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1. Overview 
1.1 Basic Framework of CisGenome 
 CisGenome is a collection of stand-alone programs that support cis-regulatory analysis in 
mammalian genomes. Functions provided by the software include gene selection from 
microarrays, peak detection from ChIP-chip tiling arrays, genomic sequence retrieval, de 
novo motif and module discovery, transcription factor binding site (TFBS) mapping, 
cross-species alignments and annotation using TFBSs. The basic structure of this 
computational toolbox is shown below.  
 

 
 
A crucial feature of CisGenome is its ability to support genome-scale computational 

analysis in a customized fashion. Unlike most web servers that return analysis results in a 
predefined form, the wide spectrum of CisGenome functions allows users to design the 
analysis procedure best suited for their own purpose.  
 
1.2. Installation 
 CisGenome is implemented in ANSI C and can be used on both MS Windows 
and Unix.  
 
1.2.1 Installation on Windows 
 To install CisGenome on Windows, one can download the executable files from 
http://biogibbs.stanford.edu/~jihk/CisGenome/index.htm and unzip them. One can 
then use individual programs by:  

(1) Click Windows “start” menu; 
(2) Click “Run…”; 
(3) A dialog will jump out. Type “cmd” in the dialog. 
(4) A command window will jump out. Use command “cd” to enter the directory 
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where CisGenome executables are installed. 
(5) Run CisGenome functions by typing their names and required parameters. For 
example: 

> genome_getseq –i … -d … 
 
Notice that if you don’t know how to set parameters for a function, you can type 
the function name only. A usage message will be displayed for your reference. 
 
1.2.2 Installation on Unix 
 To install CisGenome on Unix, download the source codes from 
http://biogibbs.stanford.edu/~jihk/CisGenome/index.htm and unzip them. You need to 
compile the source codes by running makefile. Before running the makefile, make 
sure that you have gcc  
 
Run makefile by typing: 
> makefile 
 

You need to have gcc in order to compile the source files. After the programs are 
installed, one can use the individual programs by typing their names and parameters. 
For example: 
> genome_getseq –i … -d … 
 
Notice that if you don’t know how to set parameters for a function, you can type 
the function name only. A usage message will be displayed for your reference. 
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1.3 List of Functions 
1.3.1 Genomics Toolbox I – Establishing Local Genome Database 

(1) genome_encode – Converting genome sequences from FASTA format to 
CisGenome format (*.sq files). *.sq files are binary files. Each byte in the *.sq file 
contains two nucleotides. These files are the starting point for most CisGenome 
sequence manipulation functions. 
 (2) genome_markovbg (motifmap_matrixscan_genome_bg) – Fitting a set of 
Markov models as the sequence generating model. The models are fitted from *.sq 
sequence files and have different parameters for different genomic loci. Fitted models 
can be used in various downstream analyses, e.g., they can be used as background 
models when mapping transcription factor binding motifs to genomic sequences. 
 (3) genome_codephastcons_v2 – Converting PhastCons scores to CisGenome 
format (*.cs files). *.cs files are binary files. Each byte in the *.cs file contains the 
conservation score for a single genomic position (i.e., a single base pair). The 
PhastCons scores are converted linearly from interval [0, 1] to interval [0, 255]. A 
larger score corresponds to a more conserved status.  
 (4) genome_footprint – Computing a user-specified conservation scores from 
genome-wide MULTIZ multiple species alignments. Users can specify the meaning of 
“conservation”. For example, “if three contiguous bases are identical in human, 
mouse and dog, and if the 3-mer has at least two identical matches from the other 
three species chicken, frog or zebrafish, then the 3-mer is conserved”. Conservation 
scores are stored in CisGenome format (*.cs files). Each byte in the *.cs file 
corresponds to a single position in the genome. A score “255” corresponds to a 
conserved status, and “0” corresponds to a non-conserved status. 
 (5) genome_conservebg, genome_conservecs – Computing a conservation score 
for each genomic position based on a sliding window percent identity method. The 
scores range from 0 to 255, with a larger score corresponding to a more conserved 
status. Scores are stored in CisGenome format (*.cs files) which are binary files. Each 
byte in the *.cs file corresponds to a single position in the genome. 
 (6) genome_csgetdistn – Get empirical distribution of conservation scores.  

(7) refgene_encode – Converting gene annotations from UCSC RefGene format 
to CisGenome format. The output file is part of the local annotation database. 

(8) refflat_encode – Converting gene annotations from UCSC RefFlat format to 
CisGenome format. The output file is part of the local annotation database. 

(9) refgene_pickspeciesspecific – Selecting annotated transcripts that origin from 
a specific species. 
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 (10) genome_codingCDS – Creating protein coding region indicator files (*.cds). 
The *.cds files are binary files. Each byte corresponds to a single position in the 
genome. The indicator = 1 if the position is within a coding region, the indicator = 0 
otherwise. 
1.3.2 Genomics Toolbox II – Sequence and Annotation Retrieval 

(1) genome_getseq, genome_getseq_c – Retrieving DNA sequences from 
specified genomic regions. Sequences are retrieved from local genome databases (i.e., 
*.sq files created in section 2), and the retrieved sequences will be stored in a FASTA 
file. 
 (2) genome_getseqcs, genome_getseqcs_c – Retrieving DNA sequences and 
conservation scores from specified genomic regions. Sequences and conservation 
scores are retrieved from local genome databases (i.e., *.sq and *.cs files created in 
section 2). The retrieved DNA sequences will be stored in a single FASTA file. For 
each sequence, its corresponding conservation score will be stored in a separate file.  
 (3) genome_getmaskedseq, genome_getmaskedseq_c – Retrieving DNA 
sequences for specified genomic regions. Users can choose to mask protein coding 
regions or regions with low conservation level by ‘N’. 
 (4) genome_getmaskedreg, genome_getmaskedreg_c – Filter genomic regions by 
their repeat, protein coding and cross-species conservation properties. 
 (5) genome_fastaseqmask – Masking specific motifs from sequences. Both input 
and output sequences are stored in FASTA files. Masked nucleotides will be replaced 
by ‘N’ in the output file. 
1.3.3 Genomics Toolbox III – Annotating specified genomic regions 

(1) genome_getcsgcsummary – Get nucleotide occurrence frequencies and 
conservation score distribution for specified genomic regions. 
 (2) refgene_getnearestgene – Associating genomic regions with neighboring 
genes. 
 (3) refgene_gettssaround – Get regions surrounding transcription start sites. 
 (4) refgene_getaffy – Get Affymetrix probeset IDs for a set of genes. 
 (5) reflex_getmultiortholog, refgene_getmultiortholog – Search for orthologs of a 
set of genes. 
1.3.4 Microarray Toolbox – Gene selection 

(1) powexpress – Selecting genes that show specific expression patterns. 
 (2) powexpress_getspecificprobe – Get raw expression data for specified 
probesets. 
 (3) powexpress_getnrprobe – Remove redundant probesets from the raw data file. 
1.3.5 ChIP-chip Toolbox – ChIP-chip peak detection 
 (1) tilemap_importaffy – import data from Affymetrix arrays. 
 (2) tilemap_norm – quantile normalization. 
 (3) tilemap – detect binding regions 
 (4) tilemap_extract – retrieve probes and summary statistics in user-specified 
regions. The retrieved data can be easily loaded into R, Matlab etc. for visualization. 
1.3.6 De novo motif discovery Toolbox 
 (1) flexmodule_motif – De novo motif discovery based on a collapsed Gibbs 
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Motif Sampler. 
 (2) flexmodule_tnum – De novo motif discovery that favors TFBS physically 
clustered together. 
 (3)  flexmodule – De novo motif/module discovery where users can specify 
module structures (this function will be discussed elsewhere). 
1.3.7 Known Motif Mapping Toolbox 

(1) motifmap_consensusscan_genome, motifmap_consensusscan – Mapping a 
consensus motif to genomic regions or FASTA sequences. 
 (2) motifmap_matrixscan_genome, motifmap_matrixscan – Mapping a position 
specific weight matrix (PWM) to genomic regions or FASTA sequences. 
 (3) motifmap_filter_genome – Filtering TFBS by conservation and protein coding 
characteristics. 
 (4) motifmap_getsitearound – Extending TFBS to include flanking regions. 
 (5) motifmap_getsitearoundcs – Getting average conservation scores for positions 
within and around TFBS. 
 (6) motifmap_matrixscan_summary – Computing relative enrichment level for a 
list of PWMs in target regions as compared to control regions. 
 (7) motifmap_matrixscan_enrich – Computing relative enrichment level of a 
PWM in ranked and tiered regions. 
1.3.8 Cross-species comparison toolbox 
 (1) malign_genome_prepareortholog – Prepare the extended window surrounding 
ortholog genes. 
 (2) malign_genome_blasthit – Generate cross-species alignments. 
 (3) malign_motifmap – Mapping transcription factor binding motifs to 
alignments. 
 (4) malign_modulemap – Selecting modules that contain specific TFBS. 
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1.4 A Quick Start – Analysis of a ChIP-chip Experiment 
 In this section, we use an example to show how CisGenome can be used to 
support a complete ChIP-chip study. 
 
1.4.1 Microarray gene selection. 
 We first use powexpress to select SHH responsive genes. 
 
>powexpress -d shhdata1.txt -a 3mousechipsinfo.txt -c shhcompinfo1.txt -o 
shh_8som_pos 
 
1.4.2 ChIP-chip peak detection. 
 Using the selected genes, we designed a customer tiling array and performed 
ChIP-chip analysis on the array. The goal of the analysis is to identify GLI binding 
targets. TileMap was applied to detect binding regions.  
 
>tilemap tilemap_arg.txt 
 
1.4.3 Get sequence 
 After peak detection, we retrieved sequences in the binding regions. 
>genome_getseq_c -d /data/genomes/mouse/mm6/ -s mouse -i 
Gli_cut3-cut4_e200_cod.txt -o Gli_cut3-cut4_e200.fa 
 
1.4.4 De novo motif discovery 
 We then performed de novo motif discovery on high quality regions. 
 
> flexmodule_motif flexmodule_allm10l9_arg.txt 
 
1.4.5 Ascertain the key binding motif 
 From the discovered motifs, the key binding motif can be ascertained by checking 
motifs’ relative enrichment levels. 
 
> motifmap_matrixscan_genome_summary -mr motiflist.txt -gd 
/data/genomes/mouse/mm6/ -i Gli_cut3-cut4_e200_cod.txt -n Gli_matchneg.cod -o 
motifs_enrich_match.txt -b 3 -bt genome -bd 
/data/genomes/mouse/mm6/markovbg/S100000_W1000000 -bs 100000 -c 40 -cd 
/data/genomes/mouse/mm6/conservation/genomelab/cs/ 
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1.4.6 Refining peak cutoff 
 After the key motif is found, it can be used to refine the peak cutoff. 
 
> motifmap_matrixscan_genome_enrich -m Gli_matrix.txt -gd 
/data/genomes/mouse/mm6/ -i Gli_cut3_e200_cod.txt -n Gli_matchneg.cod -s 10 -o 
Gli_tierenrich.txt -r 500 -b 3 -bt genome -bd 
/data/genomes/mouse/mm6/markovbg/S100000_W1000000 -bs 100000 -c 40 -cd 
/data/genomes/mouse/mm6/conservation/genomelab/cs/ 
 
1.4.7 Check GC content and conservation 
 Based on the refined cutoff, 30 regions were defined as final GLI binding regions. 
Next, we check GC content and conservation scores of the regions. 
 
> genome_getcsgcsummary -gd /data/genomes/mouse/mm6/ -i 
Gli_cut3_e200_top30_cod.txt –o Gli_mm6_summary -c -1 -cd 
/data/genomes/mouse/mm6/conservation/genomelab/cs/ 
 
1.4.8 Annotate bining regins using their nearst gene. 
 
> refgene_getnearestgene -d /data/genomes/mouse/mm6/annotation/refFlat_sorted.txt 
-dt 1 -s mouse -i Gli_cut3_e200_top30_cod.txt -o Gli_top30_gene.txt -r 0 -up 100000 
-down 100000 
 
1.4.9 Find ortholog genes 
 
> getrefgenemultiortholog -i Gli_top30_gene.txt -c 6 -d orthologsetting3_mouse.txt -o 
Gli_top30_3way 
 
1.4.10 Generate cross-species alignments and annotate them by TFBS 
 
> malign_genome_prepareortholog -i Gli_top30_3way.nsomap -o 
Gli_top30_3way_foraln.txt -n 4 -sf 1 -r 0 -up 50000 -down 50000 
 
> malign_genome_blasthit malign_genome_arg_u.txt 
 
> malign_motifmap malign_motifmap_arg_u.txt 
 
1.4.11 Map Gli matrix to the whole mouse genome to make predictions 
 
> motifmap_matrixscan_genome -m Gli_matrix.txt –gd /data/genomes/mouse/mm6/ 
-i mm6_cod.txt -o Gli_mm6.map -r 500 -b 3 -bt genome -bd 
/data/genomes/mouse/mm6/markovbg/S100000_W1000000 -bs 100000 -c 40 -cd 
/data/genomes/mouse/mm6/conservation/genomelab/cs/ 
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1.4.12 Search for potential cofactors 
 
> motifmap_matrixscan_genome_summary -mr transfac_motiflist.txt -gd 
/data/genomes/mouse/mm6/ -i Gli_cut3_e200_top30_cod.txt -n Gli_matchneg.cod -o 
motifs_enrich_match.txt -b 3 -bt genome -bd 
/data/genomes/mouse/mm6/markovbg/S100000_W1000000 -bs 100000 -c 40 -cd 
/data/genomes/mouse/mm6/conservation/genomelab/cs/ 
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2. GENOMICS TOOLBOX I – ESTABLISHING LOCAL GENOME 
DATABASES 
 
2.1 Introduction to Local Genome Database 
 Before one can use most sequence manipulation functions of CisGenome, one 
needs to have genomes and annotations stored locally and stored in CisGenome 
format. The locally stored genomes and annotations are referred to as local genome 
database thereafter. The typical structure of a local genome database is shown in the 
next page. 
 A local genome database is only required when one wants to do sequence 
manipulations. The use of microarray toolbox (e.g., powexpress), ChIP-chip toolbox 
(e.g., tilemap) does not require the availability of local genome database. If one has 
sequences in FASTA format, some sequence analysis functions (e.g., motif mapping, 
de novo motif discovery) can be applied without the local genome database. When 
one wants to get sequences for specified genomic regions, gene annotations, and 
wishes to do genome-scale transcription factor binding motif mapping, however, one 
needs to establish the local genome database first. 
 The easiest way to establish a local genome database is to download it from 
CisGenome website, where sequences and annotations are provided for several 
commonly used genomes (including human and mouse) in CisGenome format. Once 
downloaded and uncompressed, the database should be ready for use. 
 Not all genomes, however, have a database available on CisGenome website. 
When users want to use these genomes, or when users want to update their genome 
databases by themselves before the update is released by us, users can use CisGenome 
functions to establish their own databases. The creation of a local genome database is 
a one time deal. Once it is established, one can use it in all subsequent sequence 
manipulations and in different research projects. Although creating such a database 
from scratch requires some work and the database is not required by all CisGenome 
functions, we strongly recommend users to establish it when they start to use 
CisGenome, since the database will make many downstream sequence analyses much 
more convenient, flexible and efficient. Starting from section 2.3, we will introduce 
how such a database can be established by yourself.  
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CisGenome Local Database Structure 
 
– genomes                                    /* root */ 
 – mouse                                  /* mouse database */ 
  + mm7                                /* database for mm7 assembly */ 
  + mm6                                /* database for mm6 assembly */ 
 + dog                                    /* dog database */ 
 – human                                  /* human database */ 
  + hg18                               /* database for hg18 assembly */ 
  – hg17                               /* database for hg17 assembly */ 
   –> chrlist.txt                 /* list of chromosomes */ 
   –> chrlen.txt                  /* chromosome lengths */  
   –> chr1.sq                      /* sequence for chromosome 1 */ 
   –> … 
   – annotation                    /* gene annotations */ 
    -> refGene_sorted.txt     /* human refGene annotation */ 
    -> refFlat_sorted.txt     /* human refFlat annotation */ 
    -> xenoRefGene_sorted.txt  
             /* refGene annotation using RNAs from other species */ 
    -> xenoRefFlat_sorted.txt 
         /* refFlat annotation using RNAs from other species */ 
    –> mouseRefGene_sorted.txt 
         /* refGene annotation using RNAs from mouse */ 
    –> … 
   – alignment                     /* crossspecies alignments */  
    –> chr1.maf                 /* chromosome1 alignments */ 
    –> … 
   – cds                     /* protein coding region indicators */ 
    –> chr1.cds         /* CDS indicators for chromosome 1*/ 
    –> … 
   – conservation          /* cross-species conservation scores */ 
    – phastcons         /* PhastCons scores */ 
     –> chr1.cs      /* PhastCons scores for chromosome 1*/ 
     –> … 
    – footprint         /* User-computed footprint scores  */ 
     –> chr1.cs      /* footprint scores for chromosome 1*/ 
     –> … 
    – genomelab         /* genomelab conservation scores */ 
     – bg             /* background models for computing  
                                           genomelab conservation scores */ 
      –> chr1.bg   
      –> chr1.cov 
      –> … 
     – cs              /* scores */ 
      –> chr1.cs   /* scores for chromosome 1*/ 
      –> … 
   – markovbg                /* Markov background sequence model */ 
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    – S100000_W1000000 /* background model computed using a 1Mb 
                        sliding window and the sliding step size is 100kb */ 
     + 0                /* 0-order Markov models */ 
     – 3                /* 3-order Markov models */ 
      – chr1        /* 3-order Markov model for chr1*/ 
       –> 1_f.txt   /* forward Markov model for bin 1*/ 

       –> 1_b.txt   /* backward Markov model for bin 1*/ 
       –> … 
      – chr2        /* 3-order Markov model for chr2*/ 
      – ………… 
Notes: 
+ : a closed directory. 
– : an open directory for which all its contents are shown.  
–>: a file 
 
 
 For each species and each assembly, one can establish a database following the 
structure shown above. Taking human hg17 (May 2004 NCBI assembly build 35) as 
an example, in the directory hg17 we have the following information stored. 
 
(1) chrlist.txt stores a list of chromosome names in a text file, in the following format: 
chr1 
chr2 
… 
chrX 
chrY 
 
(2) chrlen.txt stores the chromosome length for each chromosome, in the following 
format: 
245522847 
243018229 
… 
154824264 
57701691 
 
There is a one-to-one correspondence between lines in chrlist.txt and lines in 
chrlen.txt, e.g., the length of chrX is 154824264 base pairs. 
 
(3) chr*.sq files (required) store genome sequences. A *.sq file is a binary file. Each 
byte contains information for two nucleotides. Nucleotides are coded as below: 
A: 0000 
C: 0001 
G: 0010 
T: 0011 
a: 0100 
c: 0101 
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g: 0110 
t: 0111 
N: 1000 
Here, ‘a’, ‘c’, ‘g’, ‘t’ represent soft-masked repeat sequences. Due to the coding of 
sequences, the human genome (~3Gbp) will require about 1.5GB space to be stored in 
a hard disk. The length of each *.sq file is approx. half of the length of corresponding 
chromosome, e.g., the size of chrX.sq is 77,412,132 bytes. 
 
(4) annotation is a subdirectory that stores gene structure information, including 
refGene_sorted.txt, refFlat_sorted.txt, xenoRefGene_sorted.txt,  
xenoRefFlat_sorted.txt, mouseRefGene_sorted.txt, etc. These files have almost the 
same format as UCSC files refGene.txt, refFlat.txt etc. (please refer to 
http://genome.ucsc.edu/goldenPath/gbdDescriptions.html) 
 The differences between *_sorted.txt and *.txt include: (i) in *_sorted.txt, 
annotations are sorted according to their chromosomal location; (ii) in *_sorted.txt, 
chromosome names are replaced by a numerical ID, e.g., chr1 replaced by 1, and 
chrX replaced by 23. Usually, the numerical ID is the same as the line # in the 
chrlist.txt file. 
 Among various annotations, refGene_sorted.txt and refFlat_sorted.txt are 
transcripts that origin from the species in question, (e.g., refGene_sorted.txt in 
human/hg17/ contains gene structures for human transcripts; refGene_sorted.txt in 
mouse/mm6/ contains gene structures for mouse transcripts, etc.). 
xenoRefGene_sorted.txt and xenoRefFlat_sorted.txt contain transcripts that come 
from all other species. mouseRefGene_sorted.txt contains transcripts from mouse only, 
etc. 
 Users can add their own gene annotations, as long as the annotations have the 
same format as UCSC refGene.txt or refFlat.txt. 
 
(5) alignment (optional) is a subdirectory that stores cross-species alignments in *.maf 
format (http://genome.ucsc.edu/goldenPath/help/maf.html). Usually, these alignments 
can be downloaded from UCSC Genome browser (e.g., MULTIZ Multiple alignments 
of 16 vertebrate genomes with Human).  
 
(6) conservation (optional) is a subdirectory that stores cross-species conservation 
scores. The scores can be computed using different ways. For example, subdirectory 
phastcons contains phastCons scores; subdirectory footprint contains customized 
conservation scores computed by CisGenome, etc.  
 In each subdirectory, the conservation scores are stored in *.cs files. A *.cs file is 
a binary file. Each byte in the file corresponds to a single position in the genome. 
Therefore, the size of chr1.cs is the same as the length of chromosome 1, and one 
needs approx. 3GB space to store conservation scores for human genome, etc. Each 
byte contains a score from 0 to 255, with 255 corresponding to the most conserved 
status. Usually, the bigger the score, the more conserved a position is. 
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(7) cds (optional) is a subdirectory that stores protein coding region indicators. The 
indicators are stored in *.cds files. A *.cds file is a binary file. Each byte in the file 
corresponds to a single position in the genome. If the position is located in a protein 
coding region, the byte is equal to 1, otherwise the byte is equal to 0. 
 
Hint: Users may have noticed that conservation and cds scores have similar storage 
structures. This is designed to facilitate downstream analysis so that different kinds of 
information can be processed in a common way. Indeed, users can create their own 
scores (such as CpG island indictors, histone modification scores, etc.) and store them 
in the same format as the scores here. User defined scores can then be used in the 
same way as conservation and cds scores here. 
 
(8) markovbg (optional) is a subdirectory that stores background Markov models 
fitted to describe the sequence generating process. S100000_W1000000 contains 
models that are fitted using a 1Mb window sliding along the chromosomes at a 
100000bp step size. S100000_W1000000/0 contains 0 order Markov models, and 
S100000_W1000000/3 contains 3rd order Markov models. [n]_f.txt is the forward 
model for the nth sliding window, and [n]_b.txt is the backward model for the nth 
sliding window. In a forward model, say for sequences AGCTGA, the transition 
probabilities are fitted by counting AGC->T, GCT->G, CTG->A, etc. In a backward 
model, the transition probabilities are fitted by counting GCT->A, CTG->G, TGA->C 
etc. Each kth order model is represented by a 4kx4 matrix. The four columns 
correspond to A, C, G, T respectively, and the rows are indexed by the following word 
index: 
A = 0; 
C = 1; 
G = 2; 
T = 3; 
ACT = 0*42+1*41+3*40 
etc. 
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2.2 List of Functions 
 (1) genome_encode – Converting genome sequences from FASTA format to 
CisGenome format (*.sq files). *.sq files are binary files. Each byte in the *.sq file 
contains two nucleotides. These files are the starting point for most CisGenome 
sequence manipulation functions. 
 (2) genome_markovbg (motifmap_matrixscan_genome_bg) – Fitting a set of 
Markov models as the sequence generating model. The models are fitted from *.sq 
sequence files and have different parameters for different genomic loci. Fitted models 
can be used in various downstream analyses, e.g., they can be used as background 
models when mapping transcription factor binding motifs to genomic sequences. 
 (3) genome_codephastcons_v2 – Converting PhastCons scores to CisGenome 
format (*.cs files). *.cs files are binary files. Each byte in the *.cs file contains the 
conservation score for a single genomic position (i.e., a single base pair). The 
PhastCons scores are converted linearly from interval [0, 1] to interval [0, 255]. A 
larger score corresponds to a more conserved status.  
 (4) genome_footprint – Computing a user-specified conservation scores from 
genome-wide MULTIZ multiple species alignments. Users can specify the meaning of 
“conservation”. For example, “if three contiguous bases are identical in human, 
mouse and dog, and if the 3-mer has at least two identical matches from the other 
three species chicken, frog or zebrafish, then the 3-mer is conserved”. Conservation 
scores are stored in CisGenome format (*.cs files). Each byte in the *.cs file 
corresponds to a single position in the genome. A score “255” corresponds to a 
conserved status, and “0” corresponds to a non-conserved status. 
 (5) genome_conservebg, genome_conservecs – Computing a conservation score 
for each genomic position based on a sliding window percent identity method. The 
scores range from 0 to 255, with a larger score corresponding to a more conserved 
status. Scores are stored in CisGenome format (*.cs files) which are binary files. Each 
byte in the *.cs file corresponds to a single position in the genome. 
 (6) genome_csgetdistn – Get empirical distribution of conservation scores.  

(7) refgene_encode – Converting gene annotations from UCSC RefGene format 
to CisGenome format. The output file is part of the local annotation database. 

(8) refflat_encode – Converting gene annotations from UCSC RefFlat format to 
CisGenome format. The output file is part of the local annotation database. 

(9) refgene_pickspeciesspecific – Selecting annotated transcripts that origin from 
a specific species. 
 (10) genome_codingCDS – Creating protein coding region indicator files (*.cds). 
The *.cds files are binary files. Each byte corresponds to a single position in the 
genome. The indicator = 1 if the position is within a coding region, the indicator = 0 
otherwise. 
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2.3 Establishing Database Step I – Download Sequences and Annotation 
 The first step to establish a local genome database is to download sequences and 
gene annotations. Both can be downloaded from UCSC Genome browser 
(http://hgdownload.cse.ucsc.edu/downloads.html). For example, to establish human 
hg17 local database, one can download chromFa.zip from UCSC to {Local Database 
Path}/genomes/human/hg17/, and download refFlat.txt.gz, refGene.txt.gz, 
xenoRefFlat.txt.gz, xenoRefGene.txt.gz, etc. to {Local Database 
Path}/genomes/human/hg17/annotation/. If needed, one may also download 
phastCons conservation scores to {Local Database 
Path}/genomes/human/hg17/conservation/phastCons, and MULTIZ alignments to 
{Local Database Path}/genomes/human/hg17/alignment.  
 When downloading sequences, we recommend the use of soft-masked sequences 
since it keeps the full sequence information. In CisGenome, the differences between 
capital letters ‘A’, ‘C’, ‘G’, ‘T’ and little ones ‘a’, ‘c’, ‘g’, ‘t’ can be handled by *.sq 
files (section 2.3). 
 After downloading necessary files, uncompress them for later use. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 19

2.4 Establishing Database Step II – Coding Genome Sequences 
 The goal of this step is to convert genomes sequences from FASTA (*.fa, ASCII) 
files to *.sq files (binary). *.sq files are the basis of CisGenome sequence 
manipulations. The conversion can be achieved through following steps. 
 
(1) Create a chrlist.txt file that list chromosome names in an increasing order as 
follows: 
chr1 
chr2 
… 
chrX 
chrY 
 
For human hg17, save this file to {Local Database Path}/genomes/human/hg17/; for 
mouse mm6, save this file to {Local Database Path}/genomes/mouse/mm6/, etc. 
Make sure that for each chromosome (say chr[#]) listed in the file, the corresponding 
chr[#].fa file can be found in the same directory. Currently, chr[#]_random, chrUn and 
chrM are not supported by CisGenome. Please do not include these chromosomes into 
the list.  
 
(2) Run genome_encode as follows. 
genome_encode –d [Path where *.fa are stored] –o [Path where *.sq will be 
stored] 
 
For example 
>genome_encode –d /data/genomes/human/hg17/ -o /data/genomes/human/hg17/ 
 
(3) After genome_encode has been run, one should be able to find a set of *.sq files 
and a file named chrlen.txt in the output path (i.e., the directory specified by –o 
option). The chrlen.txt is generated by the program automatically and contains 
chromosome lengths for all chromosomes listed in the chrlist.txt. The first line in 
chrlen.txt is the length for the first chromosome listed in the chrlist.txt, the second line 
in chrlen.txt is the length for the second chromosome in chrlist.txt, etc. 
 
(4) The *.fa files will not be used anymore by CisGenome, and users can remove 
them from the hard disk to save storage space. 
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2.5 Establishing Database Step III – Coding Gene Annotations 
 The goal of this step is to create gene annotations for CisGenome to use. The 
annotations can be used to in various downstream analyses such as annotating 
ChIP-binding regions, extracting sequences around transcription start sites, etc. Again, 
taking human hg17 as an example, users can create the annotations as follows. 
 
(1) Make sure that annotation files refGene.txt, refFlat.txt, xenoRefGene.txt, 
xenoRefFlat.txt downloaded from UCSC Genome Browser are stored in {Local 
Database Path}/genomes/human/hg17/annotation/.  
 
(2) For files in refGene format, including refGene.txt and xenoRefGene.txt, run 
refgene_encode as follows: 
refgene_encode -d [Path of the UCSC annotation file] -o [Path of the output file] 
-s [Species name] -n [Number of chromosomes for the given species] 
 
For example: 
>refgene_encode -d /data/genomes/human/hg17/annotation/refGene.txt -o 
/data/genomes/human/hg17/annotation/refGene_sorted.txt -s human -n 24 
 
Note that species name can be one of {human, mouse, dog, cow, chicken, zebrafish}. 
We will keep adding other species to our support list. The number of chromosomes is 
24 for human (chr1~chr22, chrX, chrY), 21 for mouse (chr1~chr19, chrX, chrY), etc. 
 
(3) For files in refFlat format, including refFlat.txt and xenoRefFlat.txt, run 
refflat_encode as follows: 
refflat_encode -d [Path of the UCSC annotation file] -o [Path of the output file] -s 
[Species name] -n [Number of chromosomes for the given species] 
 
For example: 
>refflat_encode -d /data/genomes/human/hg17/annotation/refFlat.txt -o 
/data/genomes/human/hg17/annotation/refFlat_sorted.txt -s human -n 24 
 
(4) (Optional, supported in UNIX only, and only refGene format is supported). 
Some times it is useful to group gene annotations according to their species origins. 
One can run refgene_pickspeciesspecific to do the job.  
refgene_pickspeciesspecific -i [the file that contains species-specific Refseq IDs] 
-d [the file that contains xenoRefGene_sorted annotations] -o [output file] 
 
For example, if we want to pick up mouse refGenes that are aligned to human genome 
hg17 assembly, we can use 
>refgene_pickspeciesspecific -i 
/data/genomes/mouse/mm6/annotation/refGene_sorted.txt -d 
/data/genomes/human/hg17/annotation/xenoRefGene_sorted.txt -o 
/data/genomes/human/hg17/annotation/mouseRefGene_sorted.txt 
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As a result, all transcripts that align to human genome and that origin from mouse will 
be selected from human xenoRefGene_sorted.txt, and the selected transcripts will be 
stored in mouseRefGene_sorted.txt, and these annotations are based on human 
coordinates. 
 
