provide general
guidance for further investigation of these important issues.
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1. INTRODUCTION

Building statistical models to address questions about change over time in binary or ordinal outcomes
is substantially more difficult than for continuous outcomes. A large literature has grown up on the use
of multilevel or hierarchical models for normally distributed outcomes, including longitudinal data in
biostatistics (Laird and Ware, 1982) and numerous applications to clustered data structures in educational
and sociological research (Bryk and Raudenbush, 1992; Longford, 1993; Goldstein, 1995). A slightly
different approach to an overlapping class of longitudinal models is gaining increasing prominence, under
the name of ‘latent growth modelling’, in the emerging field of prevention science (Muthén, 1993; Muthén
and Curran, 1997). With normally distributed outcomes and a linear model, the ‘marginal effects’, or
average differences for subpopulations defined by differing covariate values, are the same as ‘subject-
specific effects’ or expected differences for individual subjects under different covariate values. This is,
however, not true for binary outcome measures, for which a nonlinear link function is needed to provide
a realistic connection between a linear predictor and the mean of the observable variable (the probability
of the outcome) (Neuhaus, 1992; Diggle et al., 1994).

In addition to the greater complexity of parameter interpretation, there are also well known compu-
tational problems in fitting hierarchical or multilevel models to a binary outcome, since the (marginal)
likelihood function cannot be evaluated in a closed form. These problems are especially acute when there
is minimal replication in the data at the first level of variation: that is, occasions within individuals in
longitudinal data. In the typical longitudinal epidemiological study there are rarely as many as ten occa-
sions of measurement. In recent years the computational challenges of fitting complex models to binary
data have been largely overcome; in particular, software has become available to fit the logistic–normal
‘random-effects’ model (Hedeker and Gibbons, 1996; Spiegelhalter et al., 1996; SAS, 1999; StataCorp,
1999), and appears to be gaining widespread use. On the other hand, the slightly older estimating-equation
(‘GEE’ and related) methods, which directly model the first-order structure or marginal distribution of the
outcome (Liang and Zeger, 1986; Diggle et al., 1994; Carlin et al., 1999), also remain popular.

Despite the appearance of several books and papers reviewing the differences between these modelling
approaches (Neuhaus et al., 1991; Neuhaus, 1992; Diggle et al., 1994; Hu et al., 1998), a number of
questions about the strengths and weaknesses of the alternative approaches remain unanswered. For
example, is it realistic to assume, as is standard in multilevel modelling, that heterogeneity between
subjects can be adequately represented by a normally distributed random intercept (and/or slope)? What
implications does this assumption have for substantive conclusions that may be drawn from estimated
model parameters, and to what extent can the assumption be checked from the data?

In this paper we illustrate and discuss these questions in the context of a specific applied problem,
by comparing the results of fitting a standard logistic–normal model with those of fitting an alternative
mixture model. The semiparametric marginal modelling approach is also used for comparison. Our new
model explicitly assumes that a fraction of the population is ‘immune’ to exhibiting the outcome of
interest. This is in contrast to the logistic–normal specification, which assumes a normal distribution of
the unobserved individual-level random intercept, thus allowing the baseline probability to vary smoothly
across the whole population.

All the models explored in this paper are ultimately too simple to address the real complexity of
questions that might be asked about the underlying epidemiology of smoking uptake in teenagers, the
particular application that we consider. In particular, one might well wish to consider more elaborate
mixture models, or models where individual-specific slopes (as well as intercepts) are allowed to vary
across subjects. It may be argued, however, that a thorough understanding of the relatively simple models
used here should be achieved before introducing greater complexity.

In the next section we begin by briefly describing the epidemiological study that motivated this work,
and outline some substantive research questions relating to the uptake of regular smoking among the



Multilevel models for binary outcomes 399

participants. In Section 3, we introduce a range of models that might be used to draw conclusions about
the rate of change over time and the effect of important covariates, in relation to the binary outcome
variable representing self-reported regular smoking. In particular, we define the three models that will be
fitted to the data: a semiparametric (marginal means) model, a standard multilevel logistic–normal model,
and the new discrete mixture model. Methods of parameter estimation for these models are discussed in
Section 4, along with approaches to model checking, in particular using the method of posterior predictive
distributions. Section 5 presents the results of fitting each of the models and the final section concludes
with a detailed discussion of the implications of the results.

2. THE DATA AND RESEARCH QUESTIONS

The Victorian Adolescent Health Cohort Study (VAHCS) was a longitudinal study of teenagers
conducted between August 1992 and July 1995 in the state of Victoria, Australia. A sample of participants
was identified in an initial cross-sectional survey using a two-stage sampling procedure (Patton et al.,
1998a). At this initial survey, students had a mean age of 14.9 years (standard deviation 0.5). At the
second wave of data collection, six months later, the sample was augmented by selecting a second intact
class from the same age group at each participating school. A total sample of 2032 students was identified
from 44 schools. Subsequent waves of data were collected at six-monthly intervals over 3 years, resulting
in an intended six time points for the primary cohort and five times for the second sample. The average
age at the end of the study was 17.4 years. At each wave, a questionnaire was administered by laptop
computer (Hibbert et al., 1996), or where necessary (from wave 4 on) by telephone. The questionnaire
was presented as dealing with important health issues for adolescents and included questions on a wide
range of health risk behaviours and mental health.

A principal focus of the analysis has been on patterns of cigarette smoking, since this is arguably
the single behaviour most likely to impair the long-term health of adolescents. On each occasion, a
subject’s self-assessed smoking status was determined using a 7-day retrospective diary, and a subject
was categorized as a ‘daily smoker’ if they reported smoking on at least 6 days of the previous week.
Demographic and family variables were assessed at entry to the study. For each subject an indicator of
parental smoking was based on whether at least one parent was reported to be a daily smoker. Preliminary
analyses suggested that the most important explanatory variables for describing differences in daily
smoking were age, sex and parental smoking.

