
APPENDIX C

Software

C.1 Getting started with R, Bugs, and a text editor

Follow the instructions at www.stat.columbia.edu/∼gelman/arm/software/ to
download, install, and set up R and Bugs on your Windows computer. The web-
page is occasionally updated as the software improves, so we recommend checking
back occasionally. R, OpenBugs, and WinBugs have online help with more infor-
mation available at www.r-project.org, www.math.helsinki.fi/openbugs/, and
www.mrc-bsu.cam.ac.uk/bugs/.

Set up a working directory on your computer for your R work. Every time you en-
ter R, your working directory will automatically be set, and the necessary functions
will be loaded in.

Configuring your computer display for efficient data analysis

We recommend working with three nonoverlapping open windows, as pictured in
Figure C.1: an R console, the R graphics window, and a text editor (ideally a
program such as Emacs or WinEdt that allows split windows, or the script window
in the Windows version of R). When programming in Bugs, the text editor will have
two windows open: a file (for example, project.R) with R commands, and a file
(for example, project.bug) with the Bugs model. It is simplest to type commands
into the text file with R commands and then cut and paste them into the R console.
This is preferable to typing in the R console directly because copying and altering
the commands is easier in the text editor. To run Bugs, there is no need to open
a Bugs window; R will do this automatically when the function bugs() is called
(assuming you have set up your computer as just described, which includes loading
the R2WinBUGS package in R). The only reason to manually open a Bugs window is
to access the manuals and examples in its Help menu.

Software updates

Here we discuss how to set up and run the statistical packages that we use to fit
regressions and multilevel models. All this software is under development, so some
of the details of the code and computer output in the book may change along with
the programs. We recommend periodically checking the websites for R, Bugs, and
other software and updating as necessary.

C.2 Fitting classical and multilevel regressions in R

Using R for classical regression and miscellaneous statistical operations

The lm() and glm() functions fit linear and generalized linear models in R. Many
examples appear in Part 1 of this book; you can see the R documentation and other
references given at the end of this chapter for instructions and further examples.

We have prepared several functions including display(), sim(), se.coef(), and

565

566 SOFTWARE

Figure C.1 Configuration of a computer screen with R console, R graphics window, and a
text editor (in this case, Xemacs) with two windows, one for R script and one for a Bugs
model. We call Bugs from R, so there is no need to have an open Bugs window on the
screen.

sigma.hat(), for displaying, accessing, and generating simulations summarizing
the inferences from linear and generalized linear models in R, as well as functions
such as bayesglm() and bayespolr() for fitting Bayesian generalized linear mod-
els and ordered logistic regressions. All these functions, and a few others, are in
the R package arm (applied regression and multilevel modeling) and are loaded in
automatically if you have followed the instructions in Section C.1. Online help is
available for these as for all R functions.

If you are having trouble with any of these functions, we suggest going to the
website, www.stat.columbia.edu/∼gelman/arm/software/ and downloading the
latest versions of everything.

The lmer() function for multilevel modeling

Our starting point for fitting multilevel models is lmer() (“linear mixed effects,”
but it also fits nonlinear models), a function that is currently part of the lme4 pack-
age in R and can fit a variety of multilevel models using point estimation of variance
parameters. We use lmer() for most of the examples in Part 2A of this book; as
discussed in Section 16.1, lmer() is a good way to get quick approximate estimates
before full multilevel modeling using Bugs. Various generalizations of lmer() are un-
der development that would generalize it to perform fully Bayesian simulation-based
inference; check the webpage www.stat.columbia.edu/∼gelman/arm/software/

for our links to the latest updates.

FITTING MODELS IN BUGS AND R 567

R packages

Go to the R webpage for information on R packages. To use a package, you must
first install it (which can be done from the R console), then in any session you load
in the package as needed using the library() function. Installation needs to be
done only once, but you must load in the package with every R session. (You can
load in our most frequently used packages automatically by putting lines into the
Rprofile.site file, which is set up in the R directory on your computer if you
follow the instructions in Section C.1.)