(5) After running above steps, check to make sure that appropriate *_sorted.txt files 
such as refGene_sorted.txt, refFlat_sorted.txt, xenoRefGene_soreted.txt, 
xenoRefFlat_soretd.txt are generated. 
 
Hint: Users may use their own gene structure annotations instead of annotations 
provided by refGene.txt or refFlat.txt. To use their own annotations, users only need to 
prepare their annotation files in the UCSC refGene or refFlat format, they can then 
run refgene_encode or refflat_encode as above. As a simple example, one can replace 
refGene.txt by ensGene.txt (Ensembl gene annotations) downloaded from UCSC 
Genome browser.  
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2.6 Establishing Database Step IV – Creating Markov Background 
 The goal of this step is to fit Markov models that can be used to describe 
sequence generating processes. The fitted models can be used as background models 
for detecting transcription factor binding sites (refer to section 8). Models can be 
fitted as below. 
 
(1) Make sure to create a directory to store the fitted models. For example, one can 
create a directory /data/genomes/human/hg17/markovbg/S100000_W1000000/3/ to 
store the 3rd order Markov models fitted using parameters S=100000 and W=1000000 
(which will be discussed below).  
 Make sure that chrlist.txt and chrlen.txt are available in the directory where 
sequences (*.sq) files are stored. 
 
(2) Run motifmap_matrixscan_genomebg as follows: 
motifmap_matrixscan_genomebg -d [Path where *.sq sequence files are stored] 
-o [Path where fitted model will be stored] -b [The order of Markov models] -s 
[Step size] -w [Window size] 
 
For example: 
>motifmap_matrixscan_genomebg -d /data/genomes/human/hg17/ -o 
/data/genomes/human/hg17/markovbg/S100000_W1000000/3/ -b 3 -s 100000 -w 
1000000 
 
 What this function does is to form a window that is W (here W=1000000) base 
pair long. The window will be sliding along the genome using a step size S (here 
S=100000 bp). All the non-repeat nucleotides in the window will then be used to fit a 
forward Markov model and a backward Markov model, both of order B (B=3 here). 
For sequences 5’-abcd-3’, a 3rd order forward model describes transition probabilities 
abc->d, and a 3rd order backward model describes transition probabilities bcd->a. The 
models are fitted using sequences stored in the sequence directory which is specified 
by “–d” option. After running the program, a set of subdirectories (chr1, chr2, …, 
chrX, chrY) will be created in the output path which is specified by “–o” option. Files 
in the subdirectory “chr[#]” are models fitted for chromosome [#]. For example, 
/data/genomes/human/hg17/markovbg/S100000_W1000000/3/chr[#]/[n]_f.txt is the 
forward model for the nth sliding window in chr[#], and 
/data/genomes/human/hg17/markovbg/S100000_W1000000/3/chr[#]/[n]_b.txt is the 
nth backward model. Both [n]_f.txt and [n]_b.txt are centered at the interval 
[(n-1)*100000+1, n*100000] which is extended equally to both ends to cover a 1Mb 
region. Coordinates beyond the range of chromosomes are discarded. 
 Each [n]_f.txt or [b]_f.txt file contains a 4Bx4 matrix. The number in the ith row 
and jth column is the transition probability from i to j. The four columns in the matrix 
correspond to j=A, C, G, T respectively, and the rows are indexed by the following 
word index i: 
(A = 0; C = 1; G = 2; T = 3) 
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GTC = 2*42+3*41+1*40 
ACT = 0*42+1*41+3*40 
etc. 
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2.7 Establishing Database Step V – Coding Conservation Scores 
 The goal of this step is to create cross-species conservation scores in CisGenome 
format. The conservation scores can be used in downstream analysis such as finding 
conserved transcription factor binding sites, selecting conserved sequences for de 
novo motif discovery, etc. Users can both use phastCons scores downloaded from 
UCSC Genome browser and compute their own scores based on their specific needs.  
 In order to use these scores in downstream analysis, all scores need to be stored in 
*.cs format (a *.cs file is a binary file, one byte -> one base pair, score ranges from 0 
to 255, the larger the more conserved; refer to section 2.2 for details). 
 
2.7.1 Coding PhastCons Scores 
 One can convert phastCons scores to *.cs format using the following steps. 
(1) Make sure that phastCons scores are downloaded from UCSC Genome browser 
and stored in an appropriate place. For example, for human hg17, one can store them 
in /data/genomes/human/hg17/conservation/phastcons/. 
 Make sure that chrlist.txt and chrlen.txt are available in the directory where 
genome sequences (*.sq files) are stored.  
 Make sure that for each chromosome listed in the chrlist.txt, say chr[#], there is a 
raw phastCons conservation score file named chr[#]. 
 
(2) Run genome_codephastcons_v2 as follows: 
genome_codephastcons_v2 –d [Path where genome sequences *.sq are stored] –c 
[Path where downloaded phastCons scores are stored] –o [Path where the 
converted scores *.cs will be stored] 
 
For example: 
>genome_codephastcons_v2 -d /data/genomes/human/hg17/ -c 
/data/genomes/human/hg17/conservation/phastcons/ -o 
/data/genomes/human/hg17/conservation/phastcons/ 
 
(3) After running genome_codephastcons_v2, there should be a collection of *.cs files 
generated in the output directory which is specified by “-o” option. At this stage, the 
raw phastCons score files downloaded from UCSC Genome browser will not be used 
by CisGenome anymore. To save storage space, users can remove them from the disk. 
 
(4) To facilitate the future use of conservation scores, run genome_csgetdistn to get 
the empirical distribution of conservation scores: 
genome_csgetdistn -d [Path where the conservation scores *.cs are stored] -s 
[Species name] -l [File that contains chromosome lengths] -i [File that list all 
chromosomes] -o [output file] 
 
For example: 
>genome_csgetdistn -d /data/genomes/human/hg15/conservation/cs/ -s human -l 
/data/genomes/human/hg15/chrlen.txt -i /data/genomes/human/hg15/chrlist.txt -o 
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csstat.txt 
 
What genome_csgetdistn returns is a text file (in this example, csstat.txt) that contains 
256 lines. The line n counts the total number of base pairs for which conservation 
score = n-1. Using the file, one can easily determine a cutoff c so that, say, the total 
number of positions where the score >= c accounts for 10% of the genome. The cutoff 
can then be used in various applications to define “conserved sequences”. 
 
2.7.2 Creating Customer FootPrint Scores 
 Users can generate their customized conservation scores from multiple species 
alignments. For example, to study transcription factor binding sites with deep 
conservation, one can define a conservation score as follows. The score=255 if “a site 
contains at least 6 contiguous base pairs that are identical in mouse, human, dog, cow, 
chicken, frog and zebrafish”; otherwise, the score=0. 
 Such customized conservation scores will be called “Footprint” scores thereafter. 
Given multiple species alignments, Footprint scores are defined by the following 
parameters: (i) a window size S, (ii) a reference species; and (iii) a set of conservation 
criteria. As an example, if one defines S = 6, reference species = mouse, and 
conservation criteria as “human>=1, dog+cow>=1, and chicken+frog+fish>=2”, then 
the Footprint score is computed as follows. A 6bp window will be sliding along the 
alignments. For each position, the 6-mer from all species will be compared with the 
6-mer from the reference species (here mouse). If the 6-mer from human is identical 
to the 6-mer in mouse (i.e., human>=1), at least one of the 6-mers from dog and cow 
is identical to the mouse 6-mer (i.e., dog+cow>=1), and at least two of the 6-mers 
from chicken, frog and fish are identical to the mouse 6-mer (i.e., 
chicken+frog+fish>=2), then the 6 nucleotides in the window are conserved. A 
conservation score = 255 will be attached to each of the 6 bases. If the conservation 
condition is not satisfied, then the window is not a conserved window, and nucleotides 
within the window will be assigned a conservation score = 0 except for those bases 
which are covered by other conserved windows. The figure below illustrates 
conserved scores computed in this way (“*”= 255, “0”= 0). 
 
 
 
Score 000000*******000000000000********0000000000000000000000000********* 

MOUSE TTGTTACAAAACAAAGTGGGAGGTACCACCCAGACACATATGTTGATTCGCAGGAGGCTGTTTACAT 

HUMAN TTG-TACAAAACATAGTGAAAGA-ACCACCCAGTC-AATTTGTCGATTCGTAGGAG-CTGTTTACAT 

DOG   TTGTTTCAAAACATAGTGCGAGATACCACCCAGAG-AATCTGTCGATTCGT-GGAG-CTGTTTACAT 

COW  TTGTTTCAAAACAAAGTGAGACA-ACCACCCAGAC-CATGTGTCGATTCGTAGGAG-CTCTTTACAT 

CHICKEN TTGTTACAAAACAAAGT--GAGT-ACCACCCAGAG-AATATGTTGAATCGT-GAAG-CTGTTTACAT 

FROG TTG-TACAAAACATACT--TCGA-ACCACCCAGAG-CATCTGTTGATCCGT-GAAG----------- 

FISH  ------------------------GCCACCCAGCC-AGTATGTCGATTTAC-GAGG-TTGTTTACAT 

 
 In addition to S, reference species and conservation criteria, there is another 
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parameter “target species” that specifies for which species the conservation score is 
computed. If target species = mouse, then the computed conservation scores will be 
attached to nucleotides in mouse genome. A collection of *.cs files will be generated, 
and their combined size will be equal to the size of mouse genome. In other words, 
each position in mouse genome will be assigned a footprint score derived from above 
procedures. On the other hand, if target species = human, then the computed 
conservation scores will be linked to human genome. A collection of *.cs files will be 
generated, and their combined size will be equal to the size of human genome. Each 
position in human genome will be assigned a footprint score derived as above, 
although the score was computed using mouse as the reference species (i.e., there is 
no requirement that reference species = target species).  
 
 Users can follow the steps below to generate Footprint scores. 
(1) Make sure that multiple species alignments in MAF format are downloaded from 
UCSC Genome browser and stored in an appropriate place. For example, for human 
hg17, one can store them in /data/genomes/human/hg17/alignment/. 
 Make sure that chrlen.txt for both reference species and target species are 
available.  
   
(2) Prepare a tab-delimited parameter file, say genome_footprint_arg.txt, as below: 
 
Alignment_Dir /data/genomes/human/hg17/alignment/ 

 

Species_Num 8 

ID 0 hg 

ID 1 panTro 

ID 2 mm 

ID 3 rn 

ID 4 canFam 

ID 5 galGal 

ID 6 fr 

ID 7 danRer 

 

Reference 0 

Ref_Species human 

Ref_Chr_Size /data/genomes/human/hg17/chrlen.txt 

 

Target 0 

Tar_Species human 

Tar_Chr_Size /data/genomes/human/hg17/chrlen.txt 

 

Window_Size 3 

Comparisons_Num 5 

COMP 0>=1 
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COMP 1>=1 

COMP 2+3+4>=2 

COMP 5+6+7>=2 

COMP 0+1+2+3+4+5+6+7>=7 

 

Output_Path /data/genomes/human/hg17/conservation/footprint/ 

 

Alignment_Suf .maf 

Alignment_File chr1 

Alignment_File chr2 

Alignment_File chr3 

Alignment_File chr4 

Alignment_File chr5 

Alignment_File chr6 

Alignment_File chr7 

Alignment_File chr8 

Alignment_File chr9 

Alignment_File chr10 

Alignment_File chr11 

Alignment_File chr12 

Alignment_File chr13 

Alignment_File chr14 

Alignment_File chr15 

Alignment_File chr16 

Alignment_File chr17 

Alignment_File chr18 

Alignment_File chr19 

Alignment_File chr20 

Alignment_File chr21 

Alignment_File chr22 

Alignment_File chrX 

Alignment_File chrY 

 
 
 
 This file specifies parameters used for computing the footprint score. These 
parameters include: 
(a) Alignment_Dir – Path where MAF alignments are stored. 
(b) Species_Num – Number of species in the alignments. For example, if the 
alignments are MULTIZ alignments for 8 vertebrate species, then the species number 
is 8.  
(c) ID – Numerical ID and string tag for each species. If species number = 8, there 
should be 8 “ID” lines following the “Species_Num” line. Each ID line has the 
following format: 
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ID[tab]numerical_id[tab]string_tag 

 
String_tag is a tag that is used by the alignments to label species, e.g., hg, mm, 
canFam, galGal, etc. Numerical_id is a unique number attached to each string_tag. 
The numerical ID is defined by users. If there are n species, these ids can be selected 
from 0, 1, 2, …, n-1. 
 
(d) Reference – Numerical ID of the reference species. 
(e) Ref_Species – Name of the reference species, e.g., human, mouse, dog, chicken, 
etc. 
(f) Ref_Chr_Size – File that contains the chromosome lengths for reference species. 
(g) Target – Numerical ID of the target species. 
(h) Tar_Species – Name of the target species, e.g., human, mouse, dog, chicken, etc. 
(i) Tar_Chr_Size – File that contains the chromosome lengths for target species. 
(j) Window_Size – Window size S. 
(k) Comparisons_Num – Number of conservation criteria. If Comparisons_Num=m, 
the line should be followed by m “COMP” lines. 
(l) COMP – Conservation criteria. Each COMP line has the following format: 
 
COMP[tab]criteria 

 
 The criteria should be written in a format such as “2+3+4>=2”. Here “2”, “3”, 
and “4” are species numerical IDs which are specified in lines starting with “ID”. If 
“2” is linked to mm, “3” is linked to rn and “4” is linked to canFam, then 
“2+3+4>=2” means that, out of the three species here, at least two of them should 
have identical bases as the reference species in the sliding window. Otherwise the 
window will not be defined as conserved. 
 There is a “AND” relationship between COMP lines. In other words, only 
windows for which all criteria specified in all COMP lines are satisfied are defined as 
conserved. 
 
(m) Output_Path – Directory where computed footprint scores will be exported. 
(n) Alignment_Suf – Suffix of the alignment files. If the alignment files used to 
generate footprint scores are ended with *.maf, then Alignment_Suf=.maf 
(o) Alignment_File – This species the alignment file that needs to be processed. If 
there are multiple alignment files, each file should be specified in a separate line 
starting with “Alignment_File”. Each line should have the following format: 
 
Alignment_File[tab]chr# 

 
The program will automatically go to the directory specified by “Alignment_Dir”, 
find the file named “chr#[Alignment_Suf]”, and process it. For example, if  
 



 29

Alignment_File chr1 

 
then chr1.maf will be processed. 
 
 
(3) Run genome_footprint as below: 
genome_footprint [parameter file] 
 
For example: 
> genome_footprint genome_footprint_arg.txt 
 
(4) After running genome_footprint, one should be able to find a set of *.cs files in the 
output directory which is specified as “Output_Path” in the parameter file. The size of 
each *.cs file (i.e., chr1.cs, chr2.cs, etc.) should be equal to the corresponding 
chromosome length of the target species. 
 
2.7.3 Creating GenomeLab Conservation Scores 
 Besides phastCons scores and Footprint scores, there is a third option in 
CisGenome to define conservation scores. This extra option, called “Genomelab 
conservation scores”, is based on a windows percent identity measure. It can 
complement phastCons scores if the latter are not readily available (e.g., in one of our 
studies, the phastCons score downloaded from UCSC was missing for a large chunk 
of chromosome 13. The region contains important genes such as Ptch1 that we are 
interested in. Since the region did contain high quality cross-species alignments, the 
phastCons score provided by UCSC was likely to be mistakenly missing for unknown 
reasons. In such a situation, the tool here allows user to quickly compute their own 
conservation scores). 
 
 
 Genomelab conservation scores can be computed using following steps. 
 (1) Make sure that multiple species alignments in MAF format are downloaded from 
UCSC Genome browser and stored in an appropriate place. For example, for human 
hg17, one can store them in /data/genomes/human/hg17/alignment/. 
 Make sure that chrlen.txt for both reference species and target species are 
available.  
 Make sure that directories that will be used to store the scores are available. 
 
(2) Prepare a parameter file, say genome_conservebg_arg.txt for background 
computation. The parameter file is tab-delimited and has the following format: 
 

Alignment_Dir /data/genomes/human/hg17/alignment/ 

 

Species_Num 8 

ID 0 hg 
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ID 1 panTro 

ID 2 mm 

ID 3 rn 

ID 4 canFam 

ID 5 galGal 

ID 6 fr 

ID 7 danRer 

 

Reference 0 

Ref_Species human 

Ref_Chr_Size /data/genomes/human/hg17/chrlen.txt 

 

Comparisons_Num 4 

COMP 0 2 

COMP 0 4 

COMP 0 5 

COMP 0 7 

 

BG_Window_Size 1000000 

BG_Sliding_Step 10000 

 

Output_Path /data/genomes/human/hg17/conservation/genomelab/bg/ 

 

Alignment_Suf .maf 

Alignment_File chr1 

Alignment_File chr2 

Alignment_File chr3 

Alignment_File chr4 

Alignment_File chr5 

Alignment_File chr6 

Alignment_File chr7 

Alignment_File chr8 

Alignment_File chr9 

Alignment_File chr10 

Alignment_File chr11 

Alignment_File chr12 

Alignment_File chr13 

Alignment_File chr14 

Alignment_File chr15 

Alignment_File chr16 

Alignment_File chr17 

Alignment_File chr18 

Alignment_File chr19 

Alignment_File chr20 
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Alignment_File chr21 

Alignment_File chr22 

Alignment_File chrX 

Alignment_File chrY 

 
Below are meanings for the parameters. 

(a) Alignment_Dir – Path where MAF alignments are stored. 
(b) Species_Num – Number of species in the alignments. For example, if the 
alignments are MULTIZ alignments for 8 vertebrate species, then the species number 
is 8.  
(c) ID – Numerical ID and string tag for each species. If species number = 8, there 
should be 8 “ID” lines following the “Species_Num” line. Each ID line has the 
following format: 
 
ID[tab]numerical_id[tab]string_tag 

 
String_tag is a tag that is used by the alignments to label species, e.g., hg, mm, 
canFam, galGal, etc. Numerical_id is a unique number attached to each string_tag. 
The numerical ID is defined by users. If there are n species, these ids can be selected 
from 0, 1, 2, …, n-1. 
 
(d) Reference – Numerical ID of the reference species. 
(e) Ref_Species – Name of the reference species, e.g., human, mouse, dog, chicken, 
etc. 
(f) Ref_Chr_Size – File that contains the chromosome lengths for reference species. 
(g) Comparisons_Num – Number of pairwise comparisons one wish to do to compute 
conservation scores. If Comparisons_Num=m, the line should be followed by m 
“COMP” lines. 
(h) COMP – Comparisons one wish to do. Each COMP line has the following format: 
 
COMP[tab]ID for species 1[tab]ID for species 2 

 
 The line specifies a pairwise comparison between specie 1 and species 2. 
Background models will be fit for all pairwise comparisons specified by the “COMP” 
lines. 
(i) BG_Window_Size – Size of the sliding window that is used to compute 
background identity level. 
(j) BG_Sliding_Step – Step size of the sliding window. 
(m) Output_Path – Directory to which computed background identity levels will be 
exported. 
(n) Alignment_Suf – Suffix of the alignment files. If the alignment files used to 
generate conservation scores are ended with *.maf, then Alignment_Suf=.maf 
(o) Alignment_File – This species the alignment file that needs to be processed. If 
there are multiple alignment files, each file should be specified in a separate line 
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starting with “Alignment_File”. Each line should have the following format: 
 
Alignment_File[tab]chr# 

 
The program will automatically go to the directory specified by “Alignment_Dir”, 
find the file named “chr#[Alignment_Suf]”, and process it. For example, if  
 
Alignment_File chr1 

 
then chr1.maf will be processed. 
 
(3) Run genome_conservebg in the following way. 
genome_conservebg [parameter file] 
 
For example: 
>genome_conservebg genome_conservebg_arg.txt 
 
(4) Prepare a parameter file, say genome_conservecs_arg.txt for conservation score 
computation. The parameter file is tab-delimited and has the following format: 
 
Alignment_Dir /data/genomes/human/hg17/alignment/ 

 

Species_Num 8 

ID 0 hg 

ID 1 panTro 

ID 2 mm 

ID 3 rn 

ID 4 canFam 

ID 5 galGal 

ID 6 fr 

ID 7 danRer 

 

Reference 0 

Ref_Species human 

Ref_Chr_Size /data/genomes/human/hg17/chrlen.txt 

 

Target 0 

Tar_Species human 

Tar_Chr_Size /data/genomes/human/hg17/chrlen.txt 

 

Comparisons_Num 4 

COMP 0 2 

COMP 0 4 

COMP 0 5 
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COMP 0 7 

 

BG_Window_Size 1000000 

BG_Sliding_Step 10000 

BG_Path /data/genomes/human/hg17/conservation/genomelab/bg/ 

Output_Path /data/genomes/human/hg17/conservation/genomelab/cs/ 

 

Conserve_Window 51 

Min_P_Cutoff 1e-4 

 

Alignment_Suf .maf 

Alignment_File chr1 

Alignment_File chr2 

Alignment_File chr3 

Alignment_File chr4 

Alignment_File chr5 

Alignment_File chr6 

Alignment_File chr7 

Alignment_File chr8 

Alignment_File chr9 

Alignment_File chr10 

Alignment_File chr11 

Alignment_File chr12 

Alignment_File chr13 

Alignment_File chr14 

Alignment_File chr15 

Alignment_File chr16 

Alignment_File chr17 

Alignment_File chr18 

Alignment_File chr19 

Alignment_File chr20 

Alignment_File chr21 

Alignment_File chr22 

Alignment_File chrX 

Alignment_File chrY 

 
Below are meanings for the parameters. 

(a) Alignment_Dir – Path where MAF alignments are stored. 
(b) Species_Num – Number of species in the alignments. For example, if the 
alignments are MULTIZ alignments for 8 vertebrate species, then the species number 
is 8.  
(c) ID – Numerical ID and string tag for each species. If species number = 8, there 
should be 8 “ID” lines following the “Species_Num” line. Each ID line has the 
following format: 
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ID[tab]numerical_id[tab]string_tag 

 
String_tag is a tag that is used by the alignments to label species, e.g., hg, mm, 
canFam, galGal, etc. Numerical_id is a unique number attached to each string_tag. 
The numerical ID is defined by users. If there are n species, these ids can be selected 
from 0, 1, 2, …, n-1. 
 
(d) Reference – Numerical ID of the reference species. 
(e) Ref_Species – Name of the reference species, e.g., human, mouse, dog, chicken, 
etc. 
(f) Ref_Chr_Size – File that contains the chromosome lengths for reference species. 
(g) Target – Numerical ID of the target species. 
(h) Tar_Species – Name of the target species, e.g., human, mouse, dog, chicken, etc. 
(i) Tar_Chr_Size – File that contains the chromosome lengths for target species. 
(j) Comparisons_Num – Number of pairwise comparisons one wish to do to compute 
conservation scores. If Comparisons_Num=m, the line should be followed by m 
“COMP” lines. 
(k) COMP – Comparisons one wish to do. Each COMP line has the following format: 
 
COMP[tab]ID for species 1[tab]ID for species 2 

 
 The line specifies a pairwise comparison between specie 1 and species 2. 
Conservation scores will be computed from all pairwise comparisons specified by the 
“COMP” lines. 
(l) BG_Window_Size – Size of the sliding window that is used to compute 
background identity level. 
(m) BG_Sliding_Step – Step size of the sliding window. 
(n) BG_Path – Directory where background models computed by genome_conservebg 
are stored. 
(o) Output_Path – Directory to which computed background identity levels will be 
exported. 
(p) Conserve_Window – Window size for computing conservation scores. 
(q) Min_P_Cutoff – Minimal score cutoff. 
(r) Alignment_Suf – Suffix of the alignment files. If the alignment files used to 
generate conservation scores are ended with *.maf, then Alignment_Suf=.maf 
(s) Alignment_File – This species the alignment file that needs to be processed. If 
there are multiple alignment files, each file should be specified in a separate line 
starting with “Alignment_File”. Each line should have the following format: 
 
Alignment_File[tab]chr# 

 
The program will automatically go to the directory specified by “Alignment_Dir”, 
find the file named “chr#[Alignment_Suf]”, and process it. For example, if  
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Alignment_File chr1 

 
then chr1.maf will be processed. 
 
 
(5) Run genome_conservecs in the following way. 
genome_conservecs [parameter file] 
 
For example: 
>genome_conservecs genome_conservecs_arg.txt 
 
(6) After running all the steps above, one should be able to find a collection of *.cs 
files in the output directory that is specified as “Output_Path” in the parameter file 
genome_conservecs_arg.txt. The size of each *.cs file (i.e., chr1.cs, chr2.cs, etc.) 
should be equal to the corresponding chromosome length of the target species. 
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2.8 Establishing Database Step VI – Creating CDS Indicator 
 The goal of this step is to create protein coding region indicators. These 
indicators can be used in downstream analysis such as filtering out coding regions 
before transcription factor binding motif discovery. The resulting indicators will be 
stored in *.cds format. A *.cds file is a binary file. Each byte in the file corresponds to 
a single position in the genome. If the position is located in a protein coding region, 
the byte is equal to 1, otherwise the byte is equal to 0.  
 One can generate CDS indicators as follows. 
 
(1) Make sure that chrlist.txt and chrlen.txt are available in the directory where 
genome sequences (*.sq files) are stored.  
 Make sure that a gene annotation file in CisGenome format (i.e., 
refGene_sorted.txt or refFlat_sorted.txt; refer to section 2.3 and 2.6) is available. This 
file will be used to specify coding regions. 
 
(2) Run genome_codingCDS as follows: 
genome_codingCDS -d [Path where genome sequences *.sq are stored] -g [gene 
structure annotation file] -gt [File format of gene annotations; 0=CisGenome 
refGene format, 1=CisGenome refFlat format] -s [species] -o [Path where coding 
region indicators will be stored] 
 
For example: 
>genome_codingCDS -d /data/genomes/human/hg17/ -g 
/data/genomes/human/hg17/annotation/refFlat_sorted.txt -gt 1 -s human -o 
/data/genomes/human/hg17/cds/ 
 
or 
>genome_codingCDS -d /data/genomes/human/hg17/ -g 
/data/genomes/human/hg17/annotation/refGene_sorted.txt -gt 0 -s human -o 
/data/genomes/human/hg17/cds/ 
 
(3) After running genome_codingCDS, one should be able to find a collection of *.cds 
files (i.e., chr1.cds, chr2.cds, etc.) in the output directory. The size of each file should 
be equal to the length of its corresponding chromosome. 
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3. GENOMICS TOOLBOX II – SEQUENCE AND CONSERVATION SCORE 
RETRIEVAL 
 
3.1 Introduction 
 After the local genome database has been established, one can easily retrieve 
sequences and conservation scores for downstream sequence analysis. This section 
introduces various functions relevant to this topic. 
 
3.2 List of Functions 
 (1) genome_getseq, genome_getseq_c – Retrieving DNA sequences from 
specified genomic regions. Sequences are retrieved from local genome databases (i.e., 
*.sq files created in section 2), and the retrieved sequences will be stored in a FASTA 
file. 
 (2) genome_getseqcs, genome_getseqcs_c – Retrieving DNA sequences and 
conservation scores from specified genomic regions. Sequences and conservation 
scores are retrieved from local genome databases (i.e., *.sq and *.cs files created in 
section 2). The retrieved DNA sequences will be stored in a single FASTA file. For 
each sequence, its corresponding conservation score will be stored in a separate file.  
 (3) genome_getmaskedseq, genome_getmaskedseq_c – Retrieving DNA 
sequences for specified genomic regions. Users can choose to mask protein coding 
regions or regions with low conservation level by ‘N’. 
 (4) genome_getmaskedreg, genome_getmaskedreg_c – Filter genomic regions by 
their repeat, protein coding and cross-species conservation properties. 
 (5) genome_fastaseqmask – Masking specific motifs from sequences. Both input 
and output sequences are stored in FASTA files. Masked nucleotides will be replaced 
by ‘N’ in the output file. 
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3.3 Sequence Manipulation I – Retrieving Sequences for Specified Genomic 
Regions. 
  
[Usage] 

genome_getseq_c -d [Path where genome sequences (*.sq files) are stored] 

-s [Species name, e.g., mouse, human, dog, etc.] -i [File that specifies 

genomic coordinates of target regions] -o [File to save retrieved sequences] 

-r [Method to handle +/- strand: assemblybase or genebase] 

 

genome_getseq -d [Path where genome sequences (*.sq files) are stored] 

-s [Species name, e.g., mouse, human, dog, etc.] -i [File that specifies 

genomic coordinates of target regions] -o [File to save retrieved sequences] 

-r [Method to handle +/- strand: assemblybase or genebase] 

 
 genome_getseq_c or genome_getseq can be used to retrieve sequences from 
specified genomic regions. 
 
3.3.1 genome_getseq_c 

In order to use genome_getseq_c, please follow the steps below. 
(1) Make sure that relevant local genome databases are available. 
(2) Prepare a tab-delimited text file that contains genomic regions for which one 

wants to get sequences. The file should have the following format. 
 
Sequence1_ID[tab]chromosome[tab]start[tab]end[tab]strand 

Sequence2_ID[tab]chromosome[tab]start[tab]end[tab]strand 

… 

 
In this file, “Sequence_ID” is a unique numerical or string ID for each region. 
“Chromosome” is the chromosome name (e.g., chr1, chr2, chrX, chrY, etc.). “Start” 
and “End” are integers that specify genomic coordinates of a region. Both “Start” and 
“End” are zero-based, i.e., the first position in each chromosome is indexed by 0, the 
second position indexed by 1, and so on. “Strand” specifies if a region is located in 
the forward or the backward strand of the assembly. Below is a sample file 
Gli_coordinates.txt: 
 
0 chr13 60949397 60950371 + 

1 chr2 146644626 146645570 + 

2 chr13 60951377 60952953 - 

3 chr12 53347310 53348354 + 

4 chrX 52789693 52789967 - 

5 chr12 53340519 53341015 + 

6 chr11 77915220 77915560 + 

 
 (3) Run genome_getseq_c. For example: 
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>genome_getseq_c –d /data/genomes/mouse/mm6/ -s mouse –i Gli_coordinates.txt –o 
Gli.fa –r assemblybase 
  
 In this example, DNA sequences for target regions will be extracted from mouse 
mm6 assembly, and will be saved to a file named “Gli.fa”.  

If “–r” option is “assemblybase”, then all sequences will be extracted from the 
“+” strand of the assembly.  

If “–r” option is “genebase”, sequences will be first extracted from the “+” strand 
of the assembly, the extracted sequences will then be adjusted according to their 
strand information (the 5th column in Gli_coordinates.txt). If a region is “-“, then the 
reverse complement of the extracted sequence will be saved to the output file; if a 
region is “+”, then the extracted sequence will be saved directly to the output file. 
  
 (4) After Running genome_getseq_c, one should get a file (Gli.fa in the above 
example) where extracted sequences are saved in FASTA format. 
 