As in all cohort studies of this kind, there were problems of sample attrition and missing data. Of
the total sample of 2032 students, 1209 students responded at every time period in which they were
included in the study. At the other extreme, only 85 failed to respond at all time points, and these were
omitted from further consideration. Based on the intended sample, the participation rates were, at each
wave respectively: 87, 85, 84, 80, 78 and 75%, indicating some potential for response bias, especially in
later waves, despite a generally high rate of follow-up for this type of study. For the present analysis we
omitted 187 study participants who did not provide a response on the parental smoking covariate, leaving
a dataset of 1760 subjects. There remained substantial amounts of missing data, in the form of missing
occasions within subjects, and preliminary analysis showed that the pattern of missing outcomes could
not be regarded as completely random.

In a previous methodological review, we have described in detail the primary methods that were used
in subject-matter papers to analyse the prevalence and incidence of regular smoking over the course
of the study (Carlin et al., 1999). These analyses adopted firstly a marginal modelling perspective,
focusing entirely on population-averaged differences in smoking rates with respect to age, sex and parental
smoking, and we shall revisit this approach as a point of comparison in the present paper. The second
set of previous analyses adopted a transitional modelling approach, investigating factors associated with
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the uptake of regular smoking for the first time (Patton et al., 1998a). This approach to longitudinal
analysis has considerable practical appeal because of its connections with survival analysis and the natural
interpretation of incidence rates and their ratios. But it also has drawbacks. In particular, the method is
prone to problems of measurement error, in the sense that great weight is placed on the first reported time
of smoking at a particular level. It will not be discussed further in this paper.

Methods based on multilevel (random effects or ‘mixed’) models have recently become popular in
longitudinal analysis because they allow the modelling of trends over time at the individual level, by
incorporating a subject-specific intercept (and possibly also slope with time) into a regression model for
the outcome. In the present context such a modelling approach may offer the possibility of exploring
the sources of individual-to-individual variability in the propensity to take up smoking, in a framework
that allows for measurement error in the outcome by modelling the level of smoking risk as a latent
variable. Previous discussions of multilevel models for binary outcomes (Neuhaus, 1992; Diggle et al.,
1994; Hu et al., 1998) have suggested that they offer the scope to answer questions such as ‘what is the
rate of increase in the (log) odds of regular smoking for an individual, conditional on major covariates
and on their latent underlying ‘propensity’ to exhibit the outcome?’ The latent propensity is reflected in
the random intercept of the logistic–normal multilevel model. We next describe the specific models that
we fitted to the smoking data, and briefly discuss methods of estimation, before returning to consider
the models’ ability or otherwise to address these questions. For simplicity, we restricted attention to the
effect of a small number of covariates, in particular time or wave of study, sex, and parental smoking. The
resulting analyses are not therefore intended to capture the full complexity of these data, but to illustrate
important issues with respect to the choice of models.

3. MODELS

We consider a binary outcome variable, yi j , which in our example represents self-reported daily
smoking (1 = yes, 0 = no), for the i th subject (i = 1, . . . , n) on the j th occasion of measurement
( j = 1, . . . , J ). In this study there were up to six planned occasions of measurement for each participant,
so J = 6, although for the majority of subjects at least one value was missing, either by design (in that
they were not included for the first wave) or by ‘happenstance’ in that they failed to complete the survey
on one or more occasions.

3.1 Semiparametric marginal model

As a point of reference for the subsequent discussion of multilevel models, we first consider a ‘marginal
model’. This is not in fact a full probability model for the outcome, because it only specifies the form of
the mean or expected value of yi j , which we denote πi j . Assumptions about the second-order structure or
within-individual correlation in response are typically made when using the GEE approach to estimation
(see next section), but these are intended to increase the efficiency of estimation, with less emphasis on
making inferences about the higher-level structure. In our example we consider the specification

πi j = Pr(yi j = 1) = logit−1(β∗
0 + β∗

p pi + β∗
g gi + β∗

w(m)(1 − gi )wi j + β∗
w( f )giwi j ) (1)

where logit(π) = log(π/(1−π)) and gi represents sex (coded 0/1 for males/females), pi parental smoking
(0/1 for no/yes) and wi j wave of study, coded 0, . . . , 5, so each 1 unit interval on this variable represents
6 months of age, with the origin corresponding to wave 1. The interaction effect, allowing a different
trend with wave for males and females, is coded in a slightly nonstandard manner, so that two wave (or
time) coefficients are estimated directly, one for each sex while β∗

g represents the difference in intercepts
between the sexes.
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3.2 Logistic–normal model

To construct a model that fully represents the variation in the data, a method of incorporating correlation
between repeated responses on the same individual is clearly required. By analogy with hierarchical
normal–normal models, a natural extension of the logistic regression model is to incorporate a subject-
specific random intercept, resulting in the following two-level model for the smoking outcome:

πi j |αi = logit−1(β0 + αi + βp pi + βggi + βw(m)(1 − gi )wi j + βw( f )giwi j )

αi ∼ N(0, σ 2). (2)

This model has been proposed and studied by many authors, often as a specific case of the so-called
‘generalized linear mixed model’ (GLMM). A great deal of discussion has been given to the fact that the
β parameters in (2) are different from the parallel β∗ parameters in (1). It has been shown that assuming
model (2) holds, the marginal probabilities, πi j = ∫

(πi j |αi )p(αi ) dαi are related to the covariates by an
approximate logistic regression of the form (1) where the β∗ parameters are attenuated (nearer to zero) in
comparison to the corresponding β, by an amount that increases with the variance σ 2 (Zeger et al., 1988;
Neuhaus et al., 1991). Although the regression coefficients of the marginal model are clearly interpretable
as representing average population differences in the log odds of the outcome (in epidemiological terms,
the logs of prevalence odds ratios), the interpretation of the ‘subject-specific’ parameters β is less clearcut,
and we shall return to this issue in Sections 5 and 6. We shall be primarily concerned, however, with the
related question of whether model (2) provides a reasonable way of representing subject heterogeneity in
data such as ours.