The most important packages for our purposes are arm (which has our own func-
tions), Matrix and lme4 (which include lmer() in its current form) and R2WinBUGS

(which allows us to run Bugs from R, as described in the next section).
Other packages are helpful for specific purposes. For example, hett is a pack-

age that fits robust regression using the t model (see Section 6.6). To install,
use the install.packages() function in R to download packages from the web.
Then, in any session where we want to fit t regressions, for example, we type
library("hett") (or include this line in any function call) and we are ready to
go. To get help, we can click on Help at the top of the R window, then on “Html
help,” then on Packages, then on the package name (in this case, hett), then on
the name of the function of interest (in this case, tlm). Alternatively, we can simply
type help(tlm) or ?tlm directly from the console.

Other R packages are available, and continue to be developed, to fit various
complex models. The MASS package (which is automatically loaded if you follow
the instructions in Section C.1) includes tools for fitting a variety of models. The
GAMM package fits generalized additive mixed models, an adaptation of regression
and generalized linear models that allows arbitrary nonlinear transformations of
the input variables to be fit by the data (with “mixed” referring to the possibility
of varying coefficients, that is, multilevel models); sem fits models for structural
equations and instrumental variables (as shown in Section 10.6); and MCMCpack fits
a variety of models, including multilevel linear regression for panel data.

C.3 Fitting models in Bugs and R

Calling Bugs from R

Currently, our main tool for fitting multilevel models is Bugs, which can be called
from R using the bugs() function. (Type ?bugs from the R console for more in-
formation.) As described in Part 2B of this book, we can use Bugs to fit models
of essentially arbitrary complexity, but for large datasets or models with many
parameters, Bugs becomes slow to converge.

Programming in R

The flexibility of Bugs makes it the preferred choice for now. If Bugs is too slow,
or if it does not work for a particular model (yes, this happens!), then we program
the Gibbs sampler and Metropolis algorithms directly in R. This will typically be
faster than Bugs in computation time, and also it can converge in fewer iterations,
because in programming the algorithm ourselves we have direct control and can use
updating rules that are tailored to the particular model being fit. See Gelman et al.
(2003, appendix C) for an example and Section 18.7 for an example using the Umacs
package in R. (See www.stat.columbia.edu/∼gelman/arm/software/.) If even R
is too slow, the Gibbs and Metropolis algorithms can be programmed in Fortran

568 SOFTWARE

or C. Researchers are also developing compiled libraries for fast computation of
multilevel models, linkable from R.

C.4 Fitting multilevel models using R, Stata, SAS, and other software

Several other programs are available to fit multilevel models. We shall briefly con-
sider several popular packages, showing how they can be used to fit six prototype
models.

We prefer R and Bugs for their flexibility, both in model fitting and in processing
the resulting inferences, but we recognize that it is helpful to know how to fit
multilevel models in software with which you are already familiar.

In addition to differences in syntax, the different packages display output differ-
ently. For example, we prefer to present estimated variance components in terms
of standard deviations and (for varying-slope models) correlations, but some pro-
grams report variances and covariances. We shall assume that as a user of these
other packages, you will be able to interpret the output and understand its relation
to our notation in Section 2A of this book.

Six prototype models; fitting in R

We briefly present six example models along with the code needed to fit them in
R using lmer(). The models can be fit in Bugs as described in Part 2B of this
book. We follow with code in other packages. These examples do not come close
to exhausting the kinds of multilevel models that we are fitting—but we hope they
will be enough to get you started if you are using software other than R and Bugs.

1. Varying-intercept linear regression with data y, predictor x, and grouping vari-
able group: yi = αgroup[i] + βxi + εi (that is, group is an index variable taking
on integer values 1 through J , where J is the number of groups):

R code lmer (y ~ x + (1 | group))

2. Same as example 1, but with a group-level predictor u (a vector of length J):

R code u.full <- u[group]

lmer (y ~ x + u.full + (1 | group))

(We need to define u.full to make a predictor that is the same length as the
data; currently, the lmer() function in R does not take group-level predictors.)