3.3.2 genome_getseq 

genome_getseq can be used in a similar way as genome_getseq_c. The only 
difference between these two functions is the input coordinates file. For 
genome_getseq, chromosomes (the 2nd column in the coordinates file) should be 
specified by their numerical IDs (e.g., 1, 2, …, 23, 24 for human) instead of a string 
(e.g., chr1, chr2, …, chrX, chrY for human). Below is a sample coordinate file 
(Gli_coordinates_n.txt) for genome_getseq. The file specifies the same mouse regions 
as Gli_coordinates.txt in section 3.3.1. 

 
0 13 60949397 60950371 + 

1 2 146644626 146645570 + 

2 13 60951377 60952953 - 

3 12 53347310 53348354 + 

4 20 52789693 52789967 - 

5 12 53340519 53341015 + 

6 11 77915220 77915560 + 

 
One can run genome_getseq as below: 
>genome_getseq –d /data/genomes/mouse/mm6/ -s mouse –i Gli_coordinates_n.txt 
–o Gli.fa –r assemblybase 
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3.4 Sequence Manipulation II – Retrieving Sequences and Conservation Scores 
for Specified Genomic Regions 
  
[Usage] 

genome_getseqcs_c -d [Path where genome sequences (*.sq files) are stored] 

-c [Path where genome conservation scores (*.cs files) are stored] -s 

[Species name, e.g., mouse, human, dog, etc.] -i [File that specifies 

genomic coordinates of target regions] -o [Output Directory] -a [Output 

File Title] -r [Method to handle +/- strand: assemblybase or genebase] 

-f [Type of output files to save conservation scores: cs, bed, txt] 

 

genome_getseqcs -d [Path where genome sequences (*.sq files) are stored] 

-c [Path where genome conservation scores (*.cs files) are stored] -s 

[Species name, e.g., mouse, human, dog, etc.] -i [File that specifies 

genomic coordinates of target regions] -o [Output Directory] -a [Output 

File Title] -r [Method to handle +/- strand: assemblybase or genebase] 

-f [Type of output files to save conservation scores: cs, bed, txt] 

 
 genome_getseqcs_c and genome_getseqcs are extensions of genome_getseq_c 
and genome_getseq. These two functions can be used to retrieve sequences and 
conservation scores simultaneously from specified genomic regions. 
 
3.4.1 genome_getseqcs_c 

In order to use genome_getseqcs_c, please follow the steps below. 
(1) Make sure that the local genome database is available. The database should 

contain both sequences (*.sq files) and conservation scores (*.cs files). 
(2) Prepare a tab-delimited text file that contains genomic regions for which one 

wants to get sequences and conservation scores. The file should have the following 
format. 
 

Sequence1_ID[tab]chromosome[tab]start[tab]end[tab]strand 

Sequence2_ID[tab]chromosome[tab]start[tab]end[tab]strand 

… 

 
For example, Gli_coordinates.txt: 

0 chr13 60949397 60950371 + 

1 chr2 146644626 146645570 + 

2 chr13 60951377 60952953 - 

3 chr12 53347310 53348354 + 

4 chrX 52789693 52789967 - 

5 chr12 53340519 53341015 + 

6 chr11 77915220 77915560 + 

 
In this file, the first column specifies a unique ID for each region. The ID could be a 
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number or a string. The second column is chromosome name (e.g., chr1, chr2, chrX, 
chrY, etc.). The third and fourth columns specify region starts and ends. Both are 
integers and are zero-based, i.e., the first position in each chromosome is indexed by 0, 
the second position indexed by 1, and so on. The fifth column specifies the strand 
information of a region (i.e., + or – in relative to the assembly). 
 
 (3) Run genome_getseqcs_c as below: 
>genome_getseqcs_c –d /data/genomes/mouse/mm6/ –c 
/data/genomes/mouse/mm6/conservation/phastCons/ -s mouse –i Gli_coordinates.txt 
–o /users/output/ -a Gli –r assemblybase –f cs 
  
 In this example, DNA sequences and conservation scores for regions specified in 
Gli_coordinates.txt will be extracted from mouse genome (assembly mm6). The 
retrieved sequences will be saved to the file /users/output/Gli.fa. For each sequence, a 
separate file /users/output/Gli_[index]_[ID].[suffix] will be generated to save the 
corresponding conservation scores. Here, [index] is a numerical ID automatically 
attached to each sequence. The first sequence is indexed as 0, the second sequence is 
indexed as 1, and so on. [ID] is the numerical or string ID specified in the first column 
of Gli_coordinates.txt. [suffix] is the file type specified by “-f” option (in this 
example, cs). As a result, one can find conservation scores for region 
chr13:60949397-60950371 in a file named /users/output/Gli_0_0.cs, and find 
conservation scores for region chr2:146644626-146645570 in a file named 
/users/output/Gli_1_1.cs. 
 “-r” specifies strand type. If “–r assemblybase”, then all sequences and 
conservation scores will be extracted from the “+” strand of the assembly. If “–r 
genebase”, sequences and conservation scores will be first extracted from the “+” 
strand of the assembly, the extracted sequences and conservation scores will then be 
adjusted according to their strand information (the 5th column in Gli_coordinates.txt). 
If a region is “-“, then the reverse complement of the extracted sequence will be saved 
to the output FASTA file, and the reverted conservation scores will be saved to the 
output score file; if a region is “+”, then the extracted sequences and conservation 
scores will be saved directly to the output file. 
 “-f” specifies the file format to save conservation scores. “-f cs” means that 
conservation scores will be saved in *.cs files. As have been discussed in section 2.3, 
*.cs files are binary files. Each byte in the file corresponds to a single position in the 
DNA sequence. The score ranges from 0 to 255. The bigger the more conserved. “-f 
txt” means that conservation scores will be saved in *.txt files. *.txt files are ASCII 
files. Each line in the file corresponds to a single position in the DNA sequence. The 
score ranges from 0 to 255. “-f bed” means that conservation scores will be saved in 
*.bed files. *.bed files has the BED format 
(http://genome.ucsc.edu/goldenPath/help/customTrack.html). Each line in the file 
corresponds to a single position in the DNA sequence. The score is linearly converted 
from interval [0, 255] to interval [0, 1000]. A *.bed file can be visualized in UCSC 
Genome Browser as a customer track. One can use this file to check visually if 
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conservation scores are correctly extracted. 
  
Hint: In the process of establishing local genome database, users can use the function 
here to check if Footprint scores or GenomeLab conservation scores are correctly 
computed. 
 
3.4.2 genome_getseqcs 

genome_getseqcs can be used in a similar way as genome_getseqcs_c. The only 
difference between these two functions is the input coordinates file. For 
genome_getseqcs, chromosomes (the 2nd column in the coordinates file) should be 
specified by their numerical IDs (e.g., 1, 2, …, 23, 24 for human) instead of a string 
(e.g., chr1, chr2, …, chrX, chrY for human). Below is a sample coordinate file 
(Gli_coordinates_n.txt) for genome_getseqcs. The file specifies the same mouse 
regions as Gli_coordinates.txt in section 3.4.1. 

 
0 13 60949397 60950371 + 

1 2 146644626 146645570 + 

2 13 60951377 60952953 - 

3 12 53347310 53348354 + 

4 20 52789693 52789967 - 

5 12 53340519 53341015 + 

6 11 77915220 77915560 + 

 
One can run genome_getseqcs as below: 
>genome_getseqcs_c –d /data/genomes/mouse/mm6/ –c 
/data/genomes/mouse/mm6/conservation/phastCons/ -s mouse –i 
Gli_coordinates_n.txt –o /users/output/ -a Gli –r assemblybase –f cs 
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3.5 Sequence Manipulation III – Retrieving Sequences in which Protein Coding 
Regions and/or Non-Conserved Regions are Masked. 
  
[Usage] 

genome_getmaskedseq_c -d [Path where genome sequences (*.sq files) are 

stored] -c [Conservation cutoff] -cd [Path where genome conservation 

scores (*.cs files) are stored] -cds [Path where protein coding indicators 

(*.cds files) are stored] -s [Species name, e.g., mouse, human, dog, etc.] 

-i [File that specifies genomic coordinates of target regions] -o [Output 

File] -r [Method to handle +/- strand: assemblybase or genebase] 

 

genome_getmaskedseq -d [Path where genome sequences (*.sq files) are 

stored] -c [Conservation cutoff] -cd [Path where genome conservation 

scores (*.cs files) are stored] -cds [Path where protein coding indicators 

(*.cds files) are stored] -s [Species name, e.g., mouse, human, dog, etc.] 

-i [File that specifies genomic coordinates of target regions] -o [Output 

File] -r [Method to handle +/- strand: assemblybase or genebase] 

 
 genome_getmaskedseq_c or genome_getmaskedseq can be used to retrieve 
sequences for specific genomic regions. Protein coding regions and/or regions with 
low conservation scores can be masked by ‘N’ in the retrieved sequences. 
 
3.5.1 genome_getmaskedseq_c 

In order to use genome_getmaskedseq_c, please follow the steps below. 
(1) Make sure that relevant local genome databases are available.  
(2) Prepare a file in COD_C format (Appendix A.1.6) that specifies target 

genomic regions. Sequences will be extracted from the specified regions.  
 (3) Run genome_getmaskedseq_c. For example: 
 
>genome_getmaskedseq_c -d /data/genomes/human/hg17/ -c 40 -cd 

/data/genomes/human/hg17/conservation/phastcons/ -cds 

/data/genomes/human/hg17/cds/ -s human -i coordinates.txt -o seq.fa -r 

assemblybase 

 
 In genome_getmaskedseq_c,  
 “-d” specifies the directory where genome sequences (*.sq files) are stored. Make 
sure that the directory contains two other files: chrlist.txt and chrlen.txt. 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 
 “-c” specifies the conservation cutoff. Once “-c” and “-cd” are specified, 
sequences whose conservation scores are less than the cutoff will be masked by “N”. 
If one does not want to apply the conservation filter, please do not include “–c” and 
“-cd” options in the command. 
 “-cds” specifies the directory where protein coding indictors (*.cds files) are 
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stored. Once “-cds” is specified, protein coding regions will be masked by “N”. If one 
does not want to apply the CDS filter, please do not include “-cds” option in the 
command. 
 “-s” specifies species name, e.g., human, mouse, dog, cow, chicken, zebrafish. 
 “-i” specifies the coordinates file. The file must be in COD_C format. 
 “-o” specifies the output file. Retrieved sequences will be saved to this file in 
FASTA format. 
 “-r” specifies whether reverse complement sequences should be returned 
according to the strand information (column 5) in coordinates file.  
 If “-r assemblybase”, then all sequences will be extracted from the “+” strand of 
the genome assembly. The masked sequences will be saved directly to the output 
FASTA file.  
 If “–r genebase”, then sequences will be first extracted from the “+” strand of the 
assembly. Next, the masked sequences will be adjusted according to their strand 
information (column 5 in coordinates file). If a region is “-“, then the reverse 
complement of the masked sequence will be saved to the output FASTA file; if a 
region is “+”, then the masked sequences will be saved directly to the output file. 
 
 (4) After running genome_getmaskedseq_c, one should be able to find an output 
file specified by the “-o” option. The file contains masked sequences in FASTA 
format. In the output file, all repeats (small letters “a”, “c”, “g” and “t”) in the genome 
assembly are masked by “N”. Protein coding regions and regions with low 
conservation scores are masked by “N” when specified by users. 
 
3.5.2 genome_getmaskedseq 

genome_getmaskedseq can be used in a similar way as genome_getmaskedseq_c. 
The only difference is that the coordinates file used for genome_getmaskedseq must 
be in COD_N (Appendix A.1.7) format instead of COD_C format. 
  Below is an example to run genome_getmaskedseq: 
 
>genome_getmaskedseq -d /data/genomes/human/hg17/ -c 40 -cd 

/data/genomes/human/hg17/conservation/phastcons/ -cds 

/data/genomes/human/hg17/cds/ -s human -i coordinates_n.txt -o seq.fa -r 

assemblybase 
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3.6 Sequence Manipulation IV – Filtering Genomic Regions by Repeats, 
Conservation Scores and CDS Status. 
 
[Usage] 

genome_getmaskedreg_c -d [Path where genome sequences (*.sq files) are 

stored] -r [Non-repeat ratio] -c [Conservation cutoff] -cr [Conservation 

ratio] -cd [Path where genome conservation scores (*.cs files) are stored] 

-cds [Non-CDS ratio] -cdsd [Path where protein coding indicators (*.cds 

files) are stored] -s [Species name, e.g., mouse, human, dog, etc.] -i 

[File that specifies genomic coordinates of target regions] –o [Output 

File] 

 
genome_getmaskedreg -d [Path where genome sequences (*.sq files) are 

stored] -r [Non-repeat ratio] -c [Conservation cutoff] -cr [Conservation 

ratio] -cd [Path where genome conservation scores (*.cs files) are stored] 

-cds [Non-CDS ratio] -cdsd [Path where protein coding indicators (*.cds 

files) are stored] -s [Species name, e.g., mouse, human, dog, etc.] -i 

[File that specifies genomic coordinates of target regions] –o [Output 

File] 

 
 genome_getmaskedreg_c or genome_getmaskedreg can be used to filter genomic 
regions according to their repeat, protein coding and phylogenetic conservation 
characteristics. Sequences whose conservation score >= [Conservation cutoff] are 
defined as conserved base pairs. A genomic region will be filtered out if one of the 
following conditions is satisfied: 
 (i) The fraction of non-repeat base pairs < [Non-repeat ratio]; 
 (ii) The fraction of conserved base pairs < [Conservation ratio]; 
 (iii) The fraction of non-protein-coding region < [Non-CDS ratio]. 
One can choose to apply part or all of the filters. Regions that can pass the filtering 
will be saved to the output file.  
 
3.6.1 genome_getmaskedreg_c 

In order to use genome_getmaskedreg_c, please follow the steps below. 
(1) Make sure that relevant local genome databases are available.  
(2) Prepare a file in COD_C format (Appendix A.1.6) that specifies input 

genomic regions. 
 (3) Run genome_getmaskedreg_c. For example: 
 
> genome_getmaskedreg_c -d /data/genomes/human/hg17/ -r 0.9 -c 40 -cr 0.9 

-cd /data/genomes/human/hg17/conservation/phastcons/ -cds 0.9 -cdsd 

/data/genomes/human/hg17/cds/ -s human -i 

/data/genomes/human/hg17/coordinates.txt -o coordinates_masked.txt 

 
 In genome_getmaskedreg_c,  
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 “-d” specifies the directory where genome sequences (*.sq files) are stored. Make 
sure that the directory contains two other files: chrlist.txt and chrlen.txt. 
 “-r” specifies the non-repeat ratio. If one does not want to apply the repeat filter, 
please do not include the “–r” option in the command. 
 “-c” specifies the conservation cutoff. Base pairs whose conservation scores >= 
conservation cutoff are defined as conserved base pairs. 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 
 “-cr” specifies the conservation ratio. If one does not want to apply the 
conservation filter, please do not include the “–c”, “-cd” and “-cr” options in the 
command. 
 “-cdsd” specifies the directory where protein coding indictors (*.cds files) are 
stored. 
 “-cds” specifies the non-CDS ratio. If one does not want to apply the CDS filter, 
please do not include the “–cds” and “-cdsd” options in the command. 
 “-s” specifies species name, e.g., human, mouse, dog, cow, chicken, zebrafish. 
 “-i” specifies the input coordinates file. The file must be in COD_C format. 
 “-o” specifies the output file. The file will save coordinates of regions that can 
pass the filtering. Coordinates will be saved in COD_C format. 
 
 
3.6.2 genome_getmaskedreg 

genome_getmaskedreg can be used in a similar way as genome_getmaskedreg_c. 
The only difference is that the coordinates file used for genome_getmaskedreg must 
be in COD_N (Appendix A.1.7) format instead of COD_C format, and the output file 
of genome_getmaskedreg will be in COD_N format too. 
  Below is an example to run genome_getmaskedreg: 
 
> genome_getmaskedreg -d /data/genomes/human/hg17/ -r 0.9 -c 40 -cr 0.9 

-cd /data/genomes/human/hg17/conservation/phastcons/ -cds 0.9 -cdsd 

/data/genomes/human/hg17/cds/ -s human -i 

/data/genomes/human/hg17/coordinates_n.txt -o coordinates_masked.txt 
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3.7 Sequence Manipulation V – Masking Specified Regions From FASTA 
Sequences. 
 
[Usage] 

genome_fastaseqmask -i [Input FASTA file] -m [Mask file] -mt [Type of 

masking: 0-apply soft masking; 1- apply hard masking] -o [Output FASTA 

file] 

 
 genome_fastaseqmask can be used to mask specified regions from sequences 
stored in FASTA format. This function is useful when one wants to mask certain 
low-complexity motifs before conducting de novo motif discovery. 

In order to use genome_fastaseqmask, please follow the steps below. 
(1) Prepare a file that contains sequences to be processed in FASTA format. 
(2) Prepare a file that specifies what regions in the input sequences need to be 

masked. The file must be in COD_FA format, e.g.: 
 
0       3187    3199    -       CGCGCGCGCTGCC   0.608000 

0       3903    3915    +       CGGGCCTCCTCCC   0.282000 

1       3999    4011    +       TCCTCGCCCTGCG   0.834000 

1       7666    7678    +       CCCGCAGGCTGCG   0.508000 

2       8252    8264    +       TGCGTCCGCTCCG   0.666000 

3       9026    9038    +       CCGTGGCTCGGCC   0.258000 

3       9141    9153    -       CCGGCGCCCGGCC   0.342000 

3       9603    9615    +       CCGGTCCCCTCCC   0.288000 

 
 (3) Run genome_fastaseqmask. For example: 
> genome_fastaseqmask -i input.fa -m mask.txt -mt 1 -o output.fa 

 
 In genome_fastaseqmask,  
 “-i” specifies the FASTA file that contains input sequences. 
 “-m” specifies the COD_FA file that contains all regions that need to be masked. 
 “-mt” specifies the mask type. If “-mt 0”, masked sequences will be converted 
from capital letters “A”, “C”, “G”, “T” to small letters “a”, “c”, “g” and “t”. If “mt 1”, 
masked sequences will be converted to “N”. 
 “-o” specifies the output file that will save masked sequences in FASTA format. 
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4. GENOMICS TOOLBOX III –ANNOTATING SPECIFIED REGIONS 
 
4.1 Introduction 
 Besides sequence retrieval, genomics toolbox can also be used to retrieve other 
related information for specified genomic regions. This section introduces various 
functions relevant to this topic. 
 
4.2 List of Functions 
 (1) genome_getcsgcsummary – Get nucleotide occurrence frequencies and 
conservation score distribution for specified genomic regions. 
 (2) refgene_getnearestgene – Associating genomic regions with neighboring 
genes. 
 (3) refgene_gettssaround – Get regions surrounding transcription start sites. 
 (4) refgene_getaffy – Get Affymetrix probeset IDs for a set of genes. 
 (5) reflex_getmultiortholog, refgene_getmultiortholog – Search for orthologs of a 
set of genes. 
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4.3 Get Nucleotide Occurrence Frequencies and Conservation Score Distribution 
for Specified Genomic Regions 
 
[Usage] 

genome_getcsgcsummary -gd [Path where genome sequences (*.sq files) are 

stored] -i [File that specifies genomic coordinates of target regions] 

-o [Output file title] -c [Conservation cutoff] -cd [Path where genome 

conservation scores (*.cs files) are stored] 

 
 genome_getcsgcsummary can be used to count occurrence frequencies of A, C, G 
and T, and to get the distribution of conservation scores for specified genomic regions. 
After specifying the coordinates of genomic regions in COD_C format, the program 
will automatically check the non-repeat regions. Occurrence frequencies of A, C, G, 
and T will be returned in a text file named [Output file title]_gc.stat. The number of 
non-repeat base pairs at each conservation score level (i.e., 0, 1, 2, …, 255) will be 
counted, and the resulting histogram will be saved to a text file named [Output file 
title]_cs.stat. Optionally, users can also specify a conservation cutoff. If the 
conservation cutoff is given, nucleotide occurrence frequencies and conservation 
score distributions will only be counted for sequences where the conservation 
scores >= [Conservation cutoff]. 
 genome_getcsgcsummary can be used as follows. 
 (1) Make sure that relevant local genome databases are available. 
 (2) Prepare a file in COD_C format that specifies target genomic regions to be 
studied (Appendix A.1.6), e.g., input_coord.txt. 
 (3) Run genome_getcsgcsummary. For example: 
 

> genome_getcsgcsummary -gd /data/genomes/human/hg17/ -i input_coord.txt 

-o output_summary -c 40 -cd 

/data/genomes/human/hg17/conservation/phastcons/ 

 
 In genome_getcsgcsummary,  
 “-gd” specifies the directory where genome sequences (*.sq files) are stored. 
Make sure that the directory contains two other files: chrlist.txt and chrlen.txt. 
 “-i” specifies the file that contains target genomic regions in COD_C format.  
 “-o” specifies the title of the output file. 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 
  “-c” specifies the conservation cutoff. If one does not want to set a conservation 
cutoff, and if one wants to get summary statistics for all non-repeat base pairs, please 
do not include “-c” and “-cd” options in the command. 
 
 (4) Check [Output file title]_gc.stat and [Output file title]_cs.stat for results. In 
the above example, [Output file title] is “output_summary”. The *_cs.stat file contains 
256 lines. Line 1 counts how many non-repeat base pairs have a conservation score 0; 
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line 2 counts how many non-repeat base pairs have a conservation score 1, etc. 
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4.4 Associating Genomic Regions with Neighboring Genes 
 
[Usage] 

refgene_getnearestgene -d [Path of the gene annotation file] -dt [Format 

of the gene annotation file] -s [Species name, e.g., human, mouse, dog] 

-i [File that specifies genomic regions to be annotated] -o [Output file] 

-r [Definition of Distance] -up [Maximum upstream distance allowed] -down 

[Maximum downstream distance allowed] 

 
 refgene_getnearestgene can be used to annotate genomic regions using their 
neighboring genes. Users need to define a distance measure first. Based on the 
distance measure, the gene that is closest to each genomic region will be reported. 
Users also need to specify two distance limits, i.e., [Maximum upstream distance 
allowed] and [Maximum downstream distance allowed], if the distance to the closed 
gene is greater than the limits, the genomic region will not be annotated. 
 Assume that the mid point of a genomic region is x, TSS = transcription start, 
TES = transcription end, CDSS = protein coding region start, CDSE = protein coding 
region end, [Maximum upstream distance allowed]=Mu, [Maximum downstream 
distance allowed]= Md. Users can choose from one of the distance measures below. 
 (1) 0: TSS-up, TES-down. This is the distance to a gene. If x falls within the 
interval specified by TSS and TES, then the distance = 0. If x is located upstream of 
TSS, then the distance = |x-TSS|. If x is located downstream of TES, then the distance 
= |x-TES|. If x is located upstream of TSS and is >Mu base pairs away from TSS, or if 
x is located downstream of TES and is >Md base pairs away from TES, then the 
region will not be annotated. 
 (2) 1: TSS-up, TSS-down. This is the distance to TSS. The distance = |x-TSS |. If 
x is located upstream of TSS and is >Mu base pairs away from TSS, or if x is located 
downstream of TSS and is >Md base pairs away from TSS, then the region will not be 
annotated. 
 (3) 2: TES-up, TES-down. This is the distance to TES. The distance = |x-TES |. If 
x is located upstream of TES and is >Mu base pairs away from TES, or if x is located 
downstream of TES and is >Md base pairs away from TES, then the region will not be 
annotated. 
 (4) 3: CDSS-up, CDSE-down. This is the distance to protein coding regions. If x 
falls within the interval specified by CDSS and CDSE, then the distance = 0. If x is 
located upstream of CDSS, then the distance = |x- CDSS |. If x is located downstream 
of CDSE, then the distance = |x- CDSE|. If x is located upstream of CDSS and is >Mu 
base pairs away from CDSS, or if x is located downstream of CDSE and is >Md base 
pairs away from CDSE, then the region will not be annotated. 
 (5) 4: CDSS-up, CDSS-down. This is the distance to CDSS. The distance = |x- 
CDSS |. If x is located upstream of CDSS and is >Mu base pairs away from CDSS, or 
if x is located downstream of CDSS and is >Md base pairs away from CDSS, then the 
region will not be annotated. 
 (6) 5: CDSE -up, CDSE -down. This is the distance to CDSE. The distance = |x- 
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CDSE |. If x is located upstream of CDSE and is >Mu base pairs away from CDSE, or 
if x is located downstream of CDSE and is >Md base pairs away from CDSE, then the 
region will not be annotated. 
 
 refgene_getnearestgene can be used as follows. 
 (1) Make sure that local genome databases contain relevant gene structure 
annotations in either REFGENE_CISGENOME (Appendix A.1.17) or 
REFFLAT_CISGENOME (Appendix A.1.19) format. 
 (2) Prepare a file in COD_C format (Appendix A.1.6) that specifies target 
genomic regions that need to be annotated, e.g., target_coord.txt. 
 (3) Run refgene_getnearestgene. For example: 
 

> refgene_getnearestgene -d 

/data/genomes/human/hg17/annotation/refFlat_sorted.txt –dt 1 –s human -i 

target_coord.txt -o target_annot.txt –r 0 –up 50000 –down 50000 

 
 In refgene_getnearestgene,  
 “-d” specifies the whole genome gene annotation file. This file should be either in 
REFGENE_CISGENOME format or in REFFLAT_CISGENOME format.  
 “-dt” specifies the format of whole genome gene annotation file. If “-dt 0”, then 
the annotation file specified by “-d” should be in REFGENE_CISGENOME format. 
If “-dt 1”, then the annotation file should be in REFFLAT_CISGENOME format. 
 “-s” specifies the species name, e.g., human, mouse, dog, cow, chicken, zebrafish. 
 “-i” specifies the file that contains target genomic regions in COD_C format.  
 “-o” specifies the the output file. 
 “-r” specifies what distance measure to use. One can choose from 0 to 5. 
 “-up” specifies the [Maximum upstream distance allowed]. 
 “-down” specifies the [Maximum downstream distance allowed]. 
 
 (4) After running refgene_getnearestgene, the results will be saved to a 
tab-delimited output file specified by “-o” option. In the output file, each region is 
linked to its closest gene (if there is any), and the gene information is provided in 
REFGENE_CISGENOME or REFFLAT_CISGENOME format. 
 
 
 
 
 
 
 
 
 
 
 



 53

4.5 Getting Regions Surrounding Transcriptional Starts  
 
[Usage] 

refgene_gettssaround -d [Path of the gene annotation file] -t [File that 

specifies input RefSeq IDs] -o [Output File] -s [Species name, e.g., human, 

mouse, dog] -up [Upstream window size] -down [Downstream window size] -c 

[Chromosome Lengths] 

 

 refgene_gettssaround can be used to get genomic regions surrounding 
transcriptional starts (TSS) for specified genes. After specifying a list of RefSeq IDs 
and how many base pairs upstream and downstream from TSS one wants to extend, 
the program will return a file in COD_C format that contains regions surrounding 
TSS for all the specified genes. 
 refgene_gettssaround can be used as follows. 
 (1) Make sure that local genome databases contain relevant gene structure 
annotations in REFGENE_CISGENOME (Appendix A.1.17) format. 
 (2) Prepare a text file that contains RefSeq IDs for all genes one wants to study. 
Each line contains a single RefSeq ID. For example, genelist.txt: 
 

NM_001633 

NM_005952 

NM_000638 

NM_000295 

NM_005952 

 
 (3) Run refgene_gettssaround. For example: 
 

> refgene_gettssaround -d /data/genomes/human/ 

hg17/annotation/refGene_sorted.txt -t genelist.txt -o 

genetss5k1k_coord.txt -s human -up 5000 -down 1000 -c 

/data/genomes/human/hg17/chrlen.txt 

 
 In refgene_gettssaround,  
 “-d” specifies the whole genome gene annotation file. This file should be in 
REFGENE_CISGENOME format.  
 “-t” specifies the file that contains target RefSeq IDs. 
 “-s” specifies the species name, e.g., human, mouse, dog, cow, chicken, zebrafish. 
 “-o” specifies the output file. 
 “-up” specifies how many base pairs upstream of TSS one want to extract. 
 “-down” specifies how many base pairs downstream of TSS one want to extract. 
 “-c” specifies the file that contains chromosome lengths for all chromosomes. 
Such a file is usually generated automatically when the local genome database is 
established. 
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 (4) After running refgene_gettssaround, the extracted region will be saved to the 
output file in COD_C format, which can then be used as input for other functions such 
as genome_getseq, motifmap_matrixscan_genome, etc. 
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4.6 Get Affymetrix Probeset IDs for Specified Genes 
 
[Usage] 

refgene_getaffy -d [File that contains the mapping from probeset ID to 

RefSeq ID] -i [File that specifies input RefSeq IDs] -c [Column number 

of RefSeq IDs] -o [Output File] 

 
 refgene_getaffy can be used to retrieve probeset IDs from Affymetrix expression 
arrays for a set of specified genes. After specifying a list of RefSeq IDs and a 
mapping from probeset ID to RefSeq ID, the program will return a file that contains 
probeset IDs associated with the given genes.. 
 refgene_getaffy can be used as follows. 
 (1) Prepare a text file that contains RefSeq IDs for all genes one wants to study. 
The file is tab-delimited, and the RefSeq IDs should be in the same column, e.g., 
 

NM_001633 

NM_005952 

NM_000638 

NM_000295 

NM_005952 

 
Or: 
 

Gene1 NM_001633 

Gene2 NM_005952 

Gene3 NM_000638 

Gene4 NM_000295 

Gene5 NM_005952 

 
 (2) Prepare a text file that contains a mapping from probeset IDs to RefSeq IDs. 
The file has the following format: 
 
1415703_at NM_021523 

1415705_at --- 

1415706_at NM_009938 

1415707_at NM_175300 

1415708_at NR_002321 /// NR_002322 

 
Each line contains two columns separated by a tab: 
Probeset_ID[tab]RefSeq_ID 
 
If a probeset is associated with multiple RefSeq IDs, then RefSeq IDs are separated 
by “[space]///[space]”. If a probeset has no associated RefSeq ID, then use “---” to 
represent the RefSeq ID.  



 56

 
 The mapping can be obtained from Affymetrix’s *.csv annotation files for each 
individual array types. To get the *.csv annotation, go to 
http://www.affymetrix.com/support/technical/byproduct.affx?cat=exparrays, choose 
the array type you are using, and download the corresponding “NetAffx Annotation 
Files” with *.csv suffix. Open it using Excel, cut the column “Probe Set” and “RefSeq 
Transcript ID”, paste them to a new excel file, remove the first line (i.e. “Probe Set” 
and “RefSeq Transcript ID”), and save it as a tab-delimited text file. The resulting file 
can then be used as the mapping file. 
 
 (3) Run refgene_getaffy. For example: 
>refgene_getaffy -d Mouse430_2_affy2refid.txt -i genelist.txt -c 0 -o 

genelist_affy.txt 

 
 In refgene_getaffy,  
 “-d” specifies the file that contains the mapping from probeset ID to RefSeq ID. 
 “-i” specifies the input file that contains target RefSeq IDs. 
 “-c” specifies in which column of the input file are the RefSeq IDs. The column 
is indexed from 0, i.e., the first column is 0, the second column is 1, etc. 
 “o” specifies the output file. 
 
