
R Data Types and Manipulation

140.776 Statistical Computing

August 21, 2011

140.776 Statistical Computing R Data Types and Manipulation

Objects

R operates on objects:

vectors

matrices

factors

lists

data frames

functions

140.776 Statistical Computing R Data Types and Manipulation

Arithmetic expressions

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

> sum(x)

> rowSums(x)

> colSums(x)

140.776 Statistical Computing R Data Types and Manipulation

Exercise

Use what you have learnt so far:

> load("ex1.rda")
> x
> y
> z<-matrix(x,6,6)

zi1 ∗ y1 + zi2 ∗ y2 + ... + zi6 ∗ y6 =?

140.776 Statistical Computing R Data Types and Manipulation

Exercise

> w<-matrix(y,nrow=6,ncol=6,byrow=TRUE)
> rowSums(w*z)
[1] -0.1160327 -0.2419110 0.2789480
-0.3061841 -0.1621261 1.1042598

140.776 Statistical Computing R Data Types and Manipulation

Matrix multiplication

For matrix multiplication, you have to use %*%:

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> y

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
> x%*%y
Error in x %*% y : non-conformable arguments
> x%*%t(y) ## t() obtains transpose of a matrix

[,1] [,2]
[1,] 62 71
[2,] 80 92

140.776 Statistical Computing R Data Types and Manipulation

Exercise

Use what you have learnt so far:

> z%*%y
[,1]

[1,] -0.1160327
[2,] -0.2419110
[3,] 0.2789480
[4,] -0.3061841
[5,] -0.1621261
[6,] 1.1042598

140.776 Statistical Computing R Data Types and Manipulation

Generalized transpose of an array

aperm(a, perm) creates a new array. If a is a k dimensional array,
then the new array is also k dimensional, but the dimension perm[j]
in the old array now becomes the j-th dimension of the new array:

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> aperm(x,c(2,1)) ## here, aperm() is equivalent to t()

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

140.776 Statistical Computing R Data Types and Manipulation

Generalized transpose of an array

> x<-array(1:12,dim=c(2,3,2))
> x

, , 1
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

Without using your computer, tell us y[2,1,2] = ?
> y<-aperm(x,c(3,1,2))

140.776 Statistical Computing R Data Types and Manipulation

Generalized transpose of an array

> y[2,1,2]
[1] 9

140.776 Statistical Computing R Data Types and Manipulation

Outer product of two arrays

a%o%b creates a new array c, dim(c)=c(dim(a),dim(b)), and data
vector in c is obtained by forming all possible products of elements
of the data vector of a with those of b:

> a
[,1] [,2]

[1,] 1 3
[2,] 2 4
> b

[,1] [,2]
[1,] 1 2
> a%o%b
, , 1, 1

[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 1, 2

[,1] [,2]
[1,] 2 6
[2,] 4 8

140.776 Statistical Computing R Data Types and Manipulation

Linear equations and inversion

x1 + 3x2 = 1
2x1 + 4x2 = −1
x1 =?, x2 =?

A ∗ x = b
x = A−1 ∗ b

140.776 Statistical Computing R Data Types and Manipulation

Linear equations and inversion

> A
[,1] [,2]

[1,] 1 3
[2,] 2 4
> x
[1] 1 -1
> b<-A%*%x

> solve(A,b) ## gives x
[,1]

[1,] 1
[2,] -1
> solve(A) ## inverse of A

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

140.776 Statistical Computing R Data Types and Manipulation

Linear equations and inversion

x<-solve(A)%*%b is numerically inefficient and potentionally
unstable

solve(A,b) is preferred

t(x)%*%solve(A,x) is better than t(x)%*%solve(A)%*%x

140.776 Statistical Computing R Data Types and Manipulation

Factors

Factors are used to represent discrete classifications (categorical
data). They can be thought of as integer vectors where each
integer has a label:

> state<-c("MD","CA","MD","MD","CA","CA")
> state
[1] "MD" "CA" "MD" "MD" "CA" "CA"
> statef<-factor(state)
> statef
[1] MD CA MD MD CA CA
Levels: CA MD
> table(statef)
statef
CA MD
3 3
> unclass(statef)
[1] 2 1 2 2 1 1
attr(,"levels")
[1] "CA" "MD"

140.776 Statistical Computing R Data Types and Manipulation

Factors

Factors are useful in statistical analysis such as linear
regression, ANOVA, generalized linear regression

Using factors with labels to represent categorical data is
better than using integers because factors are self-describing.

140.776 Statistical Computing R Data Types and Manipulation

Factors

A useful function is tapply() which applies a function to each
group of values given by levels of a factor:

> income
[1] 10 12 9 13 8 17
> statef
[1] MD CA MD MD CA CA
Levels: CA MD

> tapply(income,statef,mean)
CA MD

12.33333 10.66667

140.776 Statistical Computing R Data Types and Manipulation

Factors

Factors can be ordered or unordered:

> x<-c("Medium","High","Low","Low","High")
> factor(x)
[1] Medium High Low Low High
Levels: High Low Medium

useful for linear modelling, specifies the baseline level
> factor(x, levels=c("Low", "Medium", "High"))
[1] Medium High Low Low High
Levels: Low Medium High

levels have natural ordering which we want to use
> ordered(x, levels=c("Low", "Medium", "High"))
[1] Medium High Low Low High
Levels: Low < Medium < High

140.776 Statistical Computing R Data Types and Manipulation

Lists

List is an object that contains a collection of objects known as
components. Components of a list can have different modes or
types (i.e. they could belong to different classes), or dimensions.

> x<-list(course="computing", active=TRUE, grade=c(8,10,9))
> x
$course
[1] "computing"

$active
[1] TRUE

$grade
[1] 8 10 9

140.776 Statistical Computing R Data Types and Manipulation

Lists

Components of a list can be accessed using [[]]:

> x<-list(course="computing", active=TRUE, grade=c(8,10,9))
> x[[1]]
[1] "computing"

> x[[3]]
[1] 8 10 9

> x[[3]][2]
[1] 10

140.776 Statistical Computing