3.3 Discrete mixture model

We shall see in Section 5 that only about one-quarter of the study cohort reported regular smoking at any
of the six occasions, and clearly there are many teenagers who will never take up regular smoking. This
suggests that rather than assuming that the underlying (logit) risk of smoking for each individual follows
a normal distribution, as in the logistic–normal model, it might be preferable to suppose that there is a
subgroup of the population with extremely low or zero probability of regular smoking. If a substantial
proportion of the population of adolescents are ‘immune’ from becoming smokers, their subject-specific
log odds would be negative infinity, and it is impossible for a normal model to capture such a distribution.
We therefore propose a mixture model, in which each member of the population may be either ‘immune’
or ‘susceptible’. We use the notation Si = 1 if subject i is in the susceptible group, and Si = 0 if in
the immune group. If susceptible, the probability of smoking is modelled by the same logistic–normal
specification as previously applied to the whole population. The logistic–normal and discrete mixture
models are illustrated in Figure 1.

In this mixture model, careful consideration needs to be given to the appropriate inclusion of covariate
effects. In view of the likely strong impact of subject-level covariates (such as parental smoking) on the
likelihood of being susceptible, it is important to construct a model for susceptibility that incorporates
these covariates. In general, if we write subject-level covariates as zi and occasion-level covariates as xi j ,
the proposed mixture model may be written as follows:

πi j = 0 if Si = 0

πi j |γi = logit−1(η0 + γi + ηT xi j ) if Si = 1

with γi ∼ N(0, τ 2) (3)

where, at effectively a third level in the model,

Pr(Si = 1) = logit−1(φ0 + φT zi ). (4)
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Fig. 1. Illustration of logistic–normal (unshaded normal curve) and discrete mixture (shaded bar and curve) models,
as probability distributions for the log odds of smoking.

This model was applied to our data with zi consisting of sex (gi ) and parental smoking (pi ), while xi j

included gi and pi also, along with the sex-specific time trends as in (2).

4. ESTIMATION AND MODEL CHECKING

Since the semiparametric marginal modelling approach does not specify a full probability model for
the data, the traditional methods of statistical inference based on the likelihood function (whether regarded
as ‘pure likelihood’ or Bayesian) are not available. Nevertheless, recent research has shown that a number
of so-called quasi-likelihood or estimating equation methods have good repeated-sampling properties for
estimating marginal model parameters (Liang and Zeger, 1986; Zeger et al., 1988). Relatively minor
differences in estimates may arise depending on how the estimating equations are weighted, in particular
within the generalized estimating equation (GEE) framework, on the choice of ‘working correlation’
structure that is used to capture within-subject correlations. Greater efficiency (smaller standard errors)
should be obtained when the working correlation matrix correctly reflects the actual correlation structure
in the data. More substantial differences in point estimates may arise if weighting is applied to adjust
for missing data (Carlin et al., 1999). For the practitioner, these choices result in a wide array of options
both among and within software packages, and in this paper we simply illustrate a range of results for our
example, using the packages Stata (StataCorp, 1999) and MLwiN (Goldstein et al., 1998).

Turning to the logistic–normal model, this provides a likelihood function on which to base estimation,
but the likelihood is not easy to compute since it involves a high-dimensional integral over the distribution
of the n random effects, αi . Three approaches have been proposed for dealing with this integral. First,
it is possible to use the Laplace approximation to derive a so-called penalized quasi-likelihood (PQL),
which in certain situations provides a good approximation to the full likelihood (Goldstein, 1991; Breslow
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and Clayton, 1993; Wolfinger, 1993). This has been programmed into a SAS macro (GLIMMIX) as
well as the package MLwiN. Unfortunately, the approximation works very poorly for data such as that
of our example, where there is considerable inter-subject heterogeneity and only a small number of
binary responses per subject (Breslow and Clayton, 1993; Rodriguez and Goldman, 1995; Goldstein and
Rasbash, 1996). The second approach is to use Gauss–Hermite quadrature to evaluate the likelihood using
numerical integration; this has been implemented in the freeware package MIXOR (Hedeker et al., 1994;
Hedeker and Gibbons, 1996) and is now also available for models involving one random effect in Stata.
Finally, the general Bayesian approach of iterative simulation or Markov chain Monte Carlo (MCMC) is
well-suited to this problem, and essentially reproduces a likelihood analysis if diffuse prior distributions
are used for the parameters of the random effects distribution (in our example, the variance σ 2). We used
the BUGS package (Spiegelhalter et al., 1996) for applying this method.

The discrete mixture model has a complicated likelihood function that not only involves integration
over a normal random effects distribution, but also summation over the two possible values of Si

for each individual. Again, however, this model may be handled relatively simply by MCMC, using
Gibbs sampling, and we fit it using BUGS. In preliminary estimation runs using very diffuse prior
distributions, some instability was observed in the iterative estimation process, where a chain occasionally
attempted to switch from the two-component mixture to the original one-component logistic–normal
model (corresponding to a singularity in the likelihood function). This led us to incorporate slightly more
informative prior distributions (see Section 5). BUGS code used for both models may be obtained from
the first author.