 (4) After running refgene_getaffy, the results will be saved to a tab-delimited 
output file which is specified by “-o” option. The first column is the probeset ID, and 
the remaining columns are copied from the input file. 
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4.7 Identifying Ortholog (Homolog) Genes 
 
[Usage] 

refflex_getmultiortholog -i [Input file] -c [RefGene starting column] -d 

[File that specifies annotation databases] -o [Output file title] 

 

refgene_getmultiortholog -i [Input file] -d [File that specifies 

annotation databases] -o [Output file title] 

 
 refflex_getmultiortholog and refgene_getmultiortholog can be used to identify 
orthologs for a list of genes. The orthologs are identified using an ad hoc co-linearity 
criterion. We use the following example to illustrate the basic idea. In order to identify 
the human ortholog of a mouse gene A, all alignments of the mouse gene to the 
human genome will be extracted from human annotation database 
(mouseRefGene_Sorted.txt). For illustrations purpose, let us assume that two such 
hits can be found, denoted by A’ and A’’ respectively (see the Figure below).  

 
  
 For the mouse gene A, four flanking genes (two on each side) are extracted. The 
four genes are picked up one by one starting from the mouse gene closed to A. The 
four flanking genes are required to be non-overlapping with A as well as with each 
other. Any flanking genes more than 3Mb away from gene A are then excluded from 
further analysis.  
 On the other hand, each hit in human, say A’, is also extended to both sides until 
the extension on each side can cover 10 non-overlapping flanking genes or the 
extension reaches 3Mb, whichever comes first. The extended region is called as a 
human candidate region. Mouse gene A and its four flanking genes are then compared 
with all genes within the human candidate regions. For each human candidate region 
(i.e., A’ or A’’), we count how many of the mouse genes (gene A and flanking genes b, 
c, d, e) can find a match in the candidate region. We denote this number by M. In our 
example, M=5 for human candidate region A’, and M=1 for human candidate region 
A’’. 
 For each gene pair (excluding gene A) that can be found both in mouse and in 
human, we check if their relative position has been changed. A gene pair is defined to 
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be a collinear gene pair, if (i) two genes in the gene pair are on the same side of gene 
A (e.g., b-c) and are still on the same side of gene A’s human homolog (i.e., A’ or A’’), 
or if (ii) the two genes in a gene pair are on different sides of gene A (e.g., b-e) and are 
still on different sides of gene A’s human homolog. For each human candidate region, 
we count how many collinear gene pairs one can find. We denote this number by O. 
In our example, O=3 for human candidate region A’, and O=0 for human candidate 
region A’’. The 3 co-linear gene pairs in A’ region are: b’-c’, b’-e’, c’-e’. 
 Next, we compute a co-linearity score for each human candidate region as 
Score=M+1.2*O. We then rank all human candidate regions by the score. The region 
with the highest score will be selected as the ortholog region. In our example, A’ is 
therefore picked up as the human ortholog to mouse gene A. 
 When implementing this algorithm to handle multiple species, we usually choose 
a link species first to facilitate making judgment of whether a gene has a match in 
another species or not. RefSeqs from the link species are mapped to all species. As a 
result, all genes including A, A’, A’’, b, c, d, e, b’, c’, d’, e’ are indeed RefSeqs from 
the link species aligned to different genomes. In this way, a match between two 
species can be easily judged by comparing the RefSeq IDs. If the input RefSeq IDs 
are from the original species, we will first obtain RefSeq IDs from the link species 
that overlap them best in the alignment. The link species RefSeq IDs will then be used 
to identify orthologs. The most commonly used link species is mouse. The alignment 
of mouse RefSeqs to different genomes can be easily obtained by 
refgene_getspeciesspecific when establishing the local genome databases. 
   
4.7.1 refflex_getmultiortholog 
 refflex_getmultiortholog can be used to search for orthologs if one provides both 
RefSeq IDs and gene structure annotations for genes to be studied.  
 (1) Prepare a parameter file, say, orthologsetting.txt that specifies the annotation 
database to be used. The file should be in GENOME_ANNOTATION_SETTING 
format (Appendix A.1.23).  
 (2) Prepare a tab-delimited file, say, inputgene.txt that specifies the genes for 
which one wants to retrieve orthologs. The file should contain structures of the gene 
in REFGENE_CISGENOME_FLEXIBLE format (Appendix A.1.20). 
 (3) Run refflex_getmultiortholog. For example, 
 
> refflex_getmultiortholog -i inputgene.txt -c 0 -d orthologsetting.txt -o 
inputgene_ortholog 
 
 In refflex_getmultiortholog, 
 “-i” specifies the file that contains genes to be studied. 
 “-c” specifies from which column the gene structure annotation in 
REFGENE_CISGENOME format will start in the input file. The columns are 
tab-delimited and indexed from 0. The first column is indexed as 0, the second 
column is indexed as 1, and so on.  
 “-d” specifies the file that contains links to annotation databases. 



 59

 “-o” specifies the output file title.  
 
 (4) After running refflex_getmultiortholog, check a file named *.nsomap for 
results. For example, if the output file title is inputgene_ortholog, then the orthologs 
found will be saved to inputgene_ortholog.nsomap. The output file is in 
REFGENE_ORTHOLG format (Appendix A.1.21). 
 
4.7.2 refgene_getmultiortholog 
 refgene_getmultiortholog can be used to search for orthologs if one only provides 
RefSeq IDs for genes to be studied.  
 (1) Prepare a parameter file, say, orthologsetting.txt that specifies the annotation 
database to be used. The file should be in GENOME_ANNOTATION_SETTING 
format.  
 (2) Prepare a text file, say, inputgene.txt. Each line in the file specifies a RefSeq 
ID. 
 (3) Run refgene_getmultiortholog. For example, 
 
> refgene_getmultiortholog -i inputgene.txt -d orthologsetting.txt -o 
inputgene_ortholog 
 
 In refgene_getmultiortholog, 
 “-i” specifies the file that contains genes to be studied. 
 “-d” specifies the file that contains links to annotation databases. 
 “-o” specifies the output file title.  
 
 (4) After running refgene_getmultiortholog, check a file named *.nsomap for 
results. For example, if the output file title is inputgene_ortholog, then the orthologs 
found will be saved to inputgene_ortholog.nsomap. The output file is in 
REFGENE_ORTHOLG format. 
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5. Microarray Toolbox – Microarray Gene Selection 
5.1 Introduction 
 Selecting genes that show specific spatial or temporal expression patterns is a 
routine analysis to identify key players in a biological system. The microarray gene 
selection tool, PowerExpress, is designed to handle this task. 
 
5.2 List of Functions 
 (1) powexpress – Selecting genes that show specific expression patterns. 
 (2) powexpress_getspecificprobe – Get raw expression data for specified 
probesets. 
 (3) powexpress_getnrprobe – Remove redundant probesets from the raw data file. 
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5.3 Selecting Genes that Show Specific Expression Patterns 
 
[Usage] 

> powexpress -d [datafile] -a [annotation file] -c [parameter file] -o 

[output file] 
 
 powexpress is a tool for selecting genes from microarrays. The main features of 
PowerExpress include: 
 (1) powexpress can be used to search for genes that show complex expression 
patterns of interest (e.g. genes that show specific temporal or spatial patterns). In 
powexpress, one can specify a complex criteria for conducting multiple sample 
comparisons such as "(mutant 1 < wild type < mutant 2) and [(mutant 3 > wild type) 
or (mutant 4 <mutant 5)]", and the program will then automatically rank the genes 
according to the specified criteria.  
 (2) powexpress is especially useful for dealing with small number of replicates. 
The software adopts a hierarchical empirical Bayes estimator for variance estimation. 
It pools information from all genes across the array and can significantly increase the 
sensitivity in gene selection when there are only a few replicates available. 
 
5.3.1 How to use powexpress 

In order to use powexpress, please follow the steps below. 
 (1) Prepare a data file that contains normalized expression data for all genes 
(probes/probesets). The file should follow EXPRESSION_DATA format (A.1.24). 

(2) Prepare a parameter file that specifies the expression pattern one wish to 
screen for. The file format will be discussed below. 
 (3) Optionally, one can also prepare an annotation file that provides annotations 
for all genes. The file should follow EXPRESSION_ANNOTATION format (A.1.25). 
If this file is provided, the selected genes will be annotated based on the file. Notice 
that the ordering of annotations should match the ordering of probes/probesets in the 
data file, i.e. the first annotation line should correspond to the first probeset (the first 
data line) in the data file, etc. 
 (4) run powexpress. For example: 
> powexpress -d data.txt -a datainfo.txt -c compinfo.txt -o gene_out 

 
 In powexpress, 
 “-d” specifies the data file that contains normalized expression data. 
 “-o” specifies the title for output file (section 5.3.3). 
 “-c” specifies the parameter file that specifies comparison criteria. 
 “-a” specifies the annotation file. One can set "-a NULL" in the command line if 
one does not have or does not want to provide an annotation file. In this case, the 
program will not link the selected probesets to gene annotations.  
 
5.3.2 Parameter file 
 To select probesets that show patterns of interest, one need to provide a parameter 
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file (say compinfo.txt) that specifies which pattern one wants to select, e.g. 
"mu1<mu2 and mu3>m4". A sample file is as below. 
 
[Basic Info] 

array number = 30 

probeset number = 57753 

group number = 10 

 

[Group ID] 

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 

 

[Comparisons] 

((1<2) & (2<3)) | ((4<5) & (5<6)) 

 

[Preprocessing Setup] 

truncate lower bound = 2 

take log2 before calculation (1:yes; 0:no) = 1 

 

[Output Setup] 

print top # of genes = 300 

 

[Simulation Setup] 

permutations for FDR calculation = 2 

permutations within each sorting cycle = 1000 

 

[Permutation Setup] 

permutation group = 4 

1 2 3 

4 5 6 

7 8 

9 10 

 

[Variance Setup] 

variance group = 4 

1 2 3 

4 5 6 

7 8 

9 10 

 
 
 One can prepare a parameter file by modifying the sample file, but please do not 
change the format of the file, leave field labels such as "array number = " in their 
original form. 
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 (A) In "Basic Info" section, one needs to provide general information about 
microarray experiment, including array number, probeset number and group number 
(i.e. number of experimental conditions).  
 
 (B) In "Group ID" section, one needs to label which group each array belongs to 
using an integer. For example, "1 1 1 2 2 2 3 3 3" means that the first array (2nd 
column in the data file) is from condition 1, the second array (3rd column in the data 
file) is from condition 1, ..., the fourth array (5th column in the datafile) is from 
condition 2, etc. Negative integers can be used if one wants to ignore a specific array. 
For example, "1 -1 1 2 -2 2 3 3 3" will ignore the second and fifth array in the 
analysis.   
 
 (C) In "Comparisons" section, one sets the selection criteria, i.e. expression 
patterns one wants to select. For example, the criteria can be specified as "((1>2) & 
(2>3)) | ((4<5) & (5<6))", in which case the program will select probesets whose 
expression level is ((higher in condition 1 than in condition 2) and (higher in 
condition 2 than in condition 3)) or ((lower in condition 4 than in condition 5) and 
(lower in condition 5 than in condition 6)). Currently, we only support the following 
operations: 
< (less than) 
> (greater than) 
& (and) 
| (or)   
 
 
 (D) In "Preprocessing Setup", one specifies how to truncate low expression 
values and whether log-transformation should be used before analysis. If "truncate 
lower bound = 2", all expression values in datafile which are less than 2 will be set 
equal to 2. If "take log2 before calculation (1:yes; 0:no) = 1", expression values will 
be log-transformed before performing test for each probeset. 
 
 (E) In "Output Setup", one specifies how many genes to report. 
 
 (F) In "Simulation Setup", one specifies how many iterations to run for FDR 
estimation and how many samples to draw for doing multiple sample comparisons.  
 
If "permutations for FDR calculation = 10", the labels in "Group ID" will be permuted 
10 times to compute a FDR. The permutation is done based on permutation groups set 
in "Permutation Setup" section. It will be done within each permutation group. For 
example, if there are four permutation groups as follows 
1 2 3 
4 5 6 
7 8 
9 10 
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then the permutation will be done within group 1,2 and 3, i.e. all arrays labeled by 1 
or 2 or 3 will be permuted. Similary, arrays labeled by 4, 5 or 6 will be permuted, etc. 
No permutation will be done between two permutation groups, e.g. between (1,2,3) 
and (4,5,6). As a result, the FDR computed is a FDR for null hypothesis H0: "1=2=3, 
4=5=6, 7=8, 9=10". 
 
If "permutations within each sorting cycle = 1000", then 1000 Monte Carlo draws will 
be made to infer the probability that the selection criteria will be satisfied. This setup 
is only used for multiple sample comparisons such as "(1<2) & (2<3)". For two 
sample comparisons such as "1<2", a modified t-test will be used directly, no Monte 
Carlo simulation needs to be done. 
 
 (G) In "Permutation Setup", one can specify how to do permutations for FDR 
estimation. One needs to tell how many permutation groups there are. Then for each 
permutation group, one needs to specify which experimental conditions are included. 
For example:  
 
permutation group = 2  
1 2 3 
4 5 6 
means that there are 2 permutation groups. Arrays labled by 1, 2 or 3 will be mixed 
and permuted; arrays labled by 4, 5 and 6 will be mixed and permuted. The 
permutation will not bedone between arrays labled by 1 and 4, 1 and 5 etc. The null 
hypothesis is therefore "1=2=3, 4=5=6".  
 
 (H) In "Variance Group", one needs to specify which groups are assumed to have 
common variance. The variance shrinking will be based on the settings here. For 
example, 
variance group = 2  
1 2 3 
4 5 6 
means that we assume that group 1, 2 and 3 have the same within-condition variance, 
and group 4, 5 and 6 also have a common within-condition variance. But the 
within-condition variance for (1,2,3) and (4,5,6) can be different. The variance 
shrinking will be done within each variance group.   
  
 
5.3.3 Output file 
 After specifying the title for output file, say “gene_out”,  the program will 
generate four files as follows. 
 
gene_out.txt -- top genes with annotations. The highest ranking (smallest test-statistics) 
probesets are reported. They are linked to annotations provided in the annotation file. 
The probesets are sorted from top to bottom according to the degree they match the 
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selection criteria. 
 
gene_out.ori -- the probeset level test-statistics for all probesets, the smaller the better. 
For two sample comparisons, this is the modified t-statistic. For multiple sample 
comparisons, this is 1-(posterior probability that the selection criteria are satisfied). 
This file will be used by "powexpressloc" for combining multiple probesets. 
 
gene_out.pb -- probeset name 
 
gene_out_ctr.txt -- a file that contains randomly chosen probes. This file may serve as 
a negative control for downstream analysis. 
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5.4 Get raw expression data for specified probesets 
 

[Usage] 

> powexpress_getspecificprobe -d [data file] -i [input file] -c [column 

number of probeset id] -o [output file] 

 
 powexpress_getspecificprobe can be used to pick up specific probes and store 
their raw expression data to an independent file. The resulting file can be imported 
into dChip for visualization. 
 In order to use powexpress_getspecificprobe, one can follow the steps below. 
 (1) Prepare a data file in EXPRESSION_DATA format. The file stores the 
expression data for all probes/probesets in a microarray experiment (e.g., shhdata.txt). 
 (2) Prepare a file that specifies which probes need to be picked up (e.g., target.txt). 
The file is a tab-delimited text file, and one column should correspond to 
probe/probeset ID. 
 (3) Run powexpress_getspecificprobe. For example:  
> powexpress_getspecificprobe -d shhdata.txt -i target.txt -c 0 -o 

target_affy.txt 

 

 In powexpress_getspecificprobe,  
 “-d” specifies the data file that contains expression data. 
 “-i” specifies the input file that contains probe/probeset IDs of interest. 
 “-c” specifies which column in the input file are the probe/probeset IDs. The 
column is indexed from 0, i.e., 0 is equivalent to the first column, 1 is equivalent to 
the second column, etc. 
 “-o” specifies the output file. 
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5.5 Remove redundant probesets from the raw data file 
 

[Usage] 

> powexpress_getnrprobe -i [input file] -o [output file] 

 
 powexpress_getnrprobe can be used to get rid of redundant probes/probesets (i.e., 
probes/probesets that appear >=2 times) in a EXPRESSION_DATA file. 
 In order to use powexpress_getnrprobe, one can follow the steps below. 
 (1) Prepare a data file in EXPRESSION_DATA format. The file stores the 
original expression data. 
 (2) Run powexpress_getnrprobe. For example:  
> powexpress_getnrprobe -i inputdata.txt -o data_nr.txt 
 

 In powexpress_getnrprobe,  
 “-i” specifies the input file that contains original expression data. 
 “-o” specifies the output file in which redundant probes/probesets are removed. 
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6. ChIP-chip Toolbox – ChIP-chip Peak Detection 
6.1 Introduction 
 TileMap is a tool designed for tiling array analysis. It can be used to identify 
transcription factor binding regions from ChIP-chip tiling array data. This section will 
briefly introduce how one can use TileMap. More detailed information about TileMap 
can be found at http://biogibbs.stanford.edu/~jihk/TileMap/index.htm. 
 
6.2 List of Functions 
 (1) tilemap_importaffy – import data from Affymetrix arrays. 
 (2) tilemap_norm – quantile normalization. 
 (3) tilemap – detect binding regions 
 (4) tilemap_extract – retrieve probes and summary statistics in user-specified 
regions. The retrieved data can be easily loaded into R, Matlab etc. for visualization. 
 (5) sample R/Matlab code tilemap_plot.R (or .m) for visualizing tilemap results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 69

6.3 ChIP-chip Analysis Step I – Import Raw Data 
 
[Usage] 

> tilemap_importaffy [importaffy_parameter_file] 

 
 tilemap_importaffy can be used to import data from Affymetrix arrays and 
preprocess the data (normalization & create local repeat filters). It converts *.CEL 
(version 3, ASCII file) and *.BPMAP files into the standard tilemap data format (see 
file format section). 
 In order to use tilemap_importaffy, one needs to have  
(a) raw *.CEL (version 3, an ASCII file) files; 
(b) *.BPMAP file (can be downloaded from affymetrix website); 
(c) and a parameter file as below: 
 

############################### 

# TileMap Import Affymetrix   # 

############################### 

 

[Working directory] = 

C:\Projects\research_harvard\affy_project\analysis\tiling_paper\ 

[BPMAP file] = P1_CHIP_A.Anti-Sense.hs.NCBIv33.sary.bpmap 

[Export file] = cMycA_tile.txt 

 

############################### 

# Arrays                      # 

############################### 

[Array number] = 18 

[Arrays] 

IP_5_3A.CEL Jurkat_anti-cMyc_A_1_1 

IP_5_4A.CEL Jurkat_anti-cMyc_A_1_2 

IP_5_5A.CEL Jurkat_anti-cMyc_A_1_3 

IP_1_3A.CEL Jurkat_anti-GST_A_1_1 

IP_1_4A.CEL Jurkat_anti-GST_A_1_2 

IP_1_5A.CEL Jurkat_anti-GST_A_1_3 

IP_7_3A.CEL Jurkat_Input_A_1_1 

IP_7_4A.CEL Jurkat_Input_A_1_2 

IP_7_5A.CEL Jurkat_Input_A_1_3 

IP_6_1A.CEL Jurkat_anti-cMyc_A_2_1 

IP_6_2A.CEL Jurkat_anti-cMyc_A_2_2 

IP_6_3A.CEL Jurkat_anti-cMyc_A_2_3 

IP_2_1A.CEL Jurkat_anti-GST_A_2_1 

IP_2_4A.CEL Jurkat_anti-GST_A_2_2 

IP_2_3A.CEL Jurkat_anti-GST_A_2_3 

IP_8_1A.CEL Jurkat_Input_A_2_1 
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IP_8_2A.CEL Jurkat_Input_A_2_2 

IP_8_3A.CEL Jurkat_Input_A_2_3 

 

############################### 

# Normalization               # 

############################### 

[Apply normalization before computing intensity] (1:yes; 0:no) = 1 

[Truncation lower bound before normalization] = -100000000.0 

[Take log2 transformation before normalization] (1:yes; 0:no) = 0 

 

############################### 

# Method to Compute Intensity # 

############################### 

[How to compute intensity] (0: PM only, 1: PM-MM) = 0 

[Truncation lower bound after intensity computation] = -100000000.0 

[Take log2 transformation after intensity computation] (1:yes; 0:no) = 

0 

 
 
 Below are the meanings for each item in the parameter file. 
[Working directory]  
The directory that contains *.CEL and *.BPMAP files. All the results generated by 
TileMap will be exported to this directory. 
 
[BPMAP file] 
The name of the *.BPMAP file. This file should be placed in the working directory. It 
will be used to sort the probes according to their genomic location and to generate a 
local repeat filter. 
 
[Export file] 
Please specify a file to save the converted data. The raw *.CEL data will be exported 
into [working directory]\[export file] in the standard tilemap data format.  
 
[Array number] 
Number of arrays. 
 
[Arrays] 
Each line below [Arrays] represent an array. Each line contains two columns, 
separated by a tab, the first column gives the name of the *.CEL file, and the second 
column gives the name of the array (provided by users to specify e.g. experimental 
conditions ...). For example: 
 
IP_5_3A.CEL Jurkat_anti-cMyc_A_1_1 
IP_5_4A.CEL Jurkat_anti-cMyc_A_1_2 
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IP_5_5A.CEL Jurkat_anti-cMyc_A_1_3 
IP_1_3A.CEL Jurkat_anti-GST_A_1_1 
IP_1_4A.CEL Jurkat_anti-GST_A_1_2 
IP_1_5A.CEL Jurkat_anti-GST_A_1_3 
 
The number of *.CEL files should match the [Array number].  
 
[Apply normalization before computing intensity] 
Whether or not you want to do normalization before computing probe intensities. 
 
[Truncation lower bound before normalization] 
If you choose to do normalization, you need to specify how to truncate low expression 
values. All values < [truncation lower bound] will be set to [truncation lower bound] 
before normalization.  
 
[Take log2 transformation before normalization] 
Whether or not you wish to take log2 transformation before normalization. If you 
choose yes, the truncated values will be log-transformed, and the normalization will 
be applied to the transformed values. If you choose no, the normalization will be 
applied to the un-log-transformed values, and you can choose to do 
log-transformation later. 
 
[How to compute intensity] 
You can choose to use normalized PM values as the probe intensity; or you can 
choose to use PM-MM as the intensity. 
 
[Truncation lower bound after intensity computation] 
After you compute PM only or PM-MM intensities, how would you truncate low 
intensities. All intensities < [truncation lower bound] will be set to [truncation lower 
bound]. If you have already taken log-transformation before, you may need to set a 
small number here such as -10000000000.0. 
 
[Take log2 transformation after intensity computation] 
Whether or not you wish to take log2 transformation after you get intensities. If you 
have already carried out log-transformation before normalization, you should choose 
"no" here. 
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6.4 ChIP-chip Analysis Step II – Normalization 
 
[Usage] 

> tilemap_norm [norm_parameter_file] 

 
 tilemap_norm can be used to do quantile normalization (Bolstad et al., 2003). If 
users want to analyze non-affymetrix data, they can provide their own data in the 
standard tilemap data format, and use tilemap_norm to do normalization. Users do not 
need to use tilemap_norm if tilemap_importaffy was used to import raw data. 
tilemap_importaffy already provides options to do normalization.  
 In order to run tilemap_norm, one also needs to have  
(a) A raw data file in TILEMAP_DATA format. 
(b) a parameter file as below: 
 
############################### 

# TileMap Normalization       # 

############################### 

 

[Working directory] = . 

[Raw Data file] = sample2_raw.txt 

[Export file] = sample2_norm.txt 

[Array number] = 18 

[Truncation lower bound before normalization] = 1.0 

[Take log2 transformation before normalization] (1:yes; 0:no) = 1 

 
 
 Below are the meanings of parameter settings. 
[Working directory] 
The directory that contains the raw data file. All the results generated by TileMap will 
be exported to this directory. 
 
[Raw Data file] 
The name of the raw data file. It should be placed in the working directory and should 
be in standard tilemap data format. 
 
[Export file] 
The name of the file where normalized data will be saved. This file will be generated 
in the working directory.  
 
[Array number] 
Number of arrays. 
 
[Truncation lower bound before normalization] 
You need to specify how to truncate low expression values. All values < [truncation 
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lower bound] will be set to [truncation lower bound] before normalization.  
 
[Take log2 transformation before normalization] 
Whether or not you wish to take log2 transformation before normalization. If you 
choose yes, the truncated values will be log-transformed, and the normalization will 
be applied to the transformed values. If you choose no, the normalization will be 
applied to the un-log-transformed values, and you can choose to do 
log-transformation later in tilemap. 
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6.5 ChIP-chip Analysis Step III – Peak Detection 
 

[Usage] 

> tilemap [tilemap_parameter_file] 

 
 tilemap is the central part of TileMap. It (i) computes probe-level test-statistics 
according to the transcriptional or protein binding patterns specified by users; (ii) 
filters local repeats; and (iii) infers if a region is of interest or not by applying HMM 
or Moving Window Average (MA). The output of tilemap includes *.sum files which 
provide summary statistics for each probe, a *.bed file which reports regions of 
interest, and a *.reg file which sorts the reported regions from high to low significance 
level. *.bed file can be uploaded directly to UCSC genome browser to visualize the 
reported regions. 
 In order to run tilemap, one needs to have  
(a) A normalized data file in TILEMAP_DATA format;  
(b) A *.cmpinfo file in TILEMAP_COMPINFO format to specify which pattern one 
wish select; 
(c) A parameter file as below: 
 
############################## 

# TileMap Parameter Settings # 

############################## 

 

############################## 

# Step O: Working Directory  # 

############################## 

O.1-[Working directory] = 

C:\Projects\research_harvard\affy_project\analysis\tiling_paper\ 

O.2-[Project Title] = cMycA_tile 

 

############################## 

# Step I: Probe Summary      # 

############################## 

I.1-[Compute probe level test-statistics?] (1:yes; 0:no) = 0 

I.2-[Raw data file] = cMycA_tile_I_f_pb.sum 

I.3-[Range of test-statistics] (0: default; 1: [0,1], 2: (-inf, +inf)) 

= 1 

I.4-[Zero cut] = 1e-4 

 

############################## 

# Step II: Repeat Filtering  # 

############################## 

II.1-[Apply local repeat filter?] (0:No; 1:Yes) = 0 

II.2-[*.refmask file] = 
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P1_CHIP_A.Anti-Sense.hs.NCBIv33.sary.bpmap.refmask 

 

############################## 

# Step III: Region Summary   # 

############################## 

III.1-[Combine neighboring probes?] (0:No; 1:Yes) = 1 

III.2-[Method to combine neighboring probes] (0:HMM, 1:MA) = 1 

 

############################## 

# Step IV: HMM               # 

############################## 

IV.1-[Posterior probability >] = 0.5 

IV.2-[Maximal gap allowed] = 1000 

IV.3-[Method to set HMM parameters] (0:UMS, 1:Set by users) = 0 

 

IV.4-[Provide your own selection statistics?] (0: No, use default; 1: Yes) 

= 0 

IV.5-[If Yes to IV.4, selection statistics file] = cMycA_tile_I_f.pbsum 

IV.6-[G0 Selection Criteria, p%] = 0.01 

IV.7-[G1 Selection Criteria, q%] = 0.05 

IV.8-[Selection Offset] = 1 

IV.9-[Grid Size] = 1000 

IV.10-[Expected hybridization length] = 28 

 

IV.11-[Path to transition probability matrix] = cMycA_tile_transp.txt 

IV.12-[Path to emission probability matrix] = cMycA_tile_emissp.txt 

 

############################## 

# Step V: Moving Average     # 

############################## 

V.1-[Local FDR <] = 0.5 

V.2-[Maximal gap allowed] = 500 

V.3-[W] = 5 

V.4-[Method to compute local FDR] (0:UMS; 1:Permutation Test) = 0 

 

V.5-[Provide your own selection statistics?] (0: No, use default; 1: Yes) 

= 0 

V.6-[If Yes to IV.4, selection statistics file] = cMycA_tile_I_f.pbsum 

V.7-[G0 Selection Criteria, p%] = 0.01 

V.8-[G1 Selection Criteria, q%] = 0.05 

V.9-[Selection Offset] = 6 

 

V.10-[Grid Size] = 1000 
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 Here are the meanings for tilemap parameter settings.  
 
O.1-[Working directory] 
The directory that contains raw data files. All the results generated by TileMap will be 
exported to this directory. 
 
O.2-[Project Title] 
A title of the project. This title will be used to generate names of output files. 
 
I.1-[Compute probe level test-statistics?] 
Specify whether or not tilemap should compute the probe level test-statistics. If one 
only has normalized raw data, one should choose "yes". If one has already 
pre-computed probe level test-statistics and only wants to apply HMM or MA to do 
region level inference, one can choose "no".  
 
I.2-[Raw data file]:  
If you choose "yes" in I.1, you need to prepare two files in the working directory: 
(i) A raw data file which contains the normalized probe intensities. This file should be 
in standard tilemap data format, and should be placed in the working directory. Give 
its name in I.2. 
(ii) You also need to prepare a *.cmpinfo file named {Project Title}.cmpinfo in the 
working directory, which specifies the hybridization pattern you wish to select. 
However, you DON'T need to provide its name in I.2.  
If you choose "no" in I.1, please prepare a file that contains precomputed probe level 
test-statistics. This file should be in *_pb.sum format (see "Output File Format") and 
should be placed in the working directory. Provide its name in I.2. It will be used as 
the input for HMM and MA. In this case, the probe level computation embedded in 
TileMap will be skipped.  
NOTICE: in tilemap, small values of probe level test-statistics correspond to patterns 
of interest. When you provide your own probe level test-statistics, you may need to 
transform them somehow to follow this convention.  
 
I.3-[Range of test-statistics] 
Specify the range of probe level test-statistics. 
If you choose "yes" in I.1, you can set I.3 to 0 (default). Tilemap will compute probe 
level test statistics and determine the range automatically. For two sample 
comparisons, the probe level test-statistic is an improved t-statistic, the range will be 
(-inf, +inf). For multiple sample comparisons, the probe level test-statistic is a 
posterior probability, the range will be [0,1]. 
If you choose "no" in I.1 and provide your own probe level test-statistics, then you 
should set I.3 either to 1 {[0,1]} or 2 {(-inf, +inf)} depending on whether the statistics 
you provided in I.2 fall within [0,1] (e.g. posterior probability) or (-inf, +inf) (e.g. 
t-statistics). 
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[0,1] statistics will be transformed by log[t/(1-t)] before applying MA, and the MA 
statistics will be transformed back by exp(u)/[exp(u)+1] before applying UMS to 
estimate local FDR. (-inf, +inf) statistics will be transformed by exp(t)/[exp(t)+1] 
before applying HMM. 
 