3. Same as example 2, but with varying intercepts and varying slopes: yi = αgroup[i]+
βgroup[i]xi + εi, where the J pairs (αj , βj) follow a bivariate normal distribution

with mean vector (γα
0 + γα

1 uj , γ
β
0 + γ

β
1 uj) and unknown 2× 2 covariance matrix,

with all parameters estimated from the data:

R code lmer (y ~ x + u.full + x:u.full + (1 + x | group))

4. Go back to example 1, but with binary data and logistic regression: Pr(yi =1) =
logit−1(αgroup[i] + βxi):

R code lmer (y ~ x + (1 | group), family=binomial(link="logit"))

5. Go back to example 1, but with count data and overdispersed Poisson regression
with offset log(z): yi ∼ overdispersed Poisson(zi exp(αgroup[i]+βxi)). This exam-
ple includes overdispersion and an offset because both are important components
to realistic count-data models. To fit quickly in R:

FITTING MULTILEVEL MODELS USING OTHER SOFTWARE 569

R codelog.z <- log(z)

lmer (y ~ x + (1 | group),offset=log.z,family=quasipoisson(link="log"))

6. A two-way data structure with replication: for convenience, label the index
variables for the groupings as state and occupation, so that the model is
yi = µ + αstate[i] + βoccupation[i] + γstate[i], occupation[i] + εi. We want the α’s, the
β’s, and the γ’s to be modeled (each with their own normal distribution); for
simplicity, we assume no other predictors in the model. To fit:

R codestate.occupation <- max(occupation)*(state - 1) + occupation

lmer (y ~ 1 + (1 | state) + (1 | occupation) + (1 | state.occupation))

(The first line was needed to define an index variable that sweeps over all the
states and occupations.)

Fitting in Stata

Stata (www.stata.com) is a statistical package that is particularly popular in social
science and survey research. A wide range of multilevel models can be fit in Stata
as extensions of the basic regression framework.

1. Varying-intercept linear regression:

Stata codextmixed y x || group:

or

Stata codextreg y x, i(group)

or

Stata codegllamm y x, i(group) adapt

2. Varying-intercept linear regression with a group-level predictor:

Stata has no concept of a vector of length shorter than the current dataset, so
we have to create ufull and merge it with the dataset that includes x and y.

Stata codextmixed y x ufull || group:

or

Stata codextreg y x ufull, i(group) re

or

Stata codegen cons = 1

eq grp_c: cons

gllamm y x u, i(group) nrf(1) eqs(grp_c) adapt

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

Stata codextmixed y x ufull || group: x, cov(unstruct)

or

570 SOFTWARE

Stata code gen cons = 1

eq grp_c: cons

eq grp_u: u

gllamm y x u, i(group) nrf(2) eqs(grp_c grp_u) adapt

4. Varying-intercept logistic regression:

Stata code xtlogit y x, i(group)

or

Stata code gllamm y x, i(group)family(binom)link(logit)

5. Varying-intercept overdispersed Poisson regression:

Stata code xtnbreg y x, exposure(z) i(group)

Alternatively,

Stata code xtnbreg y x, i(group) re offset(log.z)

or

Stata code gllamm y x, i(group)offset(log.z) family(poi)link(log)

6. Varying-intercept linear regression with nested and non-nested groupings:

Stata code egen state_occup = group(state occup)

xtmixed y || _all: R.state || _all: R.occup || _all: R.state_occup

Fitting in SAS

SAS (www.sas.com) is a statistical package that is particularly popular in biomedi-
cal research. As with Stata, many multilevel models can be fit in SAS by specifying
grouping of the data.

1. Varying-intercept linear regression:

SAS code proc mixed;

class group;

model y = x;

random intercept / subject=group;

run;

2. Varying-intercept linear regression with a group-level predictor:

SAS has no concept of a vector of length shorter than the current dataset, so we
have to create ufull and merge it with the dataset that includes x and y.