4.1 Target inferences under different models

There is a long tradition in applied statistics of fitting regression models and reporting coefficient
estimates, with appropriate confidence intervals or P-values. With normal-based hierarchical models
this tradition appears to be more or less ‘safe’ since the linearity of structure of the models means
that regression coefficients invariably have a fairly direct interpretation in terms of mean differences in
outcome measures. Under suitable assumptions, such differences may sometimes be interpreted as causal
effects (Rubin, 1974; Holland, 1986). With nonlinear multilevel models, the interpretation of regression
coefficients is more difficult.

Consider the case of binary regression with log odds regression parameters (i.e. logistic regression).
The attraction of the usual regression specification is that it implies that differences in the transformed
outcome parameter—the log odds—associated with differences in the value of a particular covariate, have
identical meaning regardless of the value of other covariates (assuming no interaction effects). With a
hierarchical model, however, these coefficients are also conditional on the unobservable random effect(s),
so any direct interpretation is dependent on the assumption that the effect of interest is constant conditional
on an unobservable random component, an assumption that cannot be directly assessed from the data. We
shall return to this point below and illustrate in our example the lack of interpretability of the ‘subject-
specific’ coefficients.

One arena in which the semiparametric and multilevel approaches may be directly compared is in
the estimation of population mean quantities and their differences. Such quantities are attractive targets
of inference since they have a clear meaning in the population—in particular, they could be estimated
unambiguously given infinite-sized samples, without the need for any modelling assumptions. One can
always derive an implied marginal structure from a multilevel model, since the unobservable components
(‘random effects’) can be integrated out of the multilevel model specification to give marginal probabilities
or means at the observable level. Of course, the semiparametric modelling approach estimates marginal
probabilities directly, so a natural question to ask is whether improvements in bias or efficiency for
estimation of these target quantities is possible by investing in the more complex hierarchical models.
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We investigate this issue in our case study by comparing estimated marginal effects from the multilevel
models with those estimated directly using the semiparametric approach. In particular, we calculate
estimates of marginal differences in probabilities under the three modelling approaches. These marginal
differences may be interpreted as differences in probability or ‘risk’ that are ‘attributable’ to changes in a
single covariate (Rothman and Greenland, 1998). But the nonlinear structure of the model means that they
must also depend on the values of the other covariates included in the regression model. For simplicity,
we chose to fix the other covariates at certain values of substantive interest; in particular, we estimated the
difference in the probability of regular smoking:

• between a subject whose parents smoked and whose parents did not smoke, for males and females
separately, at wave 5 (age ≈17), and

• between a subject at the inception of the cohort (wave 1) and at wave 5 (a 2 year interval), again for
males and females separately, and holding parental smoking at 0 (no smoking).

Calculation of the estimated marginal probabilities (predictive means) under the multilevel models was
performed within the MCMC iterations, by simulating 1000 values from the normal random-effect distri-
bution at each drawn value of the variance parameter (σ 2 for the logistic–normal and τ 2 for the mixture).
The drawn random effects were used in conjunction with the fixed covariate values to generate 1000 values
of the probability of interest, the mean of which represents (at convergence) a draw from the posterior
distribution of the marginal probability. This approach automatically produces an accompanying estimate
of uncertainty, appropriately accounting for the uncertainty of estimation of the variance parameters.

4.2 Model checking using posterior predictive distributions

As models become more complex, it becomes more important to assess whether there are substantively
relevant ways in which they fail to fit the data (Gelman et al., 1995). A simple and effective tool for
model checking, based on comparing the observed data with the type of data that would be ‘typical’
under the assumed model, is the method of posterior predictive check distributions (Gelman et al.,
1996). Briefly, the method requires one to choose one or more test statistics, T , which are (usually
scalar) quantities that reflect features of the data and possibly the unknown parameters that one would
expect the model to represent faithfully. Then we compare the posterior predictive distribution of this
statistic with its posterior distribution based on the observed y value. If the test statistic does not depend
on the unknown parameters, the concept simplifies to a comparison between the observed value of a
statistic, T (y), and the posterior predictive distribution of the same quantity, which may be regarded as
the posterior distribution of T (yrep), where yrep denotes a ‘replicated’ version of the data y. A simple
summary of this comparison is provided by the posterior predictive P-value: Pr(T (yrep) > T (y) | y).
The computation of posterior predictive distributions and corresponding P-values requires integration
over the posterior distribution of the unknown parameters in the model, but this is simple to perform
numerically using posterior simulation draws within the iterations of a MCMC estimation algorithm. The
method is essentially classical goodness-of-fit testing with the Bayesian machinery used to average over
uncertainty in the parameter estimates—which can be important in the case of random effects, since these
are individually not well estimated from the data.

To apply this method to our example, it remains to specify suitable test statistics. We consider that a
sensible requirement of an adequate model is that it should reproduce some of the simplest global features
of the data, such as the proportions of subjects who exhibit particular patterns of change over time. Also,
there is no need to test aspects of the data that are fitted directly by the model—the choice of check
statistics should encompass important substantive features of the data that the model is not designed to
represent directly. To this end, we defined the following three test statistics:



Multilevel models for binary outcomes 405

(1) Tn = proportion of subjects who never report regular smoking,
(2) Ta = proportion of subjects who report regular smoking on all occasions, and
(3) Ti = proportion of subjects who are incident, non-remitting smokers; in other words who report one

or more occasions of not smoking, followed by one or more occasions of regular smoking, without
alternating more than once between the ‘0’ and ‘1’ states.

These definitions were applied to all subjects regardless of their pattern of missing data (occasions where
outcome was missing were ignored); so, for example, an incident smoker in the sense underlying Ti could
have just two occasions of measurement, or could have all six waves.