I.4-[Zero cut] 
To avoid logit(0), please specify a zero cut in I.4. [0,1] test-statistics will be set to 
max(zero_cut/2, min(t, 1-zero_cut/2)) before taking logit transformation. E.g. If 
[Monte Carlo draws for posterior prob.] = 10000 in *.cmpinfo file, you can set 
zero_cut = 0.0001. 
 
II.1-[Apply local repeat filter?] 
Whether or not you want to mask local repeats. Some probes occur more than once in 
a region, such local repeats may result in noise due to cross-hybridizations. You may 
wish to exclude these probes from analysis. If so, you need to apply the filter. If the 
data you provided have already been repeat-masked, you can choose "no" to skip this 
step. 
 
II.2-[*.refmask file] 
If you choose "yes" in II.1, please prepare a *.refmask file (see "Output File Format") 
which provides non-redundant probes and counts how many times each probe occur 
in a local region. You need to provide its name in II.2. This file will be used as a 
reference for masking local repeats. 
Hint: using tilemap_importaffy to load affymetrix data from *.CEL and *.BPMAP 
will automatically create a *.refmask file. 
If you choose "no" in II.1, set II.2 to NULL. Local repeat filtering will be skipped. 
 
III.1-[Combine neighboring probes?] 
Whether or not you want to apply HMM or MA to do region inference. If you choose 
no, tilemap will skip HMM and MA. If you choose yes, tilemap will combine 
neighboring probes to infer whether a region is of interest or not. 
 
III.2-[Method to combine neighboring probes] 
Choose which method should be used to do region summary.  
If you choose "Yes" in III.1 and "HMM" in III.2, please fill out Step IV and leave Step 
V to its default values.  
If you choose "Yes" in III.1 and "MA" in III.2, please fill out Step V and leave Step 
IV to its default values. 
If you choose "No" in III.1, you can set III.2 arbitrarily to 0 or 1 and leave both Step 
IV and Step V to their default values. Region summary will then be skipped. 
 
IV.1-[Posterior probability >] 
Posteriror probability cutoff to call regions of interest in HMM. 
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IV.2-[Maximal gap allowed] 
d0 in HMM. If the distance between the neighboring probes i and i+1, d(i,i+1), is no 
greater than d0, tilemap will use the HMM transition probability matrix to compute 
likelihood. If d(i,i+1) > d0, tilemap will restart a new HMM from i+1. (refer to 
Ji&Wong, 2005 for details). 
 
IV.3-[Method to set HMM parameters] 
You can choose to use UMS embedded in tilemap to get HMM parameters or to 
provide your own HMM parameters.  
If you choose "UMS" in IV.3, please set UMS parameters in IV.4 - IV.10. Otherwise 
leave them to be default values. 
If you choose "Set by users" in IV.3, please provide your own transition, emission 
probability matrices in _transp.txt and _emissp.txt format. You should place these two 
files in the working directory and provide their names in IV.9 and IV.10. Otherwise set 
IV.9 and IV.10 to be NULL.  
 
IV.4-[Provide your own selection statistics?] 
If you choose to use UMS to get HMM parameters, you have the option to provide 
your own selection statistics. If you do not provide your own selection statistics, 
tilemap will use the probe level test-statistics as the default selection statistics. 
 
IV.5-[If Yes to IV.4, selection statistics file] 
If you choose to provide your own selection statistics, please prepare the statistics in a 
*_pb.sum file and provide its name in IV.5. The file should be in working directory. 
 
IV.6-[G0 Selection Criteria, p%] 
Set t(p) in UMS. If a probe has a selection statistic > t(p), its downstream probe will 
be used to construct g0.  
 
IV.7-[G1 Selection Criteria, q%] 
Set t(q) in UMS. If a probe has a selection statistic <= t(q), its downstream probe will 
be used to construct g1. 
 
IV.8-[Selection Offset] 
If probe i has a selection statistic > t(p), probe (i+selection_offset) will be used to 
construct g0. Similar for g1.  
 
IV.9-[Grid Size] 
How many intervals should [0,1] be divided into. For example, if grid size = 1000, 
[0,1] will be divided into 0.001, 0.002, ..., 1.000. g0 and g1 will be estimated by 
empirical distributions on this grid. The choice of grid size should consider the 
number of probes available. On average, it would be better to have a few hundred 
probes in each interval.  
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IV.10-[Expected hybridization length] 
The number of probes contained in a typical hybridization region. For example, in 
ChIP-Chip experiment, if IP fragment length = 1000bp, probe density= 1 probe / 35 
bp. Then one would expect to observe 28 probes on average in a binding region, and 
one can set expected hybridization length = 28. 
 
IV.11-[Path to transition probability matrix] 
If you choose "Set by users" in IV.3, please prepare a transition probability matrix in 
working directory and in _transp.txt format (see "Output File Format"). Provide its 
name here.  
 
IV.12-[Path to emission probability matrix]  
If you choose "Set by users" in IV.3, please prepare a emission probability matrix in 
working directory and in _emissp.txt format (see "Output File Format"). Provide its 
name here.  
 
V.1-[Local FDR <] 
Local false discovery rate cutoff to call regions of interest in MA. 
 
V.2-[Maximal gap allowed] 
Two signifcant probes, if their distance <= [maximal gap allowed], will be treated as a 
single region. For example, in ChIP-Chip experiment, if IP fragment length = 1000bp, 
one can set maximal gap allowed = 500, half of the IP fragment length. 
 
V.3-[W] 
The half window size. The moving average will be taken over a 2*W+1 window, i.e. 
each window will contain 2*W+1 probes.  
 
V.4-[Method to compute local FDR] 
You can choose to use UMS or permutation test to compute local FDR. 
If you choose "UMS" in V.4, please set UMS parameters in V.5 - V.10. If you choose 
"Permutation Test" in V.4, please set grid size in V.10, and then go back to {Project 
Title}.cmpinfo file and fill out its "Permutation Setup" section. There you will set the 
way to do permutations and number of permutations you want to do. 
Hint: depending on the size of the data, permutation test could be very slow. 
 
V.5-[Provide your own selection statistics?] 
If you choose to use UMS to get local FDR, you have the option to provide your own 
selection statistics in UMS. If you choose not to provide your own selection statistics, 
tilemap will use probe level test-statistics as the selection statistics. 
 
V.6-[If Yes to IV.4, selection statistics file]  
If you choose to provide your own selection statistics, please prepare the statistics in a 
*_pb.sum file and provide its name here. The file should be in working directory. 
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V.7-[G0 Selection Criteria, p%] 
Set t(p) in UMS. If a probe has a selection statistic > t(p), its downstream probe will 
be used to construct g0.  
 
V.8-[G1 Selection Criteria, q%] 
Set t(q) in UMS. If a probe has a selection statistic <= t(q), its downstream probe will 
be used to construct g1. 
 
V.9-[Selection Offset] 
If probe i has a selection statistic > t(p), probe (i+selection_offset) will be used to 
construct g0. Similar for g1. Usually, selection offset = W+1 in MA. 
 
V.10-[Grid Size] 
How many intervals should [0,1] be divided into. For example, if grid size = 1000, 
[0,1] will be divided into 0.001, 0.002, ..., 1.000. g0 and g1 will be estimated by 
empirical distributions on this grid. The choice of grid size should consider the 
number of probes available. On average, it would be better to have a few hundred 
probes in each interval. 
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6.6 ChIP-chip Analysis Step IV – Get Raw Intensity Data for Specified Genomic 
Regions 
 
[Usage] 

> tilemap_extract [extract_parameter_file] 
 
 tilemap_extract can be used to retrieve probes and their summary statistics in 
user-specified regions. The retrieved data will be saved in tab-delimited ASCII files. 
These files can be easily loaded into R, Matlab etc. for visualization.  
 In order to run tilemap_extract, one needs to have  
(a) summary statistics computed by tilemap; 
(b) a parameter file as below: 
 
[Working directory] = . 

[Project Title] = sample1 

[Probe Level Summary] = sample1_f_pb.sum 

[Raw Data] = sample1_rawdata.txt 

[Regions] 

chr21 14676034 14678449 target 651 + 

chr21 17421450 17423637 target 651 + 

chr21 18111757 18113819 target 651 + 

chr21 26027537 26031330 target 651 + 

 
 
 The meanings of each item in the parameter file are explained below.  
 
[Working directory] 
The directory that contains raw data file and all the tilemap-generated files. All the 
new files generated by this command will be exported to this directory. 
 
[Project Title] 
The title of the project. The program will automatically extract data from [Project 
Title]_f_pb.sum, [Project Title]_hmm.sum, [Project Title]_ma.sum and the raw data 
file if available. 
 
[Probe Level Summary] 
You are required to provide a probe level summary file in _pb.sum format. The 
program will decide which probes to retrieve based on this file. 
 
[Raw Data] 
You can provide the name of the raw data file. This file should be in working 
directory. If provided, raw data will be extracted. If you set NULL here, the program 
will only get test-statistics for target probes. No raw data will be extracted.  
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[Regions] 
Each line below [Regions] represent a region you wish to extract. Each line contains 
at least three columns, tab-delimited. 
 
col1: chromosome name 
col2: start coordinate in the chromosome 
col3: end coordinate in the chromosome 
other columns: defined by users themselves. 
 
e.g. 
chr21 14676034 14678449 target 651 + 
chr21 17421450 17423637 target 651 + 
chr21 18111757 18113819 target 651 + 
chr21 26027537 26031330 target 651 + 
 
for each region, the program will generate a file named [Project 
title]_[chromosome]_[start]_[end].txt in the working directory. The file will contain 
all the probes in the specified region, their coordinates and summary statistics. 
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6.7 ChIP-chip Analysis Step V – Visualization 
 Since TileMap does not provide an integrated GUI at current stage, we provide 
tilemap_extract and R/Matlab sample code to facilitate the visual checking of the data 
and tilemap results. We plan to delevop an integrated visualization system in future 
which will integrate TileMap with downstream analysis programs. The sample code 
can be downloaded from 
http://biogibbs.stanford.edu/~jihk/TileMap/TileMap/tilemap_plot.R and 
http://biogibbs.stanford.edu/~jihk/TileMap/TileMap/tilemap_plot.m. 
 
 In order to visualize the data, run these programs as below. 
 
(1) In MatLab: 
> tilemap_plot('[file name]') 
e.g. 
> tilemap_plot('cMycA_tile_chr21_14676034_14678449.txt') 
 
(2) In R: 
First, in tilemap_plot.R find a line started with "datapath <- ", and edit the line to 
provide a filename that specifies the data for plotting, e.g.  
datapath <- "cMycA_tile_chr21_14677034_14677449.txt" 
 
Then run tilemap_plot.R 
 
(3) Users can modify Matlab and R codes to meet their own needs. 
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6.8 ChIP-chip Analysis – TileMap output files 
 
/* ------------------------ */ 

/* Output File Format       */ 

/* ------------------------ */ 

 

################################## 

# *.refmask                          # 

################################## 

This is a tab-delimited file used for sorting probes based on their genomic 

coordinates and for filtering local repeats. 

 

col1: chromosome name 

col2: coordinate in the chromosome 

col3: how many probes in the array are mapped (without any mismatches) 

to the position specified by col1 and col2. 

col4: within a local window (2000 bp as the tilemap default) centered at 

the col1-col2, how many genomic loci have the same probe sequence as the 

sequence specified by col1-col2. If the number is >1, the probe in question 

will be treated as a local repeat and will be filtered out later. 

col5: probe sequence 

 

################################## 

# *_pb.sum                       # 

################################## 

This is a tab-delimited file to record probe level test-statistics. 

 

col1: chromosome name 

col2: coordinates in the chromosome 

col3: probe-level test-statistics. The statistics are transformed such 

that the smaller the statistics, the more significant. 

 

 

################################## 

# *_hmm.sum                      # 

################################## 

This is a tab-delimited file to record posterior probability generated 

by HMM. 

 

col1: chromosome name 

col2: coordinates in the chromosome 

col3: posterior probability that a probe is in a region of interest. The 

larger the posterior probability, the more significant a probe is. 
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################################## 

# *_ma.sum                       # 

################################## 

This is a tab-delimited file to record MA summaries. 

 

col1: chromosome name 

col2: coordinates in the chromosome 

col3: Moving average (MA) statistics 

col3: Local false discovery rate that a probe is in a region of interest. 

The smaller the local FDR, the better. 

 

################################## 

# *.bed                          # 

################################## 

This is a UCSC *.bed file to report significant regions. Regions are sorted 

according to their genomic locations. 

 

col1: chromosome name 

col2: region start 

col3: region end 

col4: no meaning 

col5: 1000*[hmm posterior probability] or 1000*(1-lfdr of MA) 

col6: always + 

 

 

################################## 

# *.reg                          # 

################################## 

This is a tab-delimited file to report significant regions. Regions are 

ranked according to their significance levels. 

 

col1: chromosome name 

col2: start coordinate 

col3: end coordinate 

col4: the line # of the starting probes (to help locate the probe in *_pb.sum, 

*_hmm.sum and *_ma.sum files) 

col5: the line # of the ending probe 

col6: maximum posterior probability or minimum local FDR of all the probes 

in the region 

col7: mean posterior probability or mean local FDR of the regions. If the 

region is formed by merging two discrete regions that are separated by 

less than [maximal gap], then the mean is obtained as follows: first, 

compute two means for the two discrete regions separately; then, take the 
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minimum of the two means and use it as the mean here. 

 

 

################################## 

# _transp.txt                    # 

################################## 

HMM transition probability matrix, in the format: 

 

1-a0 a0 

a1 1-a1 

 

 

 

################################## 

# _emissp.txt                    # 

################################## 

HMM emission probability matrix, in the format: 

 

interval(1) interval(2) interval(3) ... interval(n) 

f0(1) f0(2) f0(3) ... f0(n) 

f1(1) f1(2) f1(3) ... f1(n) 

 

A probe level test-statistic, t, if interval(i-1)<t<=interval(i), then 

f0(t)=f0(i) (the likelihood for H=0); and f1(t)=f1(i) (the likelihood for 

H=1). 

 

NOTICE: interval(i) should equally divide [0,1], i.e. 

interval(i+1)-interval(i) = interval(i)-interval(i-1). interval(n) is 

always 1.0. Although not explicitly defined in the file, interval(0)=0. 

 

 

################################## 

# file exported by               # 

# tilemap_extract                # 

################################## 

This is a tab-delimited file. 

 

col1: probe coordinate in chromosome 

col2: probe level test-statistics 

col3: HMM posterior probability 

col4: MA statistics 

col5: local FDR for MA 

col6 and after: raw data 
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7. DE NOVO MOTIF DISCOVERY TOOLBOX – DE NOVO MOTIF 
DISCOVERY 
 
7.1 Introduction 
 When the binding motif of a transcription factor is unknown, one may want to 
figure out what it is. Often, such a motif can be recovered from a set of sequences in 
which the motif binding sites are assumed to be enriched. This section will introduce 
functions provided by CisGenome for discovering such unknown motifs. 
 
7.2 List of Functions 
 (1) flexmodule_motif – De novo motif discovery based on a collapsed Gibbs 
Motif Sampler. 
 (2) flexmodule_tnum – De novo motif discovery that favors TFBS physically 
clustered together. 
 (3)  flexmodule – De novo motif/module discovery where users can specify 
module structures (this function will be discussed elsewhere). 
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7.3 De novo Motif Discovery I – A Collapsed Gibbs Motif Sampler 
 
[Usage] 

Flexmodule_motif [parameter file] 

 
 flexmodule_motif can be used to search for enriched sequence motifs in a set of 
DNA sequences. The search is based on a collapsed Gibbs Motif Sampler (Lawrence 
et al., 1993; Liu, 1994; Liu et al., 1995). Multiple motifs can be searched 
simultaneously. 
 
7.3.1 How to use flexmodule_motif 
 flexmodule_motif can be used as follows. 

(1) Prepare a file that contains all input sequences in FASTA format. Sequences 
are treated as soft-masked. In other words, small letters “a”, “c”, “g” and “t”, as well 
as “N” will be ignored in the motif discovery. Only capital letters “A”, “C”, “G” and 
“T” will be involved in the de novo motif discovery. 

(2) Prepare a main parameter file (e.g., flexmodule_motif_arg.txt) and a prior 
motif abundance file (e.g., priorabundance.txt) as will be discussed below. 
 (3) Run flexmodule_motif. For example: 
 
> flexmodule_motif flexmodule_motif_arg.txt 

 
 (4) Check results in a file named *_p.txt 
 
 In order to run flexmodule_motif, one needs to prepare parameter files to specify 
the number of motifs, initial motif lengths, prior abundance for each motif, and 
number of iterations for Markov Chain Monte Carlo (MCMC). The information is 
usually provided in two parameter files, a main parameter file and a prior motif 
abundance file. Optionally, one can also incorporate his/her prior knowledge about 
motif PWMs into motif discovery. If so, one needs to prepare additional files in 
MOTIF_MAT format to specify the prior. Next, we discuss parameter files in more 
detail. 
 
7.3.2 Main Parameter File 
 Below is a sample main parameter file flexmodule_motif_arg.txt: 
 
[Working Directory] = . 

[FASTA Sequence] = Gli.fa 

[Output File] = Gli_motif 

[Use *.cs?] (0:No; 1:Yes) = 0 

[CS Prefix] = NULL 

[CS Likelihood f] = cslike.txt 

[Motif Number K] = 3 

[Mean Motif Length Lamda] = 12 
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[Maximal Motif Length Allowed] = 30 

[Init Motif Length L] = 12,12,12 

[Init Motif Matrix] 

NULL 

GGGGTGGGG.txt 

NULL 

[Init Motif Abundance] = priorabundance.txt 

[Init Module Size D] = 2.0 

[Module Length] = 150 

[Sample Module Length?] (0:No; 1:Yes) = 0 

[Order of Background Markov Chain] = 3 

[Use Fitted Background?] (0:No; 1:Yes) = 0 

[Fitted Background Prefix] = NULL 

[MCMC Iteration] = 5000 

 
 In this file,  
 “[Working Directory] =” specifies the directory that stores input and output files. 
Both the input FASTA file and the prior motif abundance file should be saved in this 
directory. Any files that specify prior motif PWMs should also be stored here. This is 
also the directory where motif discovery results will be saved. One can use a dot (i.e., 
“.”) to represent current directory.  
 “[FASTA Sequence] =” specifies the file that contains input sequences. The file 
should be stored in the working directory. 
 “[Output File] =” specifies a title for the output. Various output files will be 
generated using this title as part of their file names. 
 “[Use *.cs?] (0:No; 1:Yes) = 0”: no use here, set as it is. 
 “[CS Prefix] = NULL”: no use here, set as it is. 
 “[CS Likelihood f] = cslike.txt”: no use here, set as it is. 
 “[Motif Number K] =” specifies the number of motifs. K different motifs will be 
searched simultaneously by the motif sampler. 
 “[Mean Motif Length Lamda] =” specifies the mean motif length. A priori, the 
motif length is modeled as a Poisson distribution with the mean equal to the number 
specified here. The distribution is truncated at , i.e., the minimum motif length is 8. 
 “[Maximal Motif Length Allowed] =” specifies the maximum motif length. 
 “[Init Motif Length L] =” specifies the initial motif length. The search will starts 
from the seeds that have the specified length. After certain iterations, the program will 
start to automatically adjust motif lengths. In the example above, “12,12,12” means 
that the initial length of the three motifs are all 12. 
 “[Init Motif Matrix]” specifies the prior for motifs. If there are K motifs, this line 
should be followed by K lines corresponding to K motifs. If a line specifies a prior as 
“NULL”, a flat prior will be automatically used for the corresponding motif. If one 
wish to use a user-specified prior for a motif, then one should first prepare a file in 
MOTIF_MAT format that contains prior counts, next one should write down the file 
name here (e.g., “GGGGTGGGG.txt”). Please make sure that the prior PWMs are 
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saved in the working directory.  
 “[Init Motif Abundance] =” specifies the name of the prior motif abundance file. 
Please make sure that the file is saved in the working directory. 
 “[Init Module Size D] = 2.0”: no use here, set as it is. 
 “[Module Length] = 150”: no use here, set as it is. 
 “[Sample Module Length?] (0:No; 1:Yes) = 0”: no use here, set as it is. 
 “[Order of Background Markov Chain] =” specifies the order of background 
Markov model. This model will be used to describe non-motif sequences. 
 “[Use Fitted Background?] (0:No; 1:Yes) = 0”: no use here, set as it is. 
 “[Fitted Background Prefix] = NULL”: no use here, set as it is. 
 “[MCMC Iteration] =” specifies the number of iterations of MCMC. 
 
 
 
7.3.3 Prior Motif Abundance File 
 Below is a sample prior motif abundance file priorabundance.txt: 
 
1000 0 

2 2 

2 2 

2 2 

 
 If there are K motifs, then sequences can be viewed as a mixture of a background 
model and K different motif models. Each motif can appear on forward or backward 
strands, therefore the TFBS can be grouped into 2K classes, i.e., motif 1 sites on + 
strand, motif 1 site on – strand, …, motif K sites on + strand, and motif K sites on – 
strand. The prior motif abundance file is a text file that specifies the relative 
abundance level for each of the 2K classes as well as background base pairs. The prior 
abundance is specified as positive numbers in a (K+1)x2 matrix. The first column of 
the matrix specifies the prior count for + strand, and the second column specifies the 
prior count for – strand. The first row is the prior count for background model, and 
each of the remaining lines specifies prior counts for a motif model. Notice that in the 
first line, the second number should always be 0. This matrix will be used as 
parameters of a Dirichlet distribution to characterize the prior abundance of each 
motif. 
 
 
 
 
7.3.4 Output File 
 The motif discovery results will be reported in a file named [Output File]_p.txt. 
In the output file, motifs will be reported one by one in the following format: 
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****** Motif0 ****** 

Motif Score: 1.819343 

Motif Matrix:  

 5.0000000e-01  1.5000000e+00  1.9500000e+01  1.5000000e+00  

 1.3500000e+01  5.5000000e+00  3.5000000e+00  5.0000000e-01  

 3.5000000e+00  1.7500000e+01  5.0000000e-01  1.5000000e+00  

 5.0000000e-01  2.1500000e+01  5.0000000e-01  5.0000000e-01  

 1.9500000e+01  5.0000000e-01  5.0000000e-01  2.5000000e+00  

 5.0000000e-01  2.1500000e+01  5.0000000e-01  5.0000000e-01  

 4.5000000e+00  1.6500000e+01  1.5000000e+00  5.0000000e-01  

 2.5000000e+00  1.9500000e+01  5.0000000e-01  5.0000000e-01  

 1.9500000e+01  1.5000000e+00  1.5000000e+00  5.0000000e-01  

 9.5000000e+00  6.5000000e+00  6.5000000e+00  5.0000000e-01  

 2.5000000e+00  2.5000000e+00  1.4500000e+01  3.5000000e+00  

 2.5000000e+00  6.5000000e+00  6.5000000e+00  7.5000000e+00  

 1.0500000e+01  7.5000000e+00  2.5000000e+00  2.5000000e+00  

 5.0000000e-01  1.5000000e+00  2.0500000e+01  5.0000000e-01  

 7.5000000e+00  9.5000000e+00  3.5000000e+00  2.5000000e+00  

 5.5000000e+00  7.5000000e+00  8.5000000e+00  1.5000000e+00  

 

Consensus: 

GACCACCCAAGTAGCG 

 

Motif Sites: 

0       211     226     +       GCTCACCAAAGTAGAG        0.170400 

0       228     243     +       GACCACCCAGGTAGGC        0.842400 

1       754     769     -       GACCACCCAGGACGCG        0.956000 

3       426     441     -       TGCCACCCAATTAGCC        0.204000 

3       630     645     +       GACCACCCAAGGTGAT        0.771200 

4       227     242     -       GACCACCCACGCCGAG        0.988800 

5       566     581     -       GACCACCCAGCGCGCG        0.796800 

6       118     133     -       GACCACCCAGGAGCAG        0.484800 

7       415     430     -       GACCACCCAAGCAGCA        0.974400 

9       580     595     +       GACCACACAGGGCGTC        0.410400 

10      313     328     +       GCCCACCCAAGTCGCC        0.969600 

11      264     279     -       GCCCACACACAGCGCC        0.160800 

12      356     371     -       GAACACCCAAGTAGAA        0.844800 

 
 Here, “Motif Matrix” gives the PWM that counts A, C, G and T respectively at 
each position (this is similar to MOTIF_MAT format). 
 “Consensus” is the consensus binding pattern derived from the PWM.  
 “Motif Sites” are predicted TFBS of the motif, and these sites are used to 
construct the reported matrix.  
 For each PWM, a “Motif Score” is computed as follows. Suppose nij is the count 
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for base j (=A, C, G, T) at the ith position. ni= niA+niC+niG+niT, pij=nij /ni, qj is the 
occurrence frequency of base j in the background (usually derived from all the input 
sequences). W is the length of the motif. The motif score S is defined as: 
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7.4 De novo Motif Discovery II – A Gibbs Motif Sampler that favors TFBS 
physically clustered together 
 
[Usage] 

Flexmodule_tnum [parameter file] 

 
 flexmodule_tum can be used to search for enriched sequence motifs in a set of 
DNA sequences. The search will be biased to regions where multiple TFBS are 
clustered together. 
 flexmodule_tum can be used in a similar manner as flexmodule_motif, but users 
need to specify a module length L. For each putative TFBS, a 2L base pair flanking 
window centered at the TFBS will be formed. The total number of putative TFBS 
within the window will be counted. The higher the number, the more likely the center 
site will be sampled as a real TFBS. Details about the model will be presented 
elsewhere. Conceptually, this is similar to a Module sampler. 
 To run flexmodule_tum, follow the same steps as flexmodule_motif, but make the 
following modifications in the main parameter file: 
 (1) Use “[Module Length]=” to specify the module length L. 
 (2) Use “[Init Module Size D] = 2.0” to specify what level of TFBS 
co-localization is required to make a TFBS functional. For example, if it is believed 
that a module of length 2L=2*150=300bp should contain >=3 sites in order to be 
considered as a high quality module, then one can set D=3-1=2. 
 Below is a sample main argument file for flexmodule_tnum: 
[Working Directory] = . 

[FASTA Sequence] = Gli.fa 

[Output File] = Gli_motif 

[Use *.cs?] (0:No; 1:Yes) = 0 

[CS Prefix] = NULL 

[CS Likelihood f] = cslike.txt 

[Motif Number K] = 3 

[Mean Motif Length Lamda] = 12 

[Maximal Motif Length Allowed] = 30 

[Init Motif Length L] = 12,12,12 

[Init Motif Matrix] 

NULL 

GGGGTGGGG.txt 

NULL 

[Init Motif Abundance] = priorabundance.txt 

[Init Module Size D] = 2.0 

[Module Length] = 150 

[Sample Module Length?] (0:No; 1:Yes) = 0 

[Order of Background Markov Chain] = 3 

[Use Fitted Background?] (0:No; 1:Yes) = 0 

[Fitted Background Prefix] = NULL 
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[MCMC Iteration] = 5000 

 
 After the main parameter file and the prior motif abundance file are prepared, run 
the function as follows: 
> flexmodule_tnum flexmodule_motif_arg.txt 
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7.5 De novo Motif Discovery III – FlexModule 
 Both flexmodule_motif and flexmodule_tum are special forms of a more general 
sampler FlexModule. FlexModule allows users to specify module structures, and the 
motif search will be biased towards user-specified module structures. The model and 
usage of FlexModule will be discussed elsewhere. 
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8. KNOWN MOTIF MAPPING TOOLBOX – MAPPING TRANSCRIPTION 
FACTOR BINDING SITES FOR KNOWN MOTIFS 
 
8.1 Introduction 
 When the binding motif of a transcription factor is known, the motif can be used 
to scan genomic sequences to predict transcription factor binding sites (TFBS). This 
section will introduce various functions for known motif mapping. 
 
8.2 List of Functions 
 (1) motifmap_consensusscan_genome, motifmap_consensusscan – Mapping a 
consensus motif to genomic regions or FASTA sequences. 
 (2) motifmap_matrixscan_genome, motifmap_matrixscan – Mapping a position 
specific weight matrix (PWM) to genomic regions or FASTA sequences. 
 (3) motifmap_filter_genome – Filtering TFBS by conservation and protein coding 
characteristics. 
 (4) motifmap_getsitearound – Extending TFBS to include flanking regions. 
 (5) motifmap_getsitearoundcs – Getting average conservation scores for positions 
within and around TFBS. 
 (6) motifmap_matrixscan_summary – Computing relative enrichment level for a 
list of PWMs in target regions as compared to control regions. 
 (7) motifmap_matrixscan_enrich – Computing relative enrichment level of a 
PWM in ranked and tiered regions. 
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8.3 TFBS mapping I – Mapping a Consensus Motif to Genomic Regions or 
FASTA sequences 
 
[Usage] 

motifmap_consensusscan_genome -m [File that specifies the consensus motif] 

-gd [Path where genome sequences (*.sq files) are stored] -i [File that 

specifies genomic coordinates of target regions] -o [Output file] -mc 

[Maximum consensus mismatches allowed] -md [Maximum degenerate mismatches 

allowed] -c [Conservation cutoff] -cd [Path where genome conservation 

scores (*.cs files) are stored] 

 

motifmap_consensusscan -m [File that specifies the consensus motif] -d 

[Directory where input sequences and conservation scores are stored] -i 

[FASTA file that contains input sequences] -o [Output File] -mc [Maximum 

consensus mismatches allowed] -md [Maximum degenerate mismatches allowed] 

-c [Conservation cutoff] -ch [Prefix of the files that contain conservation 

scores] 

 

 motifmap_consensusscan_genome or motifmap_consensusscan can be used to 
map a consensus motif to specified genomic regions or FASTA sequences. One can 
use motifmap_consensusscan_genome to map a motif to specified genomic regions, 
and use motifmap_consensusscan to map a motif to FASTA sequences. The consensus 
motif should be given in MOTIF_CONS format (Appendix A.1.9), e.g., 
“TGGGT[A]GGTC[G,T]”. In the above example, “TGGGTGGTC” is defined as the 
consensus sequence, and “TGGGT[A]GGTC[G,T]” is defined as the degenerate 
consensus sequence. A binding site “TGGGAGGTA” has 2 mismatches to the 
consensus (or 2 consensus mismatches), and 1 mismatch to the degenerate consensus 
(or 1 degenerate mismatch). The 2 consensus mismatches are TGGGAGGTA, and the 
1 degenerate mismatch is TGGGAGGTA. 
 After specifying the maximum consensus mismatches and degenerate mismatches 
allowed, the motif will be used to scan the genomic sequences. A site will be reported 
as a TFBS if both of the following conditions are satisfied:  
 (i) # of consensus mismatches <= [Maximum consensus mismatches allowed]; 
 (ii) # of degenerate mismatches <= [Maximum degenerate mismatches allowed]. 
 One can choose to filter TFBS further by cross-species conservation. In order to 
do so, one needs to specify “-c” and “-cd” (or “-ch”) options to define a conservation 
cutoff and conservation scores to use. A TFBS, if its average conservation score < 
[Conservation cutoff], will be filtered out. Only those TFBS whose average 
conservation scores >= [Conservation cutoff] will be reported. 
 Each reported TFBS will be assigned a site score. The site score is defined as: 
Site score = - [# of degenerate mismatches] - 0.1*[# of consensus 

mismatches] 
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8.3.1 motifmap_consensusscan_genome 
 motifmap_consensusscan_genome can be used as follows. 