SAS code proc mixed;

class group;

model y = x ufull;

random intercept / subject=group;

run;

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

FITTING MULTILEVEL MODELS USING OTHER SOFTWARE 571

SAS codeproc mixed;

class GROUP;

model y = x ufull x*ufull;

random intercept x / subject=group type=un;

run;

4. Varying-intercept logistic regression:

SAS codeproc nlmixed;

parms b0 b1 s2;

xbeta = b0 + b1*x + a;

p = exp(xbeta)/(1+exp(xbeta));

model y ~ binary(p);

random a ~ normal(0,s2) subject = group;

run;

5. Varying-intercept overdispersed Poisson regression:

SAS codeproc nlmixed;

parms b0=6 b1=-4 k=0.5 s2=1;

xbeta = b0 + b1*x + a;

mu = exp (logz + xbeta);

p = mu/(mu+1/k);

loglik = lgamma(y+1/k) - lgamma(y+1) - lgamma(1/k) +

y*log(p) + (1/k)*log(1-p)

model y ~ general(loglik);

random a ~ normal(0,s2) subject = group;

run;

This nlmixed code specifies the negative binomial likelihood function; the param-
eters are then estimated by numerical integration. The parms statement names
the parameters that will be estimated and gives starting values for them. The
four lines that follow code the loglikelihood function that is going to be maxi-
mized. The model statement gives the response and the loglikelihood function,
and the random statement defines the random intercept.

An alternative approach uses a preprogrammed negative binomial model:

SAS codeproc glimmix;

class group;

model y = x / solution dist = negbin offset = logz;

random intercept / subject=group;

run;

The output of this run has a scale parameter (which equals k in the nlmixed

code) to capture the overdispersion.

6. Varying-intercept linear regression with nested and non-nested groupings:

SAS codeproc mixed;

class state occupation

model y = ;

random state occupation state*occupation;

run;

572 SOFTWARE

Fitting in SPSS

SAS (www.spss.com) is a statistical package that is particularly popular in psy-
chology and experimental social science. Some multilevel models can be fit in SAS
by specifying grouping in data.

1. Varying-intercept linear regression:

SPSS code mixed

y with x

/fixed = x

/print = solution testcov

/random intercept | subject(group)

2. Varying-intercept linear regression with a group-level predictor:

SPSS has no concept of a vector of length shorter than the current dataset, so
we have to create ufull and merge it with the dataset that includes x and y.

SPSS code mixed

y with x ufull

/fixed = x ufull

/print = solution testcov

/random intercept | subject(group)

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

SPSS code mixed

y with x ufull

/fixed = x ufull x*ufull

/print = solution testcov

/random intercept | subject(group) covtype(un)

We are not aware how to fit the other three examples (multilevel logistic regres-
sion, multilevel Poisson regression, and non-nested linear regression) in SPSS.

Fitting in AD Model Builder

AD Model Builder (otter-rsch.com/admodel.htm) is a package based on C++
that performs maximum likelihood or posterior simulation given the likelihood or
posterior density function, a flexibility that is particularly helpful for nonlinear
models.

1. Varying-intercept linear regression:

ADMB code g = -0.5*norm2(z);

alpha = gamma_a + s(1)*z;

for (i=1;i<=n;i++)

mu(i) = alpha(group(i)) + beta*x(i);

g += -n*log(s(0)) - 0.5*norm2((y-mu)/s(0));

Here, g is the log-likelihood.