A further set of posterior predictive checks was based on the marginal odds ratios between successive
time points:

T jk
O R = Pr(yi j = 1, yik = 1)Pr(yi j = 0, yik = 0)

Pr(yi j = 1, yik = 0)Pr(yi j = 0, yik = 1)
(5)

(for j 
= k in 1 . . . J ), where these are simple empirical measures of pairwise association between the
binary outcome at different times, obtained by substituting crude proportions (over available pairs of
nonmissing data values) for the joint probabilities. We expected that most models for dependent binary
outcomes should be able to reproduce these second-order pairwise associations reasonably well, but it
might be of interest to examine patterns across the lag structure: for example, would odds ratios between
outcomes separated by four or five time points be as well fitted as odds ratios corresponding to shorter
lags?

5. RESULTS

Marginal smoking frequencies are summarized in Figure 2, which shows that females had a higher
linear trend in the prevalence of regular smoking than males (using available data at each wave). In
Table 1, descriptive information about missing data patterns is provided, along with a breakdown of
subjects according to their overall pattern of response, in parallel with the three posterior predictive check
statistics defined in the last section. In particular, we see that 77% of individuals never reported smoking
at the daily level at any wave of the study. Table 2 displays the pairwise odds ratios between waves, and
indicates that the strength of association tends to decrease with increasing separation between time points.
One might expect this feature would be difficult to reproduce with the relatively simple models examined
here, since the random intercept model implies approximately equal association between all pairs of time
points.

Parameter estimates from three different semiparametric approaches to marginal model estimation,
all available in well-established statistical packages, are shown in Table 3. The different methods, which
correspond to the use of different estimating equations (Carlin et al., 1999) all give generally similar
results, and the GEE method might be slightly preferred because of its explicit allowance for intrasubject
correlation.

In Table 4 we display parameter estimates under three different approaches to the logistic–normal
model. The first method used the so-called ‘PQL-1’ approximation (Breslow and Clayton, 1993; Goldstein
and Rasbash, 1996) available in the MLwiN package and the GLIMMIX macro for SAS (Wolfinger and
O’Connell, 1993), and its estimates were very poor, giving values much closer to the marginal models
than to the full-likelihood estimates. These problems with PQL when applied to binary data have been
discussed by others (Rodriguez and Goldman, 1995); its results with data such as these are meaningless.
It should also be noted that the second-order approximation suggested by Goldstein and Rasbash (1996)
and also implemented in MLwiN (‘PQL-2’) did not converge in this problem.
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Fig. 2. Prevalence of regular (daily) smoking among participants responding at each wave of the study, for males and
females, in logit scale.

Table 1. Summary statistics on regular smoking outcome in Victorian
Adolescent Health Cohort Study—crosstabulation of smoking response

pattern by completeness of subject data (with percentage by column)

Pattern of response Number of waves completed Total
1–4 5–6

Never positive 278 (69.3) 1083 (79.7) 1361 (77.3)
Always positive 46 (11.5) 44 (3.2) 90 (5.1)
‘Incident’ 39 (9.7) 108 (7.9) 147 (8.4)
Other 38 (9.5) 124 (9.1) 162 (9.2)
Total 401 (100.0) 1359 (100.0) 1760 (100.0)

Table 2. Crude odds ratios (5) for associ-
ation between regular smoking outcome at

each pair of study waves

Wave j Wave k
2 3 4 5 6

1 61 35 43 33 35
2 52 52 41 37
3 65 40 32
4 65 46
5 89
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Table 3. Parameter estimates (with SEs) for semiparametric
(marginal) logistic regression model (1) for regular smoking

Parameter Estimation method
ML/RSEa GEEb MQLc

Interceptd β∗
0 −2.8 −2.8 −2.8

(0.14) (0.13) (0.13)
Parental smoking β∗

p 0.93 0.93 0.92
(0.12) (0.11) (0.12)

Sex β∗
g 0.07 0.09 0.01

(0.17) (0.16) (0.16)
Wave (M) β∗

w(m)
0.11 0.14 0.13

(0.03) (0.03) (0.02)
Wave (F) β∗

w( f )
0.18 0.17 0.18

(0.02) (0.02) (0.02)
aMaximizing likelihood based on marginal model only, with informa-
tion sandwich ‘robust’ SEs, using Stata.
bGeneralized estimating equations based on unstructured working
correlation, using Stata.
cMarginal quasi-likelihood (Goldstein, 1991; Breslow and Clayton,
1993), using MLwiN.
d At wave 1 (≈15 years).

Table 4. Parameter estimates (with SEs) for logistic–normal
regression model (2) for regular smoking

Parameter Estimation method
PQLa MLb Bayesc

Interceptd β0 −3.7 −7.9 −8.2
(0.17) (0.42) (0.46)

Subject SD σ 2.0 4.5 5.0
(0.28)

Parental smoking βp 1.11 2.7 2.6
(0.14) (0.29) (0.35)

Sex βg −0.15 −0.27 −0.28
(0.21) (0.33) (0.41)

Wave (M) βw(m) 0.20 0.35 0.36
(0.04) (0.05) (0.05)

Wave (F) βw( f ) 0.30 0.45 0.53
(0.03) (0.05) (0.05)

aPenalized quasi-likelihood (Goldstein, 1991; Breslow and Clayton,
1993; Wolfinger and O’Connell, 1993), using MLwiN.
bExact maximum likelihood by Gauss–Hermite (20 point) quadrature,
using Stata or MIXOR.
cPosterior means and SEs combining five parallel MCMC chains of
length 40 000, after burn-in of 20 000, using BUGS.
d At wave 1 (≈15 years).
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Full-likelihood maximization using Gauss–Hermite numerical quadrature was performed using 12,
16, 20 and 24 point quadrature with the MIXOR program and the ‘xtlogit’ command in Stata 6.0. Results
from the two programs agreed closely, but there was considerable sensitivity of estimates to the number of
quadrature points used (which suggests that the component of the integrand from the binomial likelihood
is not well behaved). In particular, the estimated coefficient for parental smoking increased by a factor
of more than two when the number of quadrature points was increased from 12 to 20. If only one
approximation (choice of quadrature points) had been used, this instability would have been difficult to
detect, because the approximate SE at each approximation was much smaller than the difference between
estimates.