(1) Make sure that relevant local genome databases are available.  
(2) Prepare a file in MOTIF_CONS format (Appendix A.1.9) that specifies the 

consensus motif, e.g., Gli_cons.txt. 
(3) Prepare a file in COD_C format (Appendix A.1.6) that specifies genomic 

regions to which the motif will be mapped, e.g., coordinates.txt. 
 (4) Run motifmap_consensusscan_genome. For example: 
 
> motifmap_consensusscan_genome -m Gli_cons.txt -gd 

/data/genomes/human/hg17/ -i coordinates.txt -o Gli.map -mc 2 -md 0 -c 

40 -cd /data/genomes/human/hg17/conservation/phastcons/ 

 
 In motifmap_consensusscan_genome,  
 “-m” specifies the file that contains the consensus motif in MOTIF_CONS 
format. 
 “-gd” specifies the directory where genome sequences (*.sq files) are stored. 
Make sure that the directory contains two other files: chrlist.txt and chrlen.txt. 
 “-i” specifies the file that contains target genomic regions in COD_C format. The 
motif will be mapped to these regions. 
 “-o” specifies the output file that will save mapping results. 
 “-mc” specifies the maximum consensus mismatches allowed. 
 “-md” specifies the maximum degenerate mismatches allowed. 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 
 “-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c” and “-cd” options in the command. 
 
 (5) After running motifmap_consensusscan_genome, the mapping results will be 
saved to two files. In the above example, the two files are “Gli.map” and 
“Gli.map.stat” respectively. “Gli.map” is a file in MOTIF_SITE format (Appendix 
A.1.11) that reports all TFBS obtained from the scan. “Gli.map.stat” is a text file that 
contains several summary statistics. Below is an example (*.map.stat): 
 

EffecLen= 1444533834 

TotalSite= 735130 

ConsLen= 345573331  
 
Here, “EffecLen” is the total number of non-repeat base pairs in the scanned regions. 
“TotalSite” is the total number of reported TFBS. “ConsLen” is the total number of 
non-repeat positions that can pass the conservation cutoff in the scanned regions. 
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8.3.2 motifmap_consensusscan 
 motifmap_consensusscan can be used as follows. 

(1) Prepare a file in MOTIF_CONS format (Appendix A.1.9) that specifies the 
consensus motif, e.g., Gli_cons.txt. 

(2) Prepare a FASTA file (Appendix A.1.4) that contains DNA sequences to be 
scanned, e.g., Gli_reg.fa. 

(3) If one needs to filter TFBS by cross-species conservation, for each sequence 
in the FASTA file, prepare a separate file in CS format (Appendix A.1.2) that stores 
the sequence’s conservation scores. These CS files should be stored in the same 
directory as the FASTA file. The size of each CS file should be equal to the length of 
its corresponding sequence. The name of a CS file should have the following format: 
[Prefix][Index]_[Sequence Name].cs. Here, [Prefix] is a title that is the same for all 
CS files associated with a FASTA file. [Index] is an integer used to index sequences in 
the FASTA file. The index is 0-based, i.e., the first sequence is indexed by 0, the 
second sequence is indexed by 1, etc. [Sequence Name] should be the same as the 
name following “>” characters in the FASTA file. For example, if the input FASTA 
file is Gli_reg.fa: 
 

>seq1 

TTTCAATGTGTCCTAACTGTTTGGAATAAATCTAAGGTTGTCCCTAGTTGTCATGGCATT 

>seq2 

CAACCCTTTTCAATGGACTATCTCTTCATTCATTTCTGAATCCGTCCACAATATTAAGGA 

 
then one should prepare two CS files, named Gli_reg_0_seq1.cs and 
Gli_reg_1_seq2.cs respectively.  
 
 (4) Run motifmap_consensusscan. For example: 
 
> motifmap_matrixscan -m Gli_cons.txt -d /users/ -i Gli_reg.fa -o Gli.map 

-mc 2 -md 0 -c 40 -ch Gli_reg_ 

 

 In motifmap_consensusscan,  
 “-m” specifies the file that contains the consensus motif in MOTIF_CONS 
format. 
 “-d” specifies the directory where FASTA sequences and conservation scores (i.e., 
CS files) are stored. 
 “-i” specifies the name of the input FASTA file. Since the directory information is 
already given by “-d”, there is no need to give the full path of the file. Please only 
specify the file name here. 
 “-o” specifies the output file that will save mapping results. 
 “-mc” specifies the maximum consensus mismatches allowed. 
 “-md” specifies the maximum degenerate mismatches allowed. 
 “-ch” specifies the [Prefix] attached to the CS files. It will be used to find and 
access conservation score files. 
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 “-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c” and “-ch” options in the command. 
 
 (5) After running motifmap_consensusscan, the mapping results will be saved to 
two files. In the above example, the two files are “Gli.map” and “Gli.map.stat” 
respectively. “Gli.map” is a file in MOTIF_SITE format (Appendix A.1.11) that 
reports all TFBS obtained from the scan. “Gli.map.stat” is a text file that contains 
several summary statistics. Below is an example (*.map.stat): 
 

EffecLen= 1444533834 

TotalSite= 735130 

ConsLen= 345573331  
 
Here, “EffecLen” is the total number of non-repeat base pairs in the scanned regions. 
“TotalSite” is the total number of reported TFBS. “ConsLen” is the total number of 
non-repeat positions that can pass the conservation cutoff in the scanned regions. 
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8.4 TFBS mapping II – Mapping a Position Specific Weight Matrix (PWM) to 
Genomic Regions of FASTA sequences 
 
[Usage] 

motifmap_matrixscan_genome -m [File that specifies the PWM]  -gd [Path 

where genome sequences (*.sq files) are stored] -i [File that specifies 

genomic coordinates of target regions] -o [Output file] -r [Likelihood 

ratio cutoff] -b [Order of Markov background model] -bt [Method to fit 

Markov background: region or genome] -bd [Path where genome-wide Markov 

background models are stored] -bs [Step size for fitting genome-wide Markov 

background models] -c [Conservation cutoff] -cd [Path where genome 

conservation scores (*.cs files) are stored] 

 
motifmap_matrixscan -m [File that specifies the PWM] -d [Directory where 

input sequences and conservation scores are stored] -i [FASTA file that 

contains input sequences] -o [Output File]-r [Likelihood ratio cutoff] 

-b [Order of Markov background model] -c [Conservation cutoff] -ch [Prefix 

of the files that contain conservation scores] 

 
 motifmap_matrixscan_genome or motifmap_matrixscan can be used to map a 
PWM to specified genomic regions or FASTA sequences. One can use 
motifmap_matrixscan_genome to map a motif to specified genomic regions, and use 
motifmap_matrixscan to map a motif to FASTA sequences. The motif PWM should be 
given in MOTIF_MAT format (Appendix A.1.10). The PWM will be used to scan the 
genomic sequences. At each position, the likelihood of the motif model (i.e., the 
probability to generate a site by the PWM) is compared to the likelihood of a 
background model (i.e., the probability to generate a site by a Markov background). A 
site will be reported as a TFBS if the likelihood ratio between the motif model and the 
background model >= [Likelihood ratio cutoff].  
 One can choose to filter TFBS further by cross-species conservation. In order to 
do so, one needs to specify “-c” and “-cd” (or “-ch”) options to define a conservation 
cutoff and to choose conservation scores to use. A TFBS, if its average conservation 
score < [Conservation cutoff], will be filtered out. Only those TFBS whose average 
conservation scores >= [Conservation cutoff] will be reported. 
 Each reported TFBS will be assigned a site score. The site score is defined as: 
 

Site score = Log10(Likelihood ratio between the motif model and the 

background model). 

  
 Users can specify the order of Markov background models through the “-b” 
option. In motifmap_matrixscan_genome, one can also specify the way to fit the 
background models though the “-bt” option. If “-bt region”, then the Markov 
background will be fitted using the input genomic regions or FASTA sequences. If 
“-bt genome”, then the Markov models pre-computed in the process of establishing 
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local genome databases will be used.  
 In fitting background Markov models, two types of models are fitted, a forward 
model and a backward model. For a sequence ABCD, a forward 3rd order Markov 
model fits transition probability Pf(ABC->D), whereas a backward 3rd order Markov 
model fits transition probability Pb(BCD->A). 
 When computing likelihood ratio between the motif model and the background 
model, both forward and backward background likelihood are computed. For a site 
CCTGGGTGGTC, the forward background likelihood of the underscored part is 
LBf=Pf(CCT->G)*Pf(CTG->G)*Pf(TGG->G)*Pf(GGG->T)*Pf(GGT->G), and the 
backward background likelihood is LBb=Pb(GTC->G)*Pb(GGT->T)*Pb(TGG->G)* 
Pb(GTG->G)*Pb(GGT->G). The motif likelihood is also computed for both forward 
strand (LM+) and reverse complement strand (LM-). The motif likelihood is then 
compared to both LBf and LBb. A site is called a TFBS in the “+” strand, if 
 min(LM+/LBf, LM+/LBb)>=[Likelihood ratio cutoff]. 
A site is called a TFBS in the “-” strand, if 
 min(LM-/LBf, LM-/LBb)>=[Likelihood ratio cutoff]. 
 
8.4.1 motifmap_matrixscan_genome 
 motifmap_matrixscan_genome can be used as follows. 

(1) Make sure that relevant local genome databases are available.  
(2) Prepare a file in MOTIF_MAT format (Appendix A.1.10) that specifies the 

motif PWM, e.g., Gli_mat.txt. 
(3) Prepare a file in COD_C format (Appendix A.1.6) that specifies genomic 

regions to which the motif will be mapped, e.g., Gli_coord.txt. 
 (4) Run motifmap_matrixscan_genome. For example: 
 
>motifmap_matrixscan_genome -m Gli_mat.txt -gd 

/data/genomes/human/hg17/ -i Gli_coord.txt -o Gli.map -r 500 –b 3 –bt 

genome –bd /data/genomes/human/hg17/markovbg/S100000_W1000000/ -bs 

100000 -c 40 -cd /data/genomes/human/hg17/conservation/phastcons/ 

 
 In motifmap_matrixscan_genome,  
 “-m” specifies the file that contains the motif PWM in MOTIF_MAT format. 
 “-gd” specifies the directory where genome sequences (*.sq files) are stored. 
Make sure that the directory contains two other files: chrlist.txt and chrlen.txt. 
 “-i” specifies the file that contains target genomic regions in COD_C format. The 
motif will be mapped to these regions. 
 “-o” specifies the output file that will save mapping results. 
 “-r” specifies the likelihood ratio cutoff. 
 “-b” specifies the order of background Markov model. 
 “-bt” specifies the method to fit the background Markov model. 
 If “-bt region”, then the background model will be fitted using the input genomic 
regions which are specified by “-i” option. In this case, “-bd” and “-bs” options 
shouldn’t be used anymore. 
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 If”-bt genome”, then the program will use the pre-computed Markov background 
model stored in local genome databases. These models are computed using 
motifmap_matrixscan_genome_bg when establishing the local genome databases 
(refer to section 2.6). Different genomic loci may have different transition probability 
matrices. If “-bt genome” is used, one must also specify “-bd” and “-bs” options in the 
command. 
 “-bd” specifies the directory where pre-computed genome Markov background 
models are stored. For example, if such models are computed for human (hg17) by 
motifmap_matrixscan_genome_bg using a step size S=100000 and a window size 
W=1000000, they usually will be stored in a directory such as 
/data/genomes/human/hg17/markovbg/S100000_W1000000/. The 3rd order models 
are stored in /data/genomes/human/hg17/markovbg/S100000_W1000000/3/, and the 
0th order models are stored in 
/data/genomes/human/hg17/markovbg/S100000_W1000000/0/. If one wants to use 
the 3rd order Markov model as the background, then “-bd” and “-bs” should be 
specified as “-b 3 –bt genome -bd 
/data/genomes/human/hg17/markovbg/S100000_W1000000/ -bs 100000”. 
 “-bs” specifies the step size S used to compute the genome Markov background 
models (refer to section 2.6). 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 
 “-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c” and “-cd” options in the command. 
 
 (5) After running motifmap_matrixscan_genome, the mapping results will be 
saved to two files. In the above example, the two files are “Gli.map” and 
“Gli.map.stat” respectively. “Gli.map” is a file in MOTIF_SITE format (Appendix 
A.1.11) that reports all TFBS obtained from the scan. “Gli.map.stat” is a text file that 
contains several summary statistics. Below is an example (*.map.stat): 
 

EffecLen= 1444533834 

TotalSite= 735130 

ConsLen= 345573331  
 
Here, “EffecLen” is the total number of non-repeat base pairs in the scanned regions. 
“TotalSite” is the total number of reported TFBS. “ConsLen” is the total number of 
non-repeat positions that can pass the conservation cutoff in the scanned regions. 
 
 
8.4.2 motifmap_matrixscan 
 motifmap_matrixscan can be used as follows. 

(1) Prepare a file in MOTIF_MAT format (Appendix A.1.10) that specifies the 
motif PWM, e.g., Gli_mat.txt. 

(2) Prepare a FASTA file (Appendix A.1.4) that contains DNA sequences to be 
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scanned, e.g., Gli_reg.fa. 
(3) If one needs to filter TFBS by cross-species conservation, for each sequence 

in the FASTA file, prepare a separate file in CS format (Appendix A.1.2) that stores 
the sequence’s conservation scores. These CS files should be stored in the same 
directory as the FASTA file. The size of each CS file should be equal to the length of 
its corresponding sequence. The name of a CS file should have the following format: 
[Prefix][Index]_[Sequence Name].cs. Here, [Prefix] is a title that is the same for all 
CS files associated with a FASTA file. [Index] is an integer used to index sequences in 
the FASTA file. The index is 0-based, i.e., the first sequence is indexed by 0, the 
second sequence is indexed by 1, etc. [Sequence Name] should be the same as the 
name specified in the FASTA file, i.e., the string following “>” characters in the 
FASTA file. For example, if the input FASTA file is Gli_reg.fa: 
 

>seq1 

TTTCAATGTGTCCTAACTGTTTGGAATAAATCTAAGGTTGTCCCTAGTTGTCATGGCATT 

>seq2 

CAACCCTTTTCAATGGACTATCTCTTCATTCATTTCTGAATCCGTCCACAATATTAAGGA 

 
then one should prepare two CS files, named Gli_reg_0_seq1.cs and 
Gli_reg_1_seq2.cs respectively.  
 
 (4) Run motifmap_matrixscan. For example: 
 
> motifmap_matrixscan -m Gli_mat.txt -d /users/ -i Gli_reg.fa -o Gli.map 

-r 500 -b 3 -c 40 -ch Gli_reg_ 

 

 In motifmap_matrixscan,  
 “-m” specifies the file that contains the motif PWM in MOTIF_MAT format. 
 “-d” specifies the directory where FASTA sequences and conservation scores (i.e., 
CS files) are stored. 
 “-i” specifies the name of the input FASTA file. Since the directory information is 
already given by “-d”, there is no need to give the full path of the file. Please only 
specify the file name here. 
 “-o” specifies the output file that will save mapping results. 
 “-r” specifies the likelihood ratio cutoff. 
 “-b” specifies the order of background Markov model. 
 “-ch” specifies the [Prefix] attached to the CS files. It will be used to find and 
access conservation score files. 
 “-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c” and “-ch” options in the command. 
 
 (5) After running motifmap_matrixscan, the mapping results will be saved to two 
files in a similar way as motifmap_matrixscan_genome. 
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8.5 TFBS mapping III – Filtering TFBS by conservation and protein coding 
characteristics 
 
[Usage] 

motifmap_filter_genome -i [File that contains input TFBS] -o [File to save 

filtered TFBS] -c [Conservation cutoff] -cm [File that specifies 

conservation mask] -cd [Path where genome conservation scores (*.cs files) 

are stored] -cds [Non-CDS ratio] -cdsd [Path where genome protein coding 

indicators (*.cds files) are stored 

 
 motifmap_filter_genome can be used to filter TFBS by their cross-species 
conservation and protein coding characteristics. Users can choose to check 
conservation characteristics of certain positions in the TFBS, say the 1st, 2nd, 3rd, 6th, 
7th and 8th position of a motif CCCATGGG. The chosen position is defined by a 
conservation mask defined as “1 1 1 0 0 1 1 1”. A TFBS will be filtered out if one of 
the following conditions is satisfied: 
 (i) One of the chosen positions in the conservation mask has a conservation score 
< [conservation cutoff] 
 (ii) The fraction of non-protein-coding base pairs in the TFBS < [Non-CDS ratio]. 
  

In order to use motifmap_filter_genome, please follow the steps below. 
(1) Make sure that the relevant local genome databases are available. 
(2) Prepare a file in MOTIF_SITE format that contains all TFBS to be processed. 

All TFBS should be sites of the same motif and should have a common length. 
(3) Prepare a file that specifies the conservation mask in MOTIF_MASK format 

(Appendix A.1.12).  
 (4) Run genome_filtergenome. For example: 
> motifmap_filter_genome -i Gli.map -o Gli_filtered.map -c 250 -cm 

Gli_mask.txt -cd /data/genomes/human/hg17/conservation/phastcons/ -cds 

0.9 -cdsd /data/genomes/human/hg17/cds/ 

 
 In genome_filtergenome,  
 “-i” specifies the file that contains input TFBS in MOTIF_SITE format. 
 “-o” specifies the output file that will save filtered TFBS in MOTIF_SITE format. 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 
 “-cm” specifies the file that contains the conservation mask in MOTIF_MASK 
format. 
 “-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c”, “-cd” and “-cm” options in the command. 
 “-cdsd” specifies the directory where genome CDS indicators (*.cds files) are 
stored. 
 “-cds” specified the non-CDS cutoff. If one does not want to apply protein coding 
filter, please do not include “-cds” and “-cdsd” options in the command. 
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8.6 TFBS mapping IV – Extending TFBS to Cover Flanking Regions 
 
[Usage] 

motifmap_getsitearound -i [File that contains input TFBS] -w [Extension 

Window Size] -d [Path where genome sequences (*.sq files) are stored] -s 

[species name, e.g., human, mouse, dog] -cn [Output file format] -a [Output 

index system] -o [Output File] 
 
 motifmap_getsitearound can be used to extend TFBS to cover flanking regions. 
This function takes a file in MOTIF_SITE format as input. After specifying a window 
size W, each TFBS in the input file will be extended W base pairs toward both ends. 
In other words, if the coordinates of a TFBS is “chrN:Start~End”, then the extended 
region is “chrN:(Start-W)~(End+W)”. The extended regions will be exported to a file 
in COD_C or COD_N format. These extended regions can be used in various 
downstream analyses such as searching for cofactors of a given motif. 

 
In order to use motifmap_getsitearound, please follow the steps below. 

 (1) Make sure that the relevant local genome databases are available. Indeed, only 
two files in the database will be used here: chrlist.txt and chrlen.txt. Therefore make 
sure that these two files are available. 

(2) Prepare a file in MOTIF_SITE format (Appendix A.1.11) that contains all 
input TFBS, e.g., Gli.map 
 (3) Run motifmap_getsitearound. For example: 
> motifmap_getsitearound -i Gli.map -w 200 -d /data/genomes/human/hg17/ 

-s human -cn 1 -a 1 -o Gli_extended.txt 

 

 In motifmap_getsitearound, 
 “-i” specifies the input file that contains all TFBS to be processed. The file is in 
MOTIF_SITE format. 
 “-w” specifies the extension window size W. 

“-d” specifies the directory where genome sequences (*.sq files) are stored. 
 “-s” specifies the species name, e.g., human, mouse, dog, cow, chicken, zebrafish. 

“-cn” specifies the format of the output file. If “-cn 0”, then the extended regions 
will be saved to a file in COD_C format. If “-cn 1”, then the extended regions will be 
saved to a file in COD_N format. 

“-a” specifies the index system of the output file. If “-a 0”, then the first column 
in the input file will be kept in its original form in the output file. If “-a 1”, then the 
output regions will be re-indexed. The first region will be indexed as 0, the second 
region will be indexed as 1, and so on. 
  “-o” specifies the output file that will save extended regions in COD_C or 
COD_N format. 
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8.7 TFBS mapping V – Computing Average Conservation Scores for TFBS and 
Flanking Positions 
 
[Usage] 

motifmap_getsitearoundcs -i [File that contains input TFBS] -o [Output 

File] -l [Motif Length] -w [Flanking Window Size] -s [species name, e.g., 

human, mouse, dog] -gd [Path where genome sequences (*.sq files) are stored] 

-cd [Path where genome conservation scores (*.cs files) are stored] 

 
 motifmap_getsitearoundcs can be used to get average conservation scores for 
each position within and flanking the binding sites of a given motif. For example, if a 
motif is mapped to human genome and 1000 TFBS are obtained from the mapping. 
For each individual position within and flanking the motif, the function will compute 
the mean conservation scores of the 1000 sites and export the average to the output 
file. As a result, in the output file, a mean conservation score will be attached to each 
position within and around the motif. 
  

In order to use motifmap_getsitearoundcs, please follow the steps below. 
 (1) Make sure that the relevant local genome databases are available. 

(2) Prepare a file in MOTIF_SITE format (Appendix A.1.11) that contains all 
input TFBS, e.g., Gli.map. Make sure that all TFBS have the same length. 
 (3) Run motifmap_getsitearoundcs. For example: 
> motifmap_getsitearoundcs -i Gli.map -o Gli_cscurve.txt -l 12 -w 50 -s 
human -gd /data/genomes/human/hg17/ -cd 

/data/genomes/human/hg17/conservation/phastcons/ 

 

 In motifmap_getsitearoundcs, 
 “-i” specifies the input file that contains all TFBS to be processed. The file is in 
MOTIF_SITE format. 
 “-o” specifies the output file that will save average conservation scores. 
 “-l” specifies the motif length (i.e., the length of TFBS). 
 “-w” specifies the flanking window size W. Average conservation scores will be 
computed for each position within the interval [Motif_START-W, Motif_END+W]. 
 “-s” specifies the species name, e.g., human, mouse, dog, cow, chicken, zebrafish. 

“-gd” specifies the directory where genome sequences (*.sq files) are stored. 
“-cd” specifies the directory where genome conservation scores (*.cs files) are 

stored. 
 

 (4) After running motifmap_getsitearoundcs, the output file should be a text file 
that contain l+2*w lines. Each line corresponds to a position in the interval 
[Motif_START-W, Motif_END+W]. There is a single number in each line which is 
the average conservation score for the corresponding position. 
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8.8 TFBS mapping VI – Computing Relative Enrichment Level for a List of 
PWMs 
 
[Usage] 

motifmap_matrixscan_genome_summary -mr [File that contains the list of 

motifs and likelihood ratios] -gd [Path where genome sequences (*.sq files) 

are stored] -i [File that specifies genomic coordinates of target regions] 

-n [File that specifies genomic coordinates of control regions] -o [Output 

file] -b [Order of Markov background model] -bt [Method to fit Markov 

background: region or genome] -bd [Path where genome-wide Markov 

background models are stored] -bs [Step size for fitting genome-wide Markov 

background models] -c [Conservation cutoff] -cd [Path where genome 

conservation scores (*.cs files) are stored] 

 
motifmap_matrixscan_genome_summary can be used to compare the enrichment 

levels of a list of motifs (PWM) in target genomic regions with their enrichment 
levels in control genomic regions. For each motif, the relative enrichment level will 
be computed.  

The relative enrichment level is characterized by three statistics, r1 , r2 and r3. 
Assume that n1B counts how many times a motif occur in target regions, n2B is the total length 
of non-repeat sequences in target regions, n1C counts how many times the motif occur in 
control regions, and n2C is the total length of non-repeat sequences in control regions. r1= 
(n1B/n2B)/(n1C/n2C) defines the relative enrichment level of the motif. Similarly, let n3k (k=B or 
C) count the number of phylogenetically conserved motif sites in specified genomic regions, 
and n4k count phylogenetically conserved non-repeat base pairs in the regions. r2= 
(n3B/n4B)/(n3C/n4C) then defines motif’s relative enrichment level in phylogenetically 
conserved regions. Notice that n3k/n1k is the percentage of motif sites that are conserved, and 
n4k/n2k is the percentage of genomic sequences that are conserved. Finally, r3, defined as 
(n3B/n2B)/(n3C/n2C), characterizes the relative enrichment level of phylogenetically conserved 
sites in target regions (not necessary conserved). Notice that r3/r2=(n4B/n2B)/(n4C/n2C) 
characterizes whether or not the target regions tend to be more phylogenetically conserved 
than control regions. 

 
In order to use motifmap_matrixscan_genome_summary, please follow the steps 

below. 
(1) Make sure that the relevant local genome databases are available. 
(2) Prepare a file in MOTIF_LIST format (Appendix A.1.13) that contains all 

motifs to be processed and their corresponding likelihood ratio cutoffs, e.g., 
motiflist.txt. Make sure that the motifs included in the file exist in appropriate 
directories. 

(3) Prepare a file in COD_C (Appendix A.1.6) format that specifies target 
genomic regions, e.g., target_coord.txt. 

(4) Prepare a file in COD_C format that specifies control genomic regions, e.g., 
control_coord.txt.  
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 (5) Run motifmap_matrixscan_genome_summary. For example: 
> motifmap_matrixscan_genome_summary -mr motiflist.txt -gd 
/data/genomes/human/hg17/ -i target_coord.txt -n control_coord.txt -o 

motifs_enrich.txt -b 3 -bt genome -bd 

/data/genomes/human/hg17/markovbg/S100000_W1000000 -bs 100000 -c 40 -cd 

/data/genomes/human/hg17/conservation/phastcons/ 

 
 In motifmap_matrixscan_genome_summary,  
 “-mr” specifies the file that contains the list of motifs to be processed and their 
likelihood ratio cutoffs. The file is in MOTIF_LIST format. 

“-gd” specifies the directory where genome sequences (*.sq files) are stored. 
“-i” specifies the file that contains target genomic regions in COD_C format. 
“-n” specifies the file that contains control genomic regions in COD_C format. 

 “-o” specifies the output file that will save motifs’ relative enrichment levels in 
MOTIF_SUMMARY (Appendix A.1.14) format. 
.  “-b” specifies the order of background Markov model used in motif mapping. 
 “-bt” specifies the method to fit the background Markov model. 
 If “-bt region”, then the background model will be fitted using the target and 
control genomic regions. In this case, “-bd” and “-bs” options shouldn’t be used 
anymore. 
 If”-bt genome”, then the program will use the pre-computed Markov background 
model stored in local genome databases. These models are computed using 
motifmap_matrixscan_genome_bg when establishing the local genome databases 
(refer to section 2.6). Different genomic loci may have different transition probability 
matrices. If “-bt genome” is used, one must also specify “-bd” and “-bs” options in the 
command. 
 “-bd” specifies the directory where pre-computed genome Markov background 
models are stored. For example, if such models are computed for human (hg17) by 
motifmap_matrixscan_genome_bg using a step size S=100000 and a window size 
W=1000000, they usually will be stored in a directory such as 
/data/genomes/human/hg17/markovbg/S100000_W1000000/. The 3rd order models 
are stored in /data/genomes/human/hg17/markovbg/S100000_W1000000/3/, and the 
0th order models are stored in 
/data/genomes/human/hg17/markovbg/S100000_W1000000/0/. If one wants to use 
the 3rd order Markov model as the background, then “-bd” and “-bs” should be 
specified as “-b 3 –bt genome -bd 
/data/genomes/human/hg17/markovbg/S100000_W1000000/ -bs 100000”. 
 “-bs” specifies the step size S used to compute the genome Markov background 
models (refer to section 2.6). 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 

“-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c” and “-cd” options in the command. 
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8.9 TFBS mapping VII – Computing Relative Enrichment Level of a PWM in 
Tiered Regions 
 
[Usage] 

motifmap_matrixscan_genome_enrich -m [File that specifies the PWM] -gd 

[Path where genome sequences (*.sq files) are stored] -i [File that 

specifies genomic coordinates of target regions] -n [File that specifies 

genomic coordinates of control regions] -s [tier size] -o [Output file] 

-r [Likelihood ratio cutoff] -b [Order of Markov background model] -bt 

[Method to fit Markov background: region or genome] -bd [Path where 

genome-wide Markov background models are stored] -bs [Step size for fitting 

genome-wide Markov background models] -c [Conservation cutoff] -cd [Path 

where genome conservation scores (*.cs files) are stored] 

 
motifmap_matrixscan_genome_enrich can be used to compute the relative 

enrichment levels of a PWM in target regions as compared to control regions. The 
target regions should be ranked before applying this function. The ranked target 
regions will be grouped into several tiers based on their ranking, and relative 
enrichment level will be computed for each tier. This function can be used to examine 
the change of enrichment levels when the region quality is decreasing. The relative 
enrichment level is defined in section 8.8. 

In order to use motifmap_matrixscan_genome_enrich, please follow the steps 
below. 

(1) Make sure that the relevant local genome databases are available.  
(2) Prepare a file in MOTIF_MAT format (Appendix A.1.10) that specifies the 

motif PWM, e.g., Gli_mat.txt. 
(3) Prepare a file in COD_C (Appendix A.1.6) format that specifies target 

genomic regions, e.g., target_coord.txt. 
(4) Prepare a file in COD_C format that specifies control genomic regions, e.g., 

control_coord.txt.  
 (5) Run motifmap_matrixscan_genome_enrich. For example: 
> motifmap_matrixscan_genome_enrich -m Gli_mat.txt -gd 

/data/genomes/human/hg17/ -i target_coord.txt -n control_coord.txt -s 20 

-o Gli_tierenrich.txt -r 500 -b 3 -bt genome -bd 

/data/genomes/human/hg17/markovbg/S100000_W1000000 -bs 100000 -c 40 -cd 

/data/genomes/human/hg17/conservation/phastcons/ 

 

  In motifmap_matrixscan_genome_enrich,  
 “-m” specifies the file that contains the motif PWM in MOTIF_MAT format. 

“-gd” specifies the directory where genome sequences (*.sq files) are stored. 
“-i” specifies the file that contains target genomic regions in COD_C format. 
“-n” specifies the file that contains control genomic regions in COD_C format. 
“-s” specifies the tier size, i.e., how many regions are contained in each tier. 