2. Varying-intercept linear regression with a group-level predictor:

ADMB code g = -0.5*norm2(z);

alpha = gamma_a(0) + gamma_a(1)*u + s(1)*z;

for (i=1;i<=n;i++)

mu(i) = alpha(group(i)) + beta*x(i);

g += -n*log(s(0)) - 0.5*norm2((y-mu)/s(0));

FITTING MULTILEVEL MODELS USING OTHER SOFTWARE 573

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

ADMB codeg = -0.5*(norm2(z1)+norm2(z2));

alpha = gamma_a(0) + gamma_a(1)*u + s(1)*z1;

w = sqrt(1.0-square(rho));

beta = gamma_b(0) + gamma_b(1)*u + s(2)*(rho*z1 + w*z2);

for (i=1;i<=n;i++)

mu(i) = alpha(group(i)) + beta(group(i))*x(i);

g += -n*log(s(0)) - 0.5*norm2((y-mu)/s(0));

4. Varying-intercept logistic regression:

ADMB codeg = -0.5*norm2(z);

alpha = gamma_a + s*z;

for (i=1;i<=n;i++)

eta(i) = alpha(group(i)) + beta*x(i);

g += y*eta - sum(log(1+exp(eta)));

5. Varying-intercept overdispersed Poisson regression:

ADMB codeg = -0.5*norm2(z);

alpha = gamma_a + s*z;

for (i=1;i<=n;i++)

{

lambda = offset(i)*exp(alpha(group(i)) + beta*x(i));

omega = 1.0+lambda/kappa;

g += log_negbinomial_density(y(i),lambda,omega);

}

The negative binomial distribution may be viewed as an overdispersed Poisson
distribution (with omega being the overdispersion coefficient).

6. Varying-intercept linear regression with nested and non-nested groupings:

ADMB codeg = -0.5*(norm2(z_a)+norm2(z_b)+norm2(z_g));

alpha = s(1)*z_a;

beta = s(2)*z_b;

gamma = s(3)*z_g;

for (i=1;i<=n;i++)

eta(i) = mu + alpha(state(i)) + beta(occupation(i)) +

gamma(state_occupation(i));

g += -n*log(s(0)) - 0.5*norm2((y-eta)/s(0));

Fitting in HLM, MLWin, and other software

HLM and MLWin are statistical programs specifically designed to fit multilevel
models. They can fit models such as those in the preceding examples using a menu-
based point-and-click approach.

One can also fit some or all of the models using other statistical packages,
with varying degrees of difficulty. See here for an overview of many packages:
www.mlwin.com/softrev/index.html; the descriptions there are not all up to date
but they should provide a good starting point.

It is also possible to call Bugs using other software, including Stata, SAS, Python,
Excel, and Matlab; go to the link at the Bugs homepage for “running from other
software,” currently at www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml

574 SOFTWARE

C.5 Bibliographic note

R (R Project, 2000) and Bugs (Spiegelhalter et al., 1994, 2002) have online help.
In addition, Fox (2002) describes how to implement regressions in R, and Murrell
(2005) shows R graphics. Becker, Chambers, and Wilks (1988) describes S, the
predecessor to R. Venables and Ripley (2002) discuss statistical methods in R (or,
essentially equivalently, S), focusing on nonparametric methods that are not covered
here; the functions and examples used in that book are in the MASS package.

The lmer() function for fitting multilevel models is described by Bates (2005a,
b), continuing on earlier work of Pinheiro and Bates (2000). Other R packages have
been written for specific multilevel models; for example, MCMCpack (Martin and
Quinn, 2002b).

For Bugs code, the books by Congdon (2001, 2003) present a series of examples.
Kerman (2006) presents Umacs, and appendix C of Gelman et al. (2003) has ex-
amples of direct coding of Bayesian inference in R. The implementation of Bugs
using R, as done in this book, is described by Sturtz, Ligges, and Gelman (2004).
An open-source version of Bugs called OpenBugs (Thomas and O’Hara, 2005) is
also under development.

Several software packages for multilevel models are reviewed by Centre for Mul-
tilevel Modelling (2005), including Stata, SAS, MLWin, and HLM. Rabe-Hesketh
and Everitt (2003) is a good introduction to Stata, and Rabe-Hesketh and Skron-
dal (2005) describe how to fit multilevel models in Stata. The methods used by AD
Model Builder are described by Fournier (2001) and Skaug and Fournier (2006).

Finally, various open-source software has been written and is under development
for Bayesian inference and multilevel modeling; see, for example, Graves (2003),
Plummer (2003), and Warnes (2003).