Finally, MCMC was used, as implemented in BUGS, and assuming diffuse prior distributions for
all parameters. Convergence was achieved after a burn-in of 10 000 iterations (based on five parallel
chains, showing potential scale reduction factors of 1.01 or less (Gelman and Rubin, 1992)) despite high
autocorrelation within each chain for some of the parameters, and a high correlation between the intercept
parameter and the random-effect variance. We also experimented briefly with the MCMC technology
now available in the MLwiN package, and the results were consistent with those from BUGS. Parameter
estimates were very similar to those found by the Gauss–Hermite algorithms when using a reasonably
large number of quadrature points (20), which provided reassurance that both approaches were converging
to the same region of the parameter space.

Examination of the parameter estimates for the logistic–normal model illustrates why the assumption
of a normal distribution for the random intercepts may be questionable. In particular, the fitted model for
the random effects exhibited a huge variance and a highly negative mean (see Figure 1). The reason is
the relative rarity of regular smoking, with 77% of participants never reporting smoking at this level. The
wide dispersion of the random intercepts is the model’s only way of capturing this feature of the data.
Finally, the large between-subject variance is also the reason why the estimated β are so much larger than
the corresponding β∗ (Neuhaus et al., 1991).

Parameter estimates for the discrete mixture model are displayed in Table 5. These were obtained
under the following prior distributions:

φ0 ∼ N(−1, 1)

φg ∼ N(0, 1)

φp ∼ N(0, 1)

with diffuse specifications used for the subject-level coefficients, η, as for the logistic–normal. The
rationale for using a standard deviation of 1 in the prior distributions for the parameters of the
susceptibility model was that odds ratios greater than e2 = 7.4 are very unlikely. The location of the
intercept parameter was set at −1, since e−1/(1 + e−1) = 0.27 seemed a reasonable prior estimate
for the proportion of susceptibles among males (gi = 0) with non-smoking parents (pi = 0). (These
specifications would have the effect of slightly damping any estimates of (positive) association with sex
or parental smoking.) Using five chains from dispersed starting points, convergence was apparent after
20 000 iterations (PSRs < 1.02), and the same number of iterations was used as for the logistic–normal
model. The estimation was repeated with different prior distributions (for example, changing the intercept
specification to φ0 ∼ N(0, 4)), with only minor changes in the results.

The parameter estimates show firstly that the proportion estimated to be susceptible, among males with
nonsmoking parents, was about e−0.78/(1 + e−0.78) = 0.31, which was somewhat greater than (and so
consistent with) the frequency of ‘ever-smokers’ in the data. The evidence for a sex effect on susceptibility
was weak, but the parental smoking effect appeared to operate at both levels of the model, in predicting
susceptibility and in predicting smoking uptake within susceptible individuals.
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Table 5. Parameter estimates for discrete mix-
ture model (3) for regular smoking. Values
are posterior means (and standard deviations)
from combining five parallel MCMC chains of
length 40 000, after burn-in of 20 000, using

BUGS

‘Susceptibility’ model
Intercept φ0 −0.78

(0.33)
Parental smoking φp 0.72

(0.20)
Sex φg −0.30

(0.27)
Logistic–normal model given susceptible

Intercept η0 −2.6
(0.74)

Subject SD τ 2.4
(0.39)

Parental smoking ηp 0.89
(0.42)

Sex ηg 0.43
(0.50)

Wave (M) ηw(m) 0.33
(0.05)

Wave (F) ηw( f ) 0.54
(0.05)

Of primary interest, however, is that the estimated wave coefficients, for males and females, were
almost identical to those obtained in the logistic–normal model. In the mixture model, these coefficients
refer to change within individuals regarded as susceptible, while in the former model they ostensibly apply
to the whole population. It seems counter-intuitive that there is estimated to be the same ‘subject-specific
rate of change’ for susceptible individuals (mixture model) as for all individuals (logistic–normal model),
and this raises questions regarding the interpretability of these coefficients, a point to which we return in
Section 6.

5.1 Estimated marginal differences

In Table 6 we display the marginal risk differences estimated as described in Section 3. The differences
between estimates from the three modelling approaches were not large from a practical point of view.
The estimates of the parental smoking effect were slightly higher under the semiparametric method, while
those for the wave/time effects were slightly lower, with the largest differences under the discrete mixture
model. It might be expected that the inter-wave differences would be more affected by the modelling
assumptions than the parental smoking effect, since estimation of the former could be more affected by
the separation of within and between-subject information that is provided by multilevel modelling.
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Table 6. Estimates of marginal risk differences under three modelling
approaches

Marginal Logistic–normal Discrete mixture
Parental smoking (yes versus no)a

Males 0.115 0.113 0.108
Females 0.136 0.123 0.126

Wave 5 versus wave 1 (2 years)b

Males 0.038 0.040 0.043
Females 0.056 0.061 0.066

a At wave 5; standard errors for all estimates were between 0.016 and 0.018.
b For nonsmoking parents; standard errors for all estimates were between 0.007
and 0.008.