 “-o” specifies the output file that will save motifs’ relative enrichment levels in 
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MOTIF_TIERENRICH (Appendix A.1.15) format. 
 “-r” specifies the likelihood ratio cutoff for declaring TFBS (refer to section 8.4 
for relevant discussions). 
.  “-b” specifies the order of background Markov model used in motif mapping. 
 “-bt” specifies the method to fit the background Markov model. 
 If “-bt region”, then the background model will be fitted using the target and 
control genomic regions. In this case, “-bd” and “-bs” options shouldn’t be used 
anymore. 
 If”-bt genome”, then the program will use the pre-computed Markov background 
model stored in local genome databases. These models are computed using 
motifmap_matrixscan_genome_bg when establishing the local genome databases 
(refer to section 2.6). Different genomic loci may have different transition probability 
matrices. If “-bt genome” is used, one must also specify “-bd” and “-bs” options in the 
command. 
 “-bd” specifies the directory where pre-computed genome Markov background 
models are stored. For example, if such models are computed for human (hg17) by 
motifmap_matrixscan_genome_bg using a step size S=100000 and a window size 
W=1000000, they usually will be stored in a directory such as 
/data/genomes/human/hg17/markovbg/S100000_W1000000/. The 3rd order models 
are stored in /data/genomes/human/hg17/markovbg/S100000_W1000000/3/, and the 
0th order models are stored in 
/data/genomes/human/hg17/markovbg/S100000_W1000000/0/. If one wants to use 
the 3rd order Markov model as the background, then “-bd” and “-bs” should be 
specified as “-b 3 –bt genome -bd 
/data/genomes/human/hg17/markovbg/S100000_W1000000/ -bs 100000”. 
 “-bs” specifies the step size S used to compute the genome Markov background 
models (refer to section 2.6). 
 “-cd” specifies the directory where genome conservation scores (*.cs files) are 
stored. 

“-c” specified the conservation cutoff. If one does not want to apply conservation 
filter, please do not include “-c” and “-cd” options in the command. 
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9. CROSS-SPECIES COMPARISON TOOLBOX – CROSS-SPECIES 
ALIGNMENT AND TFBS ANNOTATION 
 
9.1 Introduction 
 This section will introduce how to generate cross-species alignments of specific 
genomic regions, and how to map TFBS to the alignments for visualization. The 
resulting alignments can be used for detailed examination of the module structures of 
cis-regulatory regions, and can be used to help selecting regions for transgenic 
studies. 
 We first use an example to illustrate the basic procedure for constructing the 
cross-species alignment and mapping TFBS to the alignment, as well as the final 
result one will get. We then discuss how these jobs can be done in following sections. 
 In the example, a list of mouse genomic regions is given. We want to generate 
cross-species alignment for each of the region (see the figure below) and annotate the 
alignments by TFBS mapping. In order to do so, we will go through the following 
steps. 

 
 (1) Each mouse region will be associated to a gene. The gene that is closest to the 
region in the genome will be picked up. 
 (2) Orthologs of the mouse gene in other species will be identified. Each ortholog 
gene, say, the human ortholog, will be extended certain base pairs towards both ends. 
We will then search for human segments that are orthologous to the original mouse 
region in the extended human window. 
 (3) To find the orthologous human segments, the original mouse region will be 
aligned to the extended human window by BLAST. Any BLAST hit that has (i) 
E-value <= [E-value cutoff], and (ii) alignment length >= [Minimal Length], and (iii) 
alignment percent identity >= [Minimal Identity] will be kept for further processing. 
 (4) All BLAST hits will be ranked by their alignment quality, defined as the 
number of identical base pairs in the alignment. If there is a co-linearity requirement 
by users (i.e., “[Colinearity] = 1” in the parameter file), then BLAST hits will be 
checked one by one from the highest quality hit to the lowest quality hit. Any hit that 
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is not collinear with a hit with higher quality will be discarded. By “collinear”, we 
mean that the direction and relative position of two hits need to be consistent in the 
two species. 
 (5) Each BLAST hit will be extended certain base pairs to cover some flanking 
regions. The length of the extension on each side is equal to min{[Alignment 
Length]*[Extension Percentage], [Maximal Extension]}. For example, if [Maximal 
Extension]=100bp, [Extension Percentage]=0.25, and the alignment length of a 
BLAST hit is 100bp, then the hit will be extended min{100*0.25, 100}=25 base pairs 
on each side.  
 (6) After extension, if the distance between two BLAST hits <= [Maximal Link 
Gap], then the two hits will be merged into a single one. The merged region will 
include the gap (which will be called a “filled gap”) between the two hits. 
 (7) All the extended and merged BLAST hits will be linked together to form a 
sequence. This sequence will be treated as the human ortholog segment to the mouse 
region.  
 (8) Step 2~7 will be repeated for all other species. 
 (9) Ortholog regions from all species will be aligned by MLAGAN to generate 
the cross-species alignment. 
 (10) Transcription factor binding motifs specified by users will be mapped to the 
cross-species alignment. The final results will look like: 
 

 
 
 Here, letters such as ‘G’, ‘O’, etc. are put on top of each sequence to indicate the 
locations of TFBS. Each letter indicates a type of motif, different letters correspond to 
different motifs, e.g., ‘G’=Gli, ‘O’=Oct4, etc. The meaning of each letter is defined by users. 
The top sequence in the alignment corresponds to the reference species. Each remaining 
species will be compared to the reference species. At a given column, if a species has the 
identical base pair to the reference species, a dot “.” will be put on top of the sequence. If all 
species in the column share an identical base pair, then a colon ‘:’ will be put on top of each 
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sequence.  
 
 
9.2 List of Functions 
 (1) malign_genome_prepareortholog – Prepare the extended window surrounding 
ortholog genes. 
 (2) malign_genome_blasthit – Generate cross-species alignments. 
 (3) malign_motifmap – Mapping transcription factor binding motifs to 
alignments. 
 (4) malign_modulemap – Selecting modules that contain specific TFBS. 
 
 
 
9.3 Cross-species Comparison – Prerequisites 
 In order to generate the cross-species alignments, one needs to download and 
install BLAST and MLAGAN first. CisGenome itself does not provide the alignment 
program. What we will do here is to use CisGenome to collect ortholog regions, and 
to call BLAST and MLAGAN to generate the alignments, and then use CisGenome to 
map TFBS to the alignments. 
 BLAST can be downloaded from 
http://ncbi.nlm.nih.gov/BLAST/download.shtml. 
 MLAGAN can be downloaded from 
http://lagan.stanford.edu/lagan_web/index.shtml. 
 Please follow their instructions to install them. 
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9.4 Cross-species Comparison Step I – Preparing Ortholog Regions 
 
[Usage] 

malign_genome_prepareortholog -i [Input file] -o [Output file] -n 

[species number] -sf [Skip the first line] -r [type of extension] -up 

[length of upstream extension] -down [length of downstream extension] 

 
 The first step to generate cross-species alignment for specified genomic regions is 
to collect ortholog genes in related species, and get a extended window surrounding 
each ortholog gene. This can be done as follows. 
 (1) Prepare a file in COD_C format (Appendix A.1.6), say, target_coord.txt, 
that contains the genomic regions one wants to study, e.g., ChIP-chip binding regions 
in mouse genome. 
 (2) Run refgene_getnearestgene (section 4.4) to associate each region with its 
closest gene. For example: 
 

> refgene_getnearestgene -d 

/data/genomes/mouse/mm6/annotation/refFlat_sorted.txt –dt 1 –s mouse -i 

target_coord.txt -o target_gene.txt –r 0 –up 50000 –down 50000 

  
 (3) Run refflex_getmultiortholog (section 4.7) to get ortholog genes. For example: 
 
> refflex_getmultiortholog -i target_gene.txt -c 6 -d orthologsetting.txt 

-o target_ortho 

 
 When running this function, the orthologsetting.txt should be set to contain 
exactly the same number of species one want to include in the alignment. 
 
 (4) After the ortholog genes are obtained, one needs to extend them by certain 
amount of base pairs. This can be done using malign_genome_prepareortholog. For 
example: 
 
>malign_genome_prepareortholog -i target_ortho.nsomap -o 

target_foraln.txt -n 4 -sf 1 -r 0 -up 50000 -down 50000 

 
 In malign_genome_prepareortholog,  
 “-i” specifies the *.nsomap file generated by refflex_getmultiortholog. This is a 
file in REFGENE_ORTHOLOG format. 
 “-o” specifies the output file. 
 “-n” specifies species number. The *.nsomap file consists of repeating sections 
starting with “>”. The number of non-empty lines following each “>” is the species 
number one should use here. 
 “-sf” specifies whether or not to ignore the second line following each “>”. If “-sf 
1”, the second line will be ignored. If “-sf 0” the second line will be kept. The reason 
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to ignore the second line is as follows. When identifying ortholog genes, say, for a 
mouse gene, sometimes one may want to search in not only human, dog, etc. but also 
mouse itself. Here, the mouse is included as a positive control to see if the program 
runs appropriately. As a result, mouse ortholog to mouse gene (which basically are the 
same thing) will be reported in the *.nsomap file. Of course this is something 
redundant, i.e., the same thing is reported twice. Thus one may want to skip one line 
to remove this redundancy. “-sf” option here is provided to facilitate related 
operations. 
 “-r”, “-up”, “-down” specifies how to get the extended window surrounding a 
ortholog gene. Assume that TSS = transcription start, TES = transcription end, CDSS 
= protein coding region start, CDSE = protein coding region end, “-up” = Mu, 
“-down” = Md. Below are the meanings of different “-r” options. 
 (i) “-r 0”: the extended window is from Mu base pairs upstream of TSS to Md 
base pairs downstream from TES. 
 (ii) “–r 1”: the interval is from Mu base pairs upstream of TSS to Md base pairs 
downstream from TSS. 
 (iii) “–r 2”: the interval is from Mu base pairs upstream of TES to Md base pairs 
downstream from TES. 
 (iv) “–r 3”: the interval is from Mu base pairs upstream of CDSS to Md base pairs 
downstream from CDSE. 
 (v) “–r 4”: the interval is from Mu base pairs upstream of CDSS to Md base pairs 
downstream from CDSS. 
 (vi) “–r 5”: the interval is from Mu base pairs upstream of CDSE to Md base pairs 
downstream from CDSE. 
 
 (5) After running malign_genome_prepareortholog, one should get a file like the 
one below that specifies the search region. 
 
>0 

mouse   chr2    146644426       146645770       +       Nkx2-2  NM_010919       

2       -       146640088       146643295       146640931   146642954       

2       146640088,146642696,    146641493,146643295, 

human   chr20   21389653        21492663        + 

dog     chr24   4889196 4991997 + 

 

>1 

mouse   chr12   53347110        53348554        +       Nkx2-9  NM_008701       

12      -       53337817        53339084        53337817    53338869        

2       53337817,53338722,      53338089,53339084, 

human   chr14   36068967        36171536        + 

dog     chr8    17905441        18069531        + 
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 In this file, the first line following “>” is the original genomic region one wants to 
study. Each line thereafter specifies an extended window in the ortholog gene. Each 
line contains a genomic region in COD_C format.  
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9.5 Cross-species comparison Step II – Creating Multiple Alignments 
 
[Usage] 

malign_genome_blasthit [Parameter file] 
 
 The second step to generate cross-species alignment for specified genomic 
regions is run malign_genome_blasthit. Given the file generated by 
malign_genome_prepareortholog (e.g., target_foraln.txt), this function will 
automatically identify segments that are orthologous to the original genomic regions 
and align the ortholog regions by calling MLAGAN.  
 Using the example file from the previous section: 
 
>0 

mouse   chr2    146644426       146645770       +       Nkx2-2  NM_010919       

2       -       146640088       146643295       146640931   146642954       

2       146640088,146642696,    146641493,146643295, 

human   chr20   21389653        21492663        + 

dog     chr24   4889196 4991997 + 

 
 malign_genome_blasthit will first search for segments that are orthologous to 
mouse chr2:146644426-146645770. These segments will be found by BLAST mouse 
chr2:146644426-146645770 to human chr20:21389653-21492663 and dog 
chr24:4889196-4991997. The orthologous regions identified will then be used to 
generate cross-species alignment. 
 In order to use malign_genome_blasthit, one needs to prepare a main parameter 
file (say, malign_genome_arg_u.txt) and a genome sequence setting file (say, 
genomesetting3_mouse.txt). Then one can run malign_genome_blasthit as follows: 
 
> malign_genome_blasthit malign_genome_arg_u.txt 

 
 Next, we introduce the parameter files. 
 
9.5.1 Main Parameter File 
 Below is a sample main parameter file: 
 
[Path of Blast] = ~/Tools/BioinfoTools/blast/blast-2.2.12/bin 

[E-value Cutoff] = 1e-5 

[Mask Small Case] (0:No, 1:Yes) = 1 

[Minimal Length] = 25 

[Minimal Identity] = 0.6 

[Colinearity] = 0 

[Extension Percentage] = 0.25 

[Maximal Extension] = 100 

[Maximal Link Gap] = 100 
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[Keep Best vs. All] (0:Best, 1:All) = 1 

 

[Path of MLAGAN] = ~/Tools/BioinfoTools/lagan/lagan12 

[MLAGAN Parameter] = -tree "((mouse human) dog)" 

 

[Working Directory] = . 

[Export File] = target_3way 

[Input File] = target_foraln.txt 

[Genome Setting] = genomesetting_mouse.txt 

[Number of Databases] = 2 

[Target & Databases] 

mouse 

human 

dog 

 
 In the file, 
 “[Path of Blast] =” specifies the directory where the executable BLAST is 
installed. 
 “[E-value Cutoff] =” specifies the maximum E-value allowed for BLAST hits. 
 “[Mask Small Case] (0:No, 1:Yes) =” specifies if the small letters a, c, g and t are 
treated as repeats or not. If users set 1 here, then the small letters will be masked as 
repeats. If users set 0 here, then small letters will be used in searching the alignment. 
 “[Minimal Length] =” specifies the minimal length of BLAST hits that will be 
processed. 
 “[Minimal Identity] =” specifies the minimal percent identity level of a BLAST 
hit in order to be processed further. 
 “[Colinearity] =” specifies whether BLAST hits need to be collinear. If users set 1 
here, BLAST hits that do not satisfy the colinearity criterion will be discarded. If 
users set 0 here, no colinearity requirement will be set. 
 “[Extension Percentage] =” specifies the length of the extension for each hit. 
Each BLAST hit will be extended (alignment length)* [Extension Percentage] base 
pairs to both ends. 
 “[Maximal Extension] =” specifies the maximal extensions. IF (alignment 
length)* [Extension Percentage]>[Maximal Extension], only [Maximal Extension] 
base pairs will be extended on each ends. 
 “[Maximal Link Gap] =” specifies the maximum gap distance allowed to merge 
to BLAST hits. If the distance between two BLAST hits <= [Maximal Link Gap], the 
two hits will be merged into a single one. 
 “[Keep Best vs. All] (0:Best, 1:All) =”: If users set 1 here, only the best BLAST 
hit will be kept for constructing cross-species alignment. If users set 0 here, all 
BLAST hits will be linked to form ortholog sequences, and ortholog sequences will 
be aligned to get cross-species alignment.  
 “[Path of MLAGAN] =” pecifies the directory where the executable MLAGAN is 
installed.  
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 “[MLAGAN Parameter] =” specifies the phylogenetic tree structure used by 
MLAGAN.  
 “[Working Directory] =” specifies the directory where all input files and output 
files are stored. 
 “[Export File] =” specifies the title of the output file. 
 “[Input File] =” specifies the input file. This is usually the output file generated 
by malign_genome_prepareortholog (e.g., target_foraln.txt)  
 “[Genome Setting] =” specifies the genome sequence setting file. This file is in 
GENOME_SEQUENCE_SETTING format (Appendix A.1.22). 
 “[Number of Databases] =” specifies the number of species excluding the original 
species. 
 “[Target & Databases]” specifies the original species and all other species one 
want to align. The line should be followed by 1+[Number of Databases] lines, each 
containing a species name (e.g., mouse, human, dog). The same species name should 
be used in specifying [MLAGAN Parameter] and the genome sequence setting file. 
 
9.5.2 Genome Sequence Setting File 
 This is a file in GENOME_SEQUENCE_SETTING format (Appendix A.1.22). 
See Appendix A.1.22 for an example. This file specifies where to find genome 
sequences for each individual species. Please make sure that the file contains the same 
species as will be used in the alignment, and the order of their appearance should be 
consistent with their orders set in “[Target & Databases]” section of the main 
parameter file. 
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9.6 Cross-species comparison Step III – Annotating Multiple Alignments using 
TFBS 
 
[Usage] 

malign_motifmap [Parameter file] 

 
 After generating cross-species alignment, the third step is to map transcription 
factor binding motifs to the alignment. This can be done using malign_motifmap. In 
order to run malign_motifmap,  
 (1) For each motif one wants to map, prepare a file that specifies the motif pattern, 
either in MOTIF_CONS (Appendix A.1.9) or MOTIF_MAT format (Appendix 
A.1.10). 
 (2) Prepare a parameter file (say, malign_motifmap_arg.txt) as will be described 
below. 
 (3) Run malign_motifmap as follows: 
 
> malign_motifmap malign_motifmap_arg.txt 

 
 A sample parameter file is shown as below: 
 
[Path of CisGenome] = ~/Projects/CisGenome_Project_unix/bin/ 

[Working Directory] = . 

[File Header] = target_3way 

[Number of Clusters] = 30 

[Number of Species] = 3 

[Species] 

mouse 

human 

dog 

 

[Number of Motifs] = 5 

[Motif Mapping] 

G       Gli1    Gli.txt motifmap_matrixscan -r 500 -b 3 

O       OctSox  OctSox.txt      motifmap_matrixscan -r 500 -b 3 

o       Oct     Oct.txt motifmap_matrixscan -r 500 -b 3 

S       Sox     Sox.txt motifmap_matrixscan -r 500 -b 3 

s       Sox2    Sox_2.txt       motifmap_matrixscan -r 500 -b 3 
 
 In this file, 
 “[Path of CisGenome] =” specifies the directory where executable CisGenome 
functions are installed. 
 “[Working Directory] =” specifies the directory where input and output files will 
be stored. The input files are the files generated by malign_genome_blasthit. 
 “[File Header] =” The title of input alignment files. This should be the same as 
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the “[Export File] =” setting in the malign_genome_blasthit main parameter file. 
 “[Number of Clusters] =” specifies number of genes to be studied. This should be 
the same as the number of original genomic regions, or equivalently the number of 
“>” in the malign_genome_blasthit input file. 
 “[Number of Species] =” specifies the number of species in the alignments” 
 “[Species]” specifies species name in the alignment. The name should appear in 
the same order as they appear in the “[Target & Databases]” setting in the 
malign_genome_blasthit main parameter file. 
 “[Number of Motifs] =” specifies how many motifs one wants to map.  
 “[Motif Mapping]” specifies how to map each motif. If there are N motifs, 
“[Motif Mapping]” should be followed by N lines, each line in the following format: 
 

MOTIF_SYMBOL[tab]MOTIF_NAME[tab]MOTIF_FILE[tab]Program and parameters 

to map the motif. 

 
 Here, MOTIF_SYMBOL is a one letter character that will be displayed in the 
alignment to indicate the motif type. MOTIF_NAME is the name of the motif 
specified by users. MOTIF_FILE is the file name of the motif consensus or PWM. 
Program and parameters to map the motif can be chosen from motifmap_matrixscan 
and motifmap_consensusscan. The former can be used to map PWM, the latter can be 
used to map consensus. If motifmap_matrixscan is used, one also needs to specify 
“–r” (likelihood ratio cutoff) and “-b” (order of background model). If 
motifmap_consensusscan is used, one needs to specify “-mc” (maximal consensus 
mismatches allowed) and “-md” (maximal degenerate consensus mismatches allowed). 
Program name and parameters should be separated by space instead of tab. 
 
 After running malign_motifmap, one can check *[Ortholog cluster ID]_motif.aln 
for cross-species alignments annotated with TFBS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 123

9.7 Cross-species comparison Step IV – Searching for Modules according to the 
Annotated Alignments 
 
[Usage] 

malign_modulemap [Parameter file] 

 
 After cross-species alignment and TFBS annotations are obtained, one may want 
to get modules that contain certain types of TFBS. malign_modulemap can help to do 
this job. In order to run malign_modulemap, first prepare a parameter file (say 
malign_modulemap_arg.txt) as follows, then run the function as below: 
 
> malign_modulemap malign_modulemap_arg.txt 

 
 A sample parameter file is shown as below: 
 
[Working Directory] = . 

[File Header] = target_3way 

[Export File] = Gli-Oct_module.txt 

[Number of Clusters] = 30 

[Number of Species] = 3 

[Number of Motifs] = 2 

[Motif Criteria] 

MID     MNAME   mouse   human    dog     Sum 

G       Gli      1        0         0        2 

O       Oct4     1        1         1        3 

[Module Length] = 200 

[Module Criteria] 

MID     >=      =< 

G       2       NA 

O       1       3 

 
In this file, 
 “[Working Directory] =” specifies the directory where input and output files will 
be stored. The input files are the files generated by malign_motifmap. 
 “[File Header] =” The title of input alignment files. This should be the same as 
the “[File Header] =” setting in the malign_motifmap main parameter file. 
 “[Export File] =” specifies the output file. 

“[Number of Clusters] =” specifies number of genes to be studied. This should be 
the same as the number of original genomic regions, or equivalently the number of 
“>” in the malign_genome_blasthit input file. 
  “[Number of Species] =” specifies the number of species in the alignments” 
 “[Number of Motifs] =” specifies how many motifs are involved.  
 “[Motif Criteria]” specifies the criteria to filter TFBS. For each motif, one needs 
to set the one letter motif symbol, motif name, and whether a position needs to be 



 124

called as TFBS in the given species (1: yes, 0: no) in order to be defined as a 
conserved TFBS. For example, the parameter file above says that a position can be 
called a conserved Gli site only if it is a TFBS in mouse (mouse>=1) and in at least 
one of human and dog (Sum>=2). 

“[Module Length] =” specifies the length of a module. 
“[Module Criteria]” specifies how many TFBS of each motif a region needs to 

contain in order to be a module. In the above example, a 200 bp long region will be 
called as a module if it contains >=2 Gli sites and 1~3 Oct4 sites.  
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Appendix.  
A1. Commonly Used File Formats 
A.1.1 SQ 
 A file in SQ format is a binary file. The file is used to store DNA sequences and 
must have a suffix .sq (e.g., chr1.sq, chrX.sq, etc.). In a *.sq file, each byte contains 
information for two nucleotides. Nucleotides are coded as below: 
A: 0000 
C: 0001 
G: 0010 
T: 0011 
a: 0100 
c: 0101 
g: 0110 
t: 0111 
N: 1000 
 Here, “a”, “c”, “g”, “t” represent soft-masked repeat sequences; “A”, “C”, “G”, 
“T” represent non-repeat sequences; “N” represents all other sequences including 
gaps. Since each byte in a *.sq file codes two base pairs, storing a complete human 
genome (~3Gbp) needs ~1.5GB disk space. The genome is usually saved in files 
named as chr1.sq, chr2.sq, etc. The length of each *.sq file is approximately half of 
the length of the corresponding chromosome (e.g., the size of human chrX.sq is 
77,412,132 bytes). 
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A.1.2 CS 
 A file in CS format is a binary file. The file is used to store various kinds of 
conservation scores and must have a suffix .cs (e.g., chr1.cs, chrX.cs, etc.). In a *.cs 
file, each byte corresponds to a single genomic position. Each byte contains a score 
that ranges from 0 to 255. The bigger the score, the more conserved the corresponding 
position is. Conservation scores for a complete genome are usually saved in files 
named as chr1.cs, chr2.cs, etc. ~3GB disk space is needed to store human 
conservation scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 127

A.1.3 CDS 
 A file in CDS format is a binary file. The file is used to store protein coding 
region indicators and must have a suffix .cds (e.g., chr1.cds, chrX.cds, etc.). In a *.cds 
file, each byte corresponds to a single genomic position. Each byte contains a score 
that is either 0 or 1. If the score is 1, the corresponding position is located within a 
protein coding region; otherwise the score is 0. CDS indicators for a complete genome 
are usually saved in files named as chr1.cds, chr2.cds, etc. ~3GB disk space is needed 
to store human CDS indicators. 
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A.1.4 FASTA 
 A file in FASTA format is a text file. The file is used to store sequences. A FASTA 
file has the following format:  
 
>seq0 

GCTTAGCAACAGCTCACCAAAGTAGAGAGACCACCCAGGTAGGCAACCCCCGTGTGTGCA 

TCCCAGGCTTGGGGGTGGGGGGGCGCTCGCTCAGCGCCAACCCTCTCGCATGCAATACTT 

GTGTCACCAAGACAT 

>seq1 

TTTCAATGTGTCCTAACTGTTTGGAATAAATCTAAGGTTGTCCCTAGTTGTCATGGCATT 

CAACCCTTTTCAATGGACTATCTCTTCATTCATTTCTGAATCCGTCCACAATATTAAGGA 

AACCCCTTCATGTCGACGTTCCCCATTCCTCTTTCTCCTGCTTTTCTTTTCTCCTTTCTT 

CCTCCCTTTTCCCCTTGCAAGAATTAGTATCTGGTTTGAAACGTG 
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A.1.5 BED 
 A file in BED format is a text file. Detailed description of BED format can be 
found at http://genome.ucsc.edu/goldenPath/help/customTrack.html. A BED file can 
be uploaded to UCSC Genome Browser and visualized as a customer track. 
 Below is a sample BED file that is commonly used in CisGenome: 
 
browser position chr13:60894523-60943510 

track name=ChipTarget description="ChIP-Chip tiling region" 

chr2 74133959 74195987 

chr12 53197523 53497991 

chr10 127073216 127153216 

chr10 127073187 127073215 

chr10 127072750 127073048 
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A.1.6 COD_C 
A file in COD_C format is a tab-delimited text file. The file is used to specify 

physical coordinates of genomic regions. The file should contain >=5 columns, and 
the first five columns are: 
 
Sequence_ID[tab]chromosome[tab]start[tab]end[tab]strand 

 
 “Sequence_ID” is a unique ID (a number or a string) assigned to a region. The ID 
is defined by users. 
 “Chromosome” is the chromosome name, e.g., chr1, chr2, chrX, chrY, etc.  
 “Start” and “End” are integers that specify genomic coordinates of a region. Both 
“start” and “end” are zero-based, i.e., the first position in a chromosome is indexed by 
0, the second position is indexed by 1, and so on.  
 “Strand” specifies the strand (+ or -) of a region in relative to the genome 
assembly.  
 Below is a sample file in COD_C format: 
 
0 chr13 60949397 60950371 + 

1 chr2 146644626 146645570 + 

2 chr13 60951377 60952953 - 

3 chr12 53347310 53348354 + 

4 chrX 52789693 52789967 - 

5 chr12 53340519 53341015 + 

6 chr11 77915220 77915560 + 
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A.1.7 COD_N 
A file in COD_N format is a tab-delimited text file. The file is used to specify 

physical coordinates of genomic regions. Similar to COD_C format, a COD_N file 
also contains >=5 columns, and the first five columns are: 
 
Sequence_ID[tab]chromosome[tab]start[tab]end[tab]strand 

 
 However, unlike COD_C format, the “chromosome” (the 2nd column) in a 
COD_N file is indexed by integer numbers. In other words, in stead of using chr1, 
chr2, …, chrX, chrY to specify human chromosomes, a COD_N file uses 1, 2, …, 23, 
24.  
 Below is a sample file in COD_N format: 

 
0 13 60949397 60950371 + 

1 2 146644626 146645570 + 

2 13 60951377 60952953 - 

3 12 53347310 53348354 + 

4 20 52789693 52789967 - 

5 12 53340519 53341015 + 

6 11 77915220 77915560 + 
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A.1.8 COD_FA 
A file in COD_FA format is a tab-delimited text file. The file is used to specify 

physical coordinates of target regions in sequences that are stored in a FASTA file. A 
COD_FA file contains >=4 columns, and the first four columns are: 
 
Sequence_ID[tab]start[tab]end[tab]strand 

 
 “Sequence_ID” is a unique numerical ID assigned to the sequences in the FASTA 
file. The first sequence in the FASTA file is indexed by 0, the second sequence is 
indexed by 1, and so on. 
 “Start” and “End” are integers that specify coordinates of a region. Both “start” 
and “end” are zero-based, i.e., the first position in a sequence is indexed by 0, the 
second position is indexed by 1, and so on.  
 “Strand” specifies the strand (+ or -) of a region in relative to the FASTA 
sequence.  
 Below is a sample file in COD_FA format: 

 
0 3187 3199 - 

0 3903 3915 + 

1 3999 4011 + 

1 7666 7678 + 

2 8252 8264 + 

3 9026 9038 + 

3 9141 9153 - 

3 9603 9615 + 

 
 In this sample file, the line “0 3187 3199 -” specifies a region in the first 
sequence that starts from the 3188th base pair and ends at 3200th base pair; the line  
“3 9141 9153 -” specifies a region in the fourth sequence that starts from the 
9142th base pair and ends at 9154th base pair, and so on. 
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A.1.9 MOTIF_CONS 
 A file in MOTIF_CONS format is a text file. The file is used to specify consensus 
sequence motifs. Each file (say Gli_cons.txt) can specify a single consensus motif in 
the following format: 
 
TGGGT[A]GGTC[G,T] 

 
 In the above example, “TGGGT[A]GGTC[G,T]” can be viewed as a motif as 
below: 
TGGGTGGTC 

----A---G 

--------T 

In other words, the 5th position of the motif could be either “T” or “A”, and the 9th 
position could be “C”, “G” or “T”.  
 Capital letters “A”, “C”, “G”, “T”, “[”, “]” and “,” are the only characters that can 
be used in a MOTIF_CONS file. Their combinations can be used to specify a wide 
range of nucleotide preference, e.g., “A[C,G,T]” can be used to represent “N”. 
 Two relevant concepts when applying a motif in MOTIF_CONS format is the 
consensus sequence and degenerate consensus sequence. In the above example, 
“TGGGTGGTC” is defined as the consensus sequence, and 
“TGGGT[A]GGTC[G,T]” is defined as the degenerate consensus sequence. A binding 
site “TGGGAGGTA” has 2 mismatches to the consensus (or 2 consensus mismatches), 
and 1 mismatch to the degenerate consensus (or 1 degenerate mismatch). The 2 
consensus mismatches are TGGGAGGTA, and the 1 degenerate mismatch is 
TGGGAGGTA. 
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A.1.10 MOTIF_MAT 
 A file in MOTIF_MAT format is a text file. The file is used to specify motif 
position specific weight matrices (PWM). Each file (say Gli_mat.txt) can specify a 
single PWM in the following format: 
 
0.1   1.1  0.1 14.1 

0.1   0.1 12.1  3.1 

0.1   0.1 15.1  0.1 

0.1   0.1 15.1  0.1 

2.1   0.1  1.1 12.1 

0.1   0.1 14.1  1.1 

0.1   0.1 13.1  2.1 

1.1   1.1   1.1 12.1 

0.1  12.1  2.1  1.1 

 
 Each line in the file corresponds to a position in the motif, and the four columns 
count A, C, G, and T respectively. In the above example, the motif has a consensus 
TGGGTGGTC. 
 Usually, users need to add a small number (say 0.1) to each count to make sure 
that no counts <= 0. This small number is added to avoid log(0) when applying 
various motif mapping functions. Although many CisGenome motif mapping 
functions will automatically add 0.001 to each count in the PWM, we strongly 
recommend that users add this pseudo-counts themselves to control their potential 
effects in motif mapping.  
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A.1.11 MOTIF_SITE 
 A file in MOTIF_SITE format is a tab-delimited text file. The file is used to store 
transcription factor binding sites. Each line in the file contains information for a single 
TFBS. The information is provided in the following format:  
 
Sequence_ID[tab]chromosome[tab]start[tab]end[tab]strand[tab]site_score[tab]site 
 
 “Sequence_ID” is an ID (a number or a string) assigned to the genomic region or 
the FASTA sequence where the TFBS has been found. If the file is generated by 
motifmap_consensusscan_genome or motifmap_matrixscan_genome, the ID is 
transferred form the first column of the input coordinates file (a file in COD_C 
format). If the file is generated by motifmap_consensusscan or motifmap_matrixscan, 
the ID is defined by lines starting with “>” in the input sequences (a FASTA file). If 
the file is generated by users, users can define the ID by themselves. 
 “Chromosome” is the chromosome name. If the file is generated by 
motifmap_consensusscan_genome or motifmap_matrixscan_genome, the chromosome 
is reported as chr1, chr2, chrX, chrY, etc. If the file is generated by 
motifmap_consensusscan or motifmap_matrixscan, the chromosome is defined as a 
number that indexes the input FASTA sequences. The index is 0-based, i.e. the first 
sequence is indexed as 0, the second sequence indexed by 1, and so on.  
 “Start” and “End” are integers that specify coordinates of a TFBS. Both “start” 
and “end” are zero-based, i.e., the first position in a chromosome (or FASTA sequence) 
is indexed by 0, the second position is indexed by 1, and so on.  
 “Strand” specifies the strand (+ or -) of a TFBS in relative to the genomic regions 
or FASTA sequences.  
 “Site_score” is the score attached to the site. 
 “Site” is the sequence of the site. 
 Below are two sample files in MOTIF_SITE format: 
 
0 chr13 60949425 60949433 - 4.480395 TGGGTGGTC 

1 chr2 146645187 146645195 + 4.525546 TGGGTGGTC 

2 chr13 60951437 60951445 + 3.048943 TGGGTGTTA 

2 chr13 60952275 60952283 + 4.490870 TGGGTGGTC 

 
0 0 28 36 - 4.148830 TGGGTGGTC 

1 1 561 569 + 4.178913 TGGGTGGTC 

2 2 60 68 + 3.088845 TGGGTGTTA 

2 2 898 906 + 4.311735 TGGGTGGTC 

 
 
Hint: A file in MOTIF_SITE format sometimes can also be viewed as a file in 
COD_C or COD_N format, therefore it may be used directly in sequence retrieval 
functions such as genome_getseq, genome_getseqcs, etc. 
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A.1.12 MOTIF_MASK 
 A file in MOTIF_MASK format is a text file. The file is used to specify specific 
positions in a motif that need to be processed. The file has a single line in the format: 
 
1 1 1 0 0 1 1 1 

 
Positions labeled by “1” will be processed by programs such as 
motifmap_filter_genome, whereas positions labeled by “0” will be ignored in the 
analysis. For example, if the motif is CCCATGGG, then by applying the above mask, 
the underscored positions will be analyzed: CCCATGGG.  
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A.1.13 MOTIF_LIST 
 A file in MOTIF_LIST format is a tab-delimited text file. The file is used to 
specify a list of motifs and their corresponding likelihood ratio cutoffs used for 
motifmap_matrixscan_genome_summary. Each line in the file corresponds to a single 
motif, and the line has the following format: 
 
PWM_FILE[tab]RATIO_CUTOFF 

 
Here, PWM_FILE is the path of the file that specifies motif PWM. The PWM should 
be stored in MOTIF_MAT format. RATIO_CUTOFF is a number that specifies the 
likelihood ratio cutoff used to declare TFBS when mapping the motif to genomic 
regions. Below is a sample MOTIF_LIST file: 
 
Gli_mat.txt 500 

Motif1.txt 500 

Motif2.txt 500 

Motif3.txt 500 
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A.1.14 MOTIF_SUMMARY 
 A file in MOTIF_SUMMARY format is a tab-delimited text file. The file is used 
to summarize the relative enrichment level of a list of motifs in target genomic 
regions as compared to control regions. Each line in the file corresponds to a single 
motif, and the line has the following format: 
 
MOTIF_ID[tab]MOTIF[tab]n1B[tab]n2B[tab]n1C[tab]n2C[tab]r1[tab]n3B[tab]n4B
[tab] n3C[tab] n4C[tab]r2[tab]r3[tab] 

 
Here, MOTIF_ID is a numerical index attached to each motif. MOTIF is the file that 
specifies the motif PWM. The remaining columns are summary statistics discussed in 
section 8.8. 
 