Table 7. Summary of posterior predictive distribution for three check statistics, as
described in text. For each model, table shows 2.5, 50 and 97.5%-ile of posterior

distribution, and posterior predictive P-value: P = Pr(T (yrep) > T (y) | y)

Logistic–normal Discrete mixture
Observed 2.5% 50% 97.5% P 2.5% 50% 97.5% P

Tn 0.773 0.755 0.769 0.782 0.27 0.748 0.774 0.799 0.53
Ta 0.051 0.050 0.057 0.065 0.95 0.038 0.050 0.063 0.44
Ti 0.084 0.053 0.065 0.079 0.005 0.049 0.063 0.078 0.004

5.2 Model checking

Posterior predictive distributions for the three diagnostic check statistics are shown in Table 7, alongside
the observed values reproduced from Table 1. For Tn (proportion never smoking) and Ta (proportion
always smoking), the only suggestion of a lack of fit was associated with Ta for the logistic–normal
model (P = 0.95), which indicates that the estimated model typically produces a higher proportion of
‘always-smokers’ than found in the data. This is apparently because the logistic–normal model is unable
to reproduce the right-hand end of the distribution of πi j very well. In this regard, the mixture model fared
better. For both models, however, the P-values associated with Ti were extremely small, indicating that
both models produce too few ‘pure incident’ smokers. Another way of expressing this result is that the
models produce more within-subject variability in response than was observed in the data.

Posterior predictive P-values for the pairwise crude odds ratios, T jk
O R , are shown in Figure 3. None

of these P-values is particularly extreme, but plotted against time lag they show that both models predict
relatively lower odds ratios at small lags and higher odds ratios at large lags, than observed in the data.
In other words, as might be expected, the tendency seen in the raw data to decreasing association with
increasing lag between time points is not well represented by these models.

6. DISCUSSION

Although the logistic–normal (or ‘random-effects’) model has been widely described as providing
estimates of regression coefficients that represent effects specific to a subject, or, more precisely,
conditional on the value of the random-effect (Neuhaus, 1992; Diggle et al., 1994; Hu et al., 1998),
we question the value of these interpretations with binary outcomes. With data such as ours, where
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Fig. 3. Posterior predictive P-values for the pairwise crude odds ratios, T jk
O R , defined by (5), plotted against the lag,

k − j . The left-hand line at each lag corresponds to the logistic–normal model, the right-hand line to the discrete
mixture. Points are labelled by the wave numbers jk.

the outcome is always negative in a substantial proportion of subjects, the estimated ‘subject-specific
time effects’ (βw(m) and βw( f ) in our example) are determined largely by the strength of persistence of
the positive outcome response within subjects who exhibit any positive responses. This is shown in our
example by the fact that the estimated wave coefficients are very similar in the mixture and logistic–
normal models, despite the fact that in the mixture model these effects explicitly represent parameters
specified only for the ‘susceptible’ subpopulation. It therefore seems problematic to give these parameter
estimates in the logistic–normal model the usual regression-type interpretation concerning the relative
odds of the outcome at one time point compared to a previous one, an interpretation that is implied in
a number of reviews of methods for analysing repeated binary outcomes. For example, in the context
of a similar example concerning adolescent smoking, Hu et al. (1998) describe logistic–normal models
as ‘estimating the changes in individuals’ smoking behaviour across time’. A similar interpretation is
implied by Heagerty (1999), who presents methods for obtaining estimates of these conditional regression
coefficients from marginally specified models.

The fact that the time effect estimates are very similar in the mixture and logistic–normal models
shows that a similar estimate of the rate of change parameter arises whether or not the large group of
never-smokers is included in the analysis. Upon reflection, this is not surprising because it is intuitively
clear that the never-smokers contribute little if any information about subject-specific rate of change. The
phenomenon illustrated here is closely analogous to that arising in the standard conditional analysis of
matched pair binary outcome data, where concordant pairs do not contribute to estimation of the odds
ratio. This feature of estimation in paired binary data has been said to cause discomfort to many data
analysts (Rothman and Greenland, 1998). Several authors have examined the phenomenon in the matched
pair context, from the point of view of efficiency of estimation given the common odds ratio model (Liang
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and Zeger, 1988; Neuhaus and Lesperance, 1996). The present analysis suggests a different point of
view on this issue: that in some applications it may be appropriate to question the underlying model
itself.

Is it really sensible to estimate the ‘within-subject effect’ of a covariate such as wave of study? What
do we mean by this? It presumably would mean the difference between the probability (or logit) of the
outcome in a given individual at one wave compared to another. In a different example, one might be
concerned with the effect of a treatment (or pseudo-treatment) variable. For example, Neuhaus (1992)
describes a longitudinal study of AIDS behaviour in which one of the aims was to estimate the effect of
learning the result of an HIV test on the risk of engaging in unsafe sex. The aim was thus to estimate
the difference for a given subject between their probability of unsafe sex with and without the knowledge
of the test result, an aim that addresses a causal question under the counterfactual definition of causality
proposed by Rubin (1974, see also Holland (1986)). Unfortunately, in either context (‘causal’ or not), the
question posed seems to make sense only under the strong and untestable model that there is a constant
effect (usually assumed in the logit scale) across all individuals. This is because, although each individual
is observed under both covariate conditions (so in principle a direct estimate of causal effect is available
for all), the fact that the outcome is binary means that no probability estimate can be obtained except by
grouping individuals together in some way, with the usual approach being the constant effect assumption.
Notice, moreover, that if our discrete-mixture model is adopted, the within-subject question is no longer
sensible when applied to the whole population.

By the very nature of a binary outcome, if a subject never exhibits the outcome (or indeed, always
exhibits it), it is not possible to answer the question of whether or not a within-subject effect (the time
trend in our example) is the same for them as for others, who do exhibit change. This is very different from
the situation with continuous outcome data, where even two or three occasions of measurement provide
some information about each individual’s slope parameter, no matter what their baseline or final values
are. Thus with continuous outcomes there is always some information in the data with which to assess
an assumption of common effect across subjects. (With binary data in which many subjects do exhibit
change, it is still impossible to use the data to check the assumption of common slope within subjects,
but perhaps it is a reasonable first assumption in such data, since the concept of change at least seems
meaningful for all subjects.)

Although the regression parameters of the logistic–normal or similar complex models may be difficult
to interpret, it does not follow that such models have no role in efforts to understand longitudinal data.
In determining an appropriate role, it is critically important to clarify the ultimate aim of the statistical
modelling. In this paper we limited attention to the rather simple aim of estimating average differences
between subgroups defined by different covariate values, which could at best be interpreted as estimating
average causal effects. One reason for this is the questionable meaning of the ‘within-subject effect’, as
discussed, while another is the desire to explore simple questions thoroughly before moving onto more
complex ones, where the answers may be more model dependent.

The mean difference in probabilities between individuals with distinct covariate values (‘treated’
and ‘untreated’) is of course estimated directly in the semiparametric modelling approach. Building a
full multilevel model may, however, result in reduced bias and greater efficiency if a well-fitting model
can be found. The two approaches estimate a similar quantity, in principle, because integrating over the
unobservable effects distribution(s) in a multilevel specification is linear in the probability scale (so the
integrated risk difference is the same as the difference of the integrated risks). Others have shown that if
the data are truly generated by a logistic–normal specification, the marginal logistic model provides a good
approximation to the true marginal model (Zeger et al., 1988; Neuhaus et al., 1991). However, biases may
arise from fitting the marginal model to unbalanced data where missing data are not missing completely
at random, essentially due to the combining together of between-subject and within-subject information
in the estimation (Liang and Zeger, 1986; Carlin et al., 1999). In this case study, there was little evidence
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of major differences between the semiparametric and logistic–normal methods, or the alternative mixture
model, for these particular inferential targets.

Comparing the marginal probability differences suggested that inferences for these quantities were
not unduly influenced by the alternative model assumptions, but such immediate comparisons are not
available when models are used for making conclusions about more complex or more abstract aspects of
behavioural development. Multilevel models are being used more commonly as tools for building better
understanding of developmental processes. While the background theory of relevant subject matter is
important in judging model assumptions, it is also critical to assess the fit of the model to key aspects of
the observed data. Approaches to model checking have recently been discussed for hierarchical models
involving continuous outcomes (Hodges, 1998; Langford and Lewis, 1998) but less has been written on
model fit for multilevel models with binary outcomes. We approached model diagnosis in our example
by using the method of posterior predictive checks, comparing observed features of the data with the
distribution of such features in replicated datasets under the fitted model. In fact, in our example, the
posterior predictive check method suggested that there was at least one major aspect on which neither the
logistic–normal nor the mixture model provided a good fit to the data (reproduction of the proportion of
pure incident cases). The logistic–normal fit was also questionable with respect to one of the other check
statistics.

Although the discrete mixture model has considerable appeal as an alternative to the logistic–normal
in this example, it also has its own difficulties. For example, the realism of assuming a precise zero
probability for a large subpopulation might be questioned. This represents a strong prior assumption,
but it appears to be more reasonable than the alternative assumption of a normal distribution across
the population. The resulting model achieved slightly better results in our diagnostic model checking
although, as mentioned, still failed to fit on the check statistic of proportion of incident cases. The mixture
model may be interpreted as incorporating an interaction effect between an unobservable latent variable
and the other covariate effects, and we believe such interaction effects may need to be more widely used
to capture complex behavioural phenomena realistically (Muthén and Curran, 1997). The mixture model
is not straightforward to fit, although general-purpose Bayesian estimation software (BUGS) handled this
particular problem adequately.

Further motivation for exploring multilevel models for binary outcomes in more depth may come
from defining more complex substantive research questions. For example, it may be that a full probability
model of the ‘natural history’ of a behavioural development such as the commencement of tobacco use
can be used to inform the development of preventive interventions and the study of the effects of such
interventions, which may not produce constant effects across the entire population. On the other hand,
caution seems warranted by the limited information in binary outcomes (in this regard, see also Longford,
1993) and it may be more fruitful to develop more refined outcome scales for analysis.

In conclusion, the ease with which a fully specified random effects Bayesian model, as opposed
to incompletely specified marginal models, can be used to obtain inferences regarding a wide range
of population quantities, is both valuable and dangerous. The fact that neither the standard logistic–
normal model nor the mixture model in our example reproduced the proportion of pure incident cases
very well needs to be taken seriously when deriving population-based conclusions from the model.
For example, these models do not seem to be specified sufficiently well to reproduce the population
frequencies of identifiable developmental trajectories. Application of this model in the analysis of a
preventive intervention trial, for example, might lead to misleading conclusions about the population
impact of the intervention in reducing the incidence of smoking.

Furthermore, although many authors have suggested that the subject-specific logit difference parame-
ter may be interpreted in its own right as estimating a ‘subject-specific’ effect, our example suggests that
the usefulness of this interpretation is at best questionable. The smoking example demonstrates that the
proper role of increasingly popular logistic–normal models is not yet clear and requires further research.
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In particular, to what extent do the conclusions reached after fitting such models depend on aspects of
the model that demonstrably fail to fit aspects of the data, or on untestable and perhaps unreasonable
assumptions? As part of this, further thought needs to be given to clarifying the types of conclusions
that are sought from the fitting of such models, moving from the use of regression coefficients to risk
differences and other parameters that have clearer substantive interpretations.
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