Below is a sample MOTIF_SUMMARY file: 
1 motif1.txt 165 26361 16322 5606144 2.149874 71 12542 4378

 1223995 1.582688 3.448935 

2 motif2.txt 102 26361 10326 5606144 2.100731 26 12542 1320

 1223995 1.922261 4.188917 

3 Motif3.txt 40 26336 2347 5605719 3.627675 26 12513 839

 1222435 3.027441 6.596186 
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A.1.15 MOTIF_TIERENRICH 
 A file in MOTIF_TIERENRICH format is a tab-delimited text file. The file is 
used to summarize the relative enrichment level of a motif in target genomic regions 
as compared to control regions. Target regions are ranked and grouped into tiers. Each 
line in the file summarizes the relative enrichment level of a single tier. The last line 
contains summary statistics for control regions. Typically, a line has the following 
format: 
 
Tier[tab]n1B[tab]n2B[tab]r1[tab]n3B[tab]n4B[tab]r2[tab]r3[tab] 

 
The last line has the following format: 
 

Control[tab]n1C[tab]n2C[tab]r1[tab]n3C[tab]n4C[tab]r2[tab]r3[tab] 

 
 The meaning of the summary statistics discussed in section 8.8. A sample file in 
MOTIF_TIERENRICH format is given as below: 
 
1~10    19    10820 4.033939  13   5328 5.494526 14.106073 

11~20    16     9779 3.758621  12   4838 5.585556 14.407108 

21~30     6     6280 2.194798   4   2720 3.311633  7.478085 

31~40     3     4959 1.389729   1   1594 1.412742  2.367532 

41~50     3     4919 1.401030   1   1826 1.233248  2.386784 

51~60     2     4159 1.104699   1   1241 1.814593  2.822936 

61~65     1     1877 1.223880   0    779 0.000000  0.000000 

Control 1707  3921358 1.000000 334 752138 1.000000  1.000000 
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A.1.16 REFGENE_UCSC 
 A file in REFGENE_UCSC format is a tab-delimited text file. Detailed 
description of this format can be found at 
http://genome.ucsc.edu/goldenPath/gbdDescriptions.html#GenePredictions.  
 Each line in the file contains following gene information: 
 
Name[tab]chromosome[tab]strand[tab]transcription_start[tab]transcription_end[tab]c
oding_region_start[tab]coding_region_end[tab]exon_count[tab]exon_starts[tab]exon_
ends[tab]. 
 
 Here, chromosome is in a format such as chr1, chrX, chrY, etc. Several sample 
lines are shown below: 
 
NM_198943 chr1 - 4268 14754 4558 14749 10

 4268,4832,5658,6469,6719,7095,7468,7777,8130,14600,

 4692,4901,5810,6631,6918,7231,7605,7924,8242,14754, 

NM_182905 chr1 - 4558 7173 4558 7173 6

 4558,4832,5658,6469,6719,7095, 4692,4901,5810,6631,6918,7173, 

NM_024796 chr1 - 801449 802749 801942 802434 1 801449,

 802749, 
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A.1.17 REFGENE_CISGENOME 
 A file in REFGENE_CISGENOME format is a tab-delimited text file. It has 
almost the same format as REFGENE_UCSC. The only differences are: (1) in 
REFGENE_CISGENOME, chromosomes (column 2) are represented by numbers 
instead of strings, and (2) genes are sorted according to their genomic coordinates. 
 Each line in the file contains following gene information: 
 
Name[tab]chromosome[tab]strand[tab]transcription_start[tab]transcription_end[tab]c
oding_region_start[tab]coding_region_end[tab]exon_count[tab]exon_starts[tab]exon_
ends[tab]. 
 
 Several sample lines are shown below: 
NM_198943 1 - 4268 14753 4558 14748 10

 4268,4832,5658,6469,6719,7095,7468,7777,8130,14600,

 4691,4900,5809,6630,6917,7230,7604,7923,8241,14753, 

NM_182905 1 - 4558 7172 4558 7172 6

 4558,4832,5658,6469,6719,7095, 4691,4900,5809,6630,6917,7172, 

NM_001005484 1 + 58953 59870 58953 59870 1 58953, 59870, 

NM_001005277 1 + 407521 408459 407521 408459 1 407521,

 408459, 
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A.1.18 REFFLAT_UCSC 
 A file in REFFLAT_UCSC format is a tab-delimited text file. Detailed 
description of this format can be found at 
http://genome.ucsc.edu/goldenPath/gbdDescriptions.html#RefFlat.  
 Each line in the file contains following gene information: 
 
Gene_symbol[tab]name[tab]chromosome[tab]strand[tab]transcription_start[tab]transc
ription_end[tab]coding_region_start[tab]coding_region_end[tab]exon_count[tab]exon
_starts[tab]exon_ends[tab]. 
 
 Here, chromosome is in a format such as chr1, chrX, chrY, etc. Several sample 
lines are shown below: 
 
NOC2L NM_015658 chr1 - 919738 934774 920216 934763 19

 919738,920579,921040,921695,921924,923653,924012,926649,927522,92

7934,928697,929304,929526,931445,931617,932416,932621,934451,93473

7,

 920323,920669,921176,921809,922068,923755,924126,926761,927662,92

8123,928811,929415,929605,931536,931738,932548,932796,934604,93477

4, 

KLHL17 NM_198317 chr1 + 936109 941162 936216 940638 12

 936109,936815,937151,937348,937877,938226,938631,938859,939442,93

9629,939871,940409,

 936323,937075,937273,937570,937994,938440,938776,939027,939531,93

9703,940053,941162, 

PLEKHN1 NM_032129 chr1 + 941943 950549 941978 950022 16

 941943,942150,945723,945967,946132,946325,946559,946770,947521,94

7734,948307,948632,948946,949279,949762,949888,

 942061,942250,945870,946048,946205,946453,946655,946851,947597,94

7871,948457,948773,949087,949498,949811,950549, 
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A.1.19 REFFLAT_CISGENOME 
 A file in REFFLAT_CISGENOME format is a tab-delimited text file. It has 
almost the same format as REFFLAT _UCSC. The only differences are: (1) in 
REFFLAT_CISGENOME, chromosomes (column 3) are represented by numbers 
instead of strings, and (2) genes are sorted according to their genomic coordinates. 
 Each line in the file contains following gene information: 
 
Gene_symbol[tab]name[tab]chromosome[tab]strand[tab]transcription_start[tab]transc
ription_end[tab]coding_region_start[tab]coding_region_end[tab]exon_count[tab]exon
_starts[tab]exon_ends[tab]. 
 
 Several sample lines are shown below: 
NOC2L NM_015658 1 - 919738 934773 920216 934762 19

 919738,920579,921040,921695,921924,923653,924012,926649,927522,92

7934,928697,929304,929526,931445,931617,932416,932621,934451,93473

7,

 920322,920668,921175,921808,922067,923754,924125,926760,927661,92

8122,928810,929414,929604,931535,931737,932547,932795,934603,93477

3, 

KLHL17 NM_198317 1 + 936109 941161 936216 940637 12

 936109,936815,937151,937348,937877,938226,938631,938859,939442,93

9629,939871,940409,

 936322,937074,937272,937569,937993,938439,938775,939026,939530,93

9702,940052,941161, 

PLEKHN1 NM_032129 1 + 941943 950548 941978 950021 16

 941943,942150,945723,945967,946132,946325,946559,946770,947521,94

7734,948307,948632,948946,949279,949762,949888,

 942060,942249,945869,946047,946204,946452,946654,946850,947596,94

7870,948456,948772,949086,949497,949810,950548, 
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A.1.20 REFGENE_CISGENOME_FLEXIBLE 
 A file in REFGENE_CISGENOME_FLEXIBLE format is a tab-delimited text 
file. It can be viewed as an extension of REFGENE_CISGENOME format. Both 
REFGENE_CISGENOME and REFFLAT_CISGENOME format are special cases of 
REFGENE_CISGENOME_FLEXIBLE format.  
 Each line in a REFGENE_CISGENOME_FLEXIBLE file has the following 
format: 
 
Info1[tab]Info2[tab]…[tab]InfoN[tab]Name[tab]chromosome[tab]strand[tab]transcrip
tion_start[tab]transcription_end[tab]coding_region_start[tab]coding_region_end[tab]e
xon_count[tab]exon_starts[tab]exon_ends[tab]. 
 
 In other words, N columns of various types of information are followed by a gene 
structure annotation, and the gene structure annotation is in 
REFGENE_CISGENOME format. According to this definition, 
REFGENE_CISGENOME is a special case of 
REFGENE_CISGENOME_FLEXIBLE format where N=0; and 
REFFLAT_CISGENOME format is a special case where N=1. Another example 
which is commonly used is shown as below: 
 

region1       chr2    32395049        32400049        -       

4933440H19Rik   NM_194335       2       +       32382619        

32387638    32384601        32387431        2       32382619,32386959,      

32385111,32387638, 

region2       chr2    61504133        61509133        +       Tank    

NM_011529       2       +       61433985        61509511            

61434041        61508955        8       

61433985,61469051,61482303,61483121,61499115,61499707,61505138,615

08779,        

61434093,61469198,61482414,61483239,61499185,61499822,61505688,615

09511, 

region3       chr2    129329174       129334174       +       Stk35   

NM_183262       2       +       129314605       129341840           

129315476       129325053       4       

129314605,129315257,129324341,129341627,        

129314699,129315857,129325090,129341840, 

 
 Here, the first five columns specifies the coordinates of a genomic region (similar 
to COD_C format), the sixth column is a gene name (used to annotate the region), and 
the remaining columns are the gene structure in REFGENE_CISGENOME format. 
This file can be generated by refgene_getnearestgene which is used to annotate 
specified genomic regions, and may be used as the input file for 
refflex_getmultiortholog to get ortholog genes in other species. 
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A.1.21 REFGENE_ORTHOLOG 
 A file in REFGENE_ORTHOLOG format is a text file. The file is usually used to 
save ortholog information for a group of genes. A gene and its orthologs in other 
species are called a ortholog group. Each ortholog group is saved in the file in the 
following format: 
 
>Group_ID 
Information of the original gene (in REFGENE_CISGENOME_FLXIBLE format) 
Species1[tab]M[tab]2*O[tab]Information of the ortholog gene in species 1 (in 

REFGENE_CISGENOME format) 
Species2[tab]M[tab]2*O[tab]Information of the ortholog gene in species 2 (in 

REFGENE_CISGENOME format) 
… 
SpeciesN[tab]M[tab]2*O[tab]Information of the ortholog gene in species N (in 

REFGENE_CISGENOME format) 
 
 Here, “M” and “O” are defined in section 4.7. Below is an example: 
>0 

NM_008625       chr2    14173834        14178834        +       Mrc1    

NM_008625       2       +       14155686        14258061            

14155785        14257447        30      

14155686,14164398,14170390,14175079,14183276,14187461,14192622,141

96411,14197536,14202559,14206108,14215259,14218791,14219718,142210

72,14230383,14231588,14232736,14234159,14234951,14236240,14241506,

14243114,14245373,14248045,14251500,14254059,14254692,14256155,142

57194,  

14155845,14164799,14170563,14175243,14183389,14187607,14192807,141

96568,14197646,14202674,14206256,14215458,14218918,14219805,142212

16,14230424,14231751,14232803,14234259,14235093,14236354,14241672,

14243216,14245605,14248210,14251649,14254172,14254856,14256196,142

58061, 

mouse   5       12      NM_008625       2       +       14155686        

14258061        14155785        14257447        30      

14155686,14164398,14170390,14175079,14183276,14187461,14192622,141

96411,14197536,14202559,14206108,14215259,14218791,14219718,142210

72,14230383,14231588,14232736,14234159,14234951,14236240,14241506,

14243114,14245373,14248045,14251500,14254059,14254692,14256155,142

57194,      

14155845,14164799,14170563,14175243,14183389,14187607,14192807,141

96568,14197646,14202674,14206256,14215458,14218918,14219805,142212

16,14230424,14231751,14232803,14234259,14235093,14236354,14241672,

14243216,14245605,14248210,14251649,14254172,14254856,14256196,142

58061, 

human   4       6       NM_008625       10      +       18138450        
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18239602        18138460        18239399        33      

18138450,18141886,18152048,18156500,18162635,18169627,18174223,181

78514,18181901,18185176,18190321,18192468,18195496,18199180,181997

86,18200916,18202718,18204024,18208656,18209459,18210001,18214203,

18223144,18224326,18226967,18227177,18229722,18230907,18235820,182

36468,18239211,18239496,18239582,   

18138512,18141892,18152450,18156669,18162797,18169740,18174369,181

78698,18182058,18185244,18190436,18192616,18195695,18199309,181998

69,18201060,18202758,18204192,18208755,18209535,18210115,18214369,

18223239,18224331,18227146,18227200,18229887,18231056,18235933,182

36632,18239400,18239571,18239602, 

dog     4       6       NM_008625       2       -       19668039        

19750134        19668627        19750134        32      

19668039,19668387,19668458,19668623,19671171,19671868,19678493,196

79478,19681414,19684650,19688062,19692192,19692689,19693703,196967

56,19698121,19699690,19702173,19702411,19702745,19705839,19708163,

19710848,19716640,19717871,19726880,19730029,19733357,19741053,197

45645,19745809,19749732,    

19668097,19668400,19668513,19668814,19671334,19671981,19678642,196

79643,19681647,19684745,19688228,19692306,19692831,19693802,196969

24,19698161,19699834,19702255,19702414,19702873,19706038,19708311,

19710963,19716705,19718028,19727063,19730175,19733470,19741217,197

45648,19745977,19750134, 
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A.1.22 GENOME_SEQUENCE_SETTING 
 A file in GENOME_SEQUENCE_SETTING format is usually used to tell 
programs where to find sequences, conservation scores and annotations for multiple 
species. A sample file is shown as below: 
 
[Strand Type] = assemblywise 

[Conservation Type] = cs 

[Species Number] = 3 

[Species Name] = mouse 

[Species Genome] = /data/genomes/mouse/mm6/ 

[Species Conservation] = /data/genomes/mouse/mm6/conservation/genomelab/cs/ 

[Species Annotation] = /data/genomes/mouse/mm6/annotation/ 

[Species Name] = human 

[Species Genome] = /data/genomes/human/hg17/ 

[Species Conservation] = /data/genomes/human/hg17/conservation/phastcons/ 

[Species Annotation] = /data/genomes/human/hg17/annotation/ 

[Species Name] = dog 

[Species Genome] = /data/genomes/dog/canFam1/ 

[Species Conservation] = NULL 

[Species Annotation] = /data/genomes/dog/canFam1/annotation/ 

 
 
 Here, “[Strand Type] =” specifies how the sequences will be extracted 
(assemblywise or genewise, see discussions in section 3.3). We recommend 
assemblywise. 
 “[Conservation Type] =” specifies the suffix of genome conservation score files. 
Usually one needs to set cs here. 
 “[Species Number] =” specifies how many species there are. If there are N 
species, then this line should be followed by N sections including “[Species Name]”, 
“[Species Genome]”, “[Species Conservation]” and “[Species Annotation]”. 
 “[Species Name] =” specifies the species name, e.g., human, mouse, dog, cow, 
etc. 
 “[Species Genome] =” specifies the directory where the genome sequences (*.sq 
files) are stored. 
 “[Species Conservation] =” specifies the directory where the genome 
conservation scores (*.cs files) are stored. If no conservation scores are available, set 
“NULL” here. 
 “[Species Annotation] =” specifies the directory where the genome annotation 
files (e.g., refGene_sorted.txt, refFlat_sorted.txt) are stored. 
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A.1.23 GENOME_ANNOTATION_SETTING 
 A file in GENOME_ANNOTATION_SETTING format can be used to tell 
programs where to find gene annotations. This file is usually used in identifying 
orthologs. A sample file is shown as below: 
 
[Species Number] = 3 

[Reference Species] = mouse 

[RefId From RefGeneMap(0) or RefGene(1)] = 0 

[Reference RefGeneMap] = /data/genomes/mouse/mm6/annotation/refGene_sorted.txt 

[Reference RefGene] = NULL 

[Map Species Name] = human 

[Map Species RefGeneMap] = /data/genomes/human/hg17/annotation/ 

mouseRefGene_sorted.txt 

[Map Species RefGene] = /data/genomes/human/hg17/annotation/refGene_sorted.txt 

[Map Species Name] = dog 

[Map Species RefGeneMap] = /data/genomes/dog/canFam1/annotation/ 

mouseRefGene_sorted.txt 

[Map Species RefGene] = NULL 

 
 Here, “[Species Number] =” specifies how many species there are. If there are N 
species, then this line should be followed by 1 reference section and N-1 map sections. 
The reference section specifies information for the reference species. A list of genes 
from reference species often is the starting point for identifying orthologs in other 
species. The map sections contain information for the other species from which 
orthologs need to be identified. 
  
 In the reference section,  
 “[Reference Species] =” specifies the reference species name, e.g., human, mouse, 
dog, cow, etc. 
 “[RefId From RefGeneMap(0) or RefGene(1)] =”: Before ortholog identification, 
one needs to provide a list of RefSeq ID’s. If the RefSeq ID’s origin from the 
reference species, then set 1 here. If the RefSeq ID’s origin from the link species 
(refer to section 4.7), then set 0 here. 
 “[Reference RefGeneMap] =” specifies the file that contains refGene annotations 
for all RNAs that origin from the link species. The annotations are derived from the 
alignments of link species RefSeqs to the reference species genome. 
 “[Reference RefGene] =” specifies the file that contains refGene annotations for 
all RNAs that origin from the reference species. The annotations are derived from the 
alignments of reference species RefSeqs to the reference species genome. If such a 
file is not available, specify “NULL” here. 
  
 In each map section, 
 “[Map Species Name] =” specifies the map species name in which one wants to 
search for orthologs. 
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 “[Map Species RefGeneMap] =” specifies the file that contains refGene 
annotations for all RNAs that origin from the link species. The annotations are 
derived from the alignments of link species RefSeqs to the genome of map species. 
 “[Map Species RefGene] =” specifies the file that contains refGene annotations 
for all RNAs that origin from the map species. The annotations are derived from the 
alignments of map species RefSeqs to the genome of map species. If specified, 
RefSeq IDs returned in the final results of various programs will have a map species 
origin. If such a file is not available, specify “NULL” here, correspondingly RefSeq 
IDs returned in the final results will origin from the link species. 
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A.1.24 EXPRESSION_DATA 
 A file in EXPRESSION_DATA format is a tab-delimited text file. The file is 
usually used to store microarray expression data. The file has the following format: 
1st row: array id 
2nd row and after: data 
1st col: probeset id 
2nd col and after: data 
 
A sample file is shown below. 
Probe_set E8.75.SMO.a E8.75.SMO.b E8.75.WT.a E8.75.WT.b  
100001_at 132.724 112.445 128.478 154.888  
100002_at 161.825 163.304 210.121 159.003  
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A.1.25 EXPRESSION_ANNOTATION 
 A file in EXPRESSION_ANNOTATION format is a tab-delimited text file. The 
file is usually used to provide annotations for microarray probes/probesets. The file 
has following format: 
 
1st row: field name 
2nd row and after: annotations 
1st col: probeset id 
2nd col: gene identifier 
3rd col: Entrez gene id  
4th col and after: any user provided tab-delimited annotations 
 
A sample file is shown below: 
Probe.Set.Name Identifier LocusLink Name  

1417246_at  NM_007376 11287 pregnancy zone protein  

1421666_a_at NM_009591 11298 arylalkylamine  
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A.1.26 TILEMAP_DATA 
 A file in TILEMAP_DATA is a tab-delimited text file. Raw tiling array data are 
usually organized in this format. In the file: 
 
1st row: 'chromosome', 'position', array ids 
2nd row and after: each row corresponds to a probe; probes should be arranged in the 
same order as they appear in the genome. 
 
1st col(column): chromosome name 
2nd col: genomic coordinate of the probe 
3rd col and after: probe intensity data. Each column corresponds to an array. 
 
 Below is a sample file: 
 
chromosome position IP1 IP2 CT1 CT2 

chr21 9928660 4.8145015e-002 -2.6689525e-001 -3.4340357e-001

 -3.6077572e-001  

chr21 9928688 2.8436127e-001 -2.3055024e-001 -2.0545930e-001

 2.3260081e-001  

chr21 9928724 -2.4290403e-002 1.6691128e-002 5.7574268e-002

 -7.5443205e-002  
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A.1.27 TILEMAP_COMPINFO 
 This is a text file used to specify how to compare different experimental 
conditions in TileMap. Below is a sample file: 
 
############################## 

# TileMap Comparison Info    # 

############################## 

 

############################## 

# Basic Info                 # 

############################## 

[Array number] = 18 

[Group number] = 3 

[Group ID] 

1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 

 

############################## 

# Patterns of Interest       # 

############################## 

[Comparisons] 

(1>2) & (1>3) 

 

############################## 

# Preprocessing              # 

############################## 

[Truncation lower bound] = -100000000.0 

[Take log2 before calculation?] (1:yes; 0:no) = 0 

 

############################## 

# Simulation Setup           # 

############################## 

[Monte Carlo draws for posterior prob.] = 1000 

 

############################## 

# Common Variance Groups     # 

############################## 

[Common variance groups] = 1 

1 2 3 

 

############################## 

# Permutation Setup          # 

############################## 

[Number of permutations] = 10 

[Exchangeable groups] = 1 
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1 2 3 

 
 
 The meanings of the parameter settings are explained below. 
 
(A) In "Basic Info" section, one needs to provide general information about the tiling 
array experiment. 
 
[Array number]: the number of arrays to be analyzed.  
[Group number]: the number of experimental conditions. 
[Group ID]: numerical group ID for individual arrays. The ID's are arranged in the 
same order as the order arrays (columns) appear in the raw data file. IDs range from 1 
to [Array number]. Negative integers can be used if one wish to ignore a specific 
column in the raw data file.  
 
For example, if three mice strain "wt", "mt1" and "mt2" were profiled, each with 6 
replicates. The 18 arrays are arranged in the raw data file as: 
{chromosome position wt wt wt mt1 mt1 mt1 mt2 mt2 mt2 wt wt wt mt1 mt1 mt1 
mt2 mt2 mt2} 
then  
 
[Array number] = 18 
[Group number] = 3 
[Group ID] 
1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3  
 
If one wishes to exclude the last nine arrays from the analysis, one can set 
[Array number] = 9 
[Group number] = 3 
[Group ID] 
1 1 1 2 2 2 3 3 3 -1 -1 -1 -2 -2 -2 -3 -3 -3  
 
 
(B) In "Patterns of Interest" section, one sets the transcriptional or protein binding 
patterns of interest.  
 
For example, if one wants to select regions that show "mt1<wt<mt2", the criteria can 
be set as [Comparisons] 
(2<1) & (1<3) 
 
If one wants to select regions that show "mt1<wt OR wt<mt2", the criteria can be set 
as 
[Comparisons] 
(2<1) | (1<3) 
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Currently, we only support the following operations: 
< -- (less than) 
> -- (greater than) 
& -- (and) 
| -- (or)  
() -- (to specify operational priorities)  
 
 
(C) In "Preprocessing" section, one specifies how to truncate low expression values 
and whether log-transformation should be taken before analysis.  
 
For example, if one wishes to truncate all intensities that are less than 2 and set them 
to be 2, and wishes to take log2 transformation after the truncation, one can set 
[Truncation lower bound] = 2.0 
[Take log2 before calculation?] (1:yes; 0:no) = 1 
 
If one has already done truncations and log-transformations in tilemap_importaffy or 
tilemap_norm, one doesn't need to do preprocessing again. In this case, one can set 
[Truncation lower bound] = -1000000000000.0 
[Take log2 before calculation?] (1:yes; 0:no) = 0 
 
 
(D) In "Simulation Setup" section, one specifies how many Monte Carlo draws should 
be made to estimate the posterior probability that a probe satisfies the pattern of 
interest. If the comparisons specified in "Patterns of Interest" section is a two sample 
comparison (e.g. "1<2"), there is no need to do Monte Carlo, therefore one can set 
[Monte Carlo draws for posterior prob.] = 0 
 
If the "Patterns of Interest" involves a multiple sample comparison (e.g. "(1<2) & 
(1<3)"), one needs to specify a positive number, for example 
[Monte Carlo draws for posterior prob.] = 1000 
 
 
(E) In "Common Variance Groups", one needs to specify which experimental 
conditions are assumed to have common variance. The variance shrinking will be 
based on this setting. For example, if there are six conditions, and one assumes that 
for each probe, condition 1,2,3 have common within-condition variance, condition 
4,5,6 have common within-condition variance, but the within-condition variance for 
1,2,3 is different from within-condition variance for 4,5,6, then there are 2 common 
variance groups, and one can set: 
 
variance group = 2  
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1 2 3 
4 5 6 
 
Each line below "variance group" tag corresponds to a common variance group, 
which contains all the conditions that are assumed to have common variance. The 
variance shrinking will be done within each variance group.  
 
If you are not sure how to set variance group, you can assume that all conditions have 
the same variance. For example, you can set 
 
variance group = 1  
1 2 3 4 5 6 
 
Setting variance group appropriately can increase the sensitivity of the analysis, 
especially when the number of replicate arrays are small. 
 
 
(F) In "Permutation Setup", one specifies how to do permutations if one chooses to 
use permutation test to estimate local false discovery rate in MA.  
 
[Number of permutations]: how many times to permute group labels.  
[Exchangeable groups]: conditions that can be permuted. 
 
For example, if one set  
[Number of permutations] = 10 
[Exchangeable groups] = 2 
1 2 3 
4 5 6 
 
then the labels in "Group ID" will be permuted 10 times for computing FDR. The 
labels are permuted according to "Exchangeable groups". Arrays labeled by 1,2 and 3 
will only be permuted with arrays labeled by 1, 2 and 3. Similarly, arrays labeled by 4, 
5 or 6 will only be permuted with arrays labeled by 4, 5 and 6. No permutations will 
be done between "1, 2, 3" and "4, 5, 6". In other words, the FDR computed is a FDR 
for a null hypothesis H0: "1=2=3, 4=5=6". 
 
If one wish to compute a FDR for H0: "1=2=3=4=5=6", one can set 
[Number of permutations] = 10 
[Exchangeable groups] = 1 
1 2 3 4 5 6 
 
If one does not want to use permutation test to compute FDR, one can set  
[Number of permutations] = 10 
[Exchangeable groups] = 1 
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1 2 3 4 5 6 
 
Depending on the data size, permutation test may require a long time. Moreover, it is 
hard to estimate FDR for H0: "not {1<2<3}" using permutation test. 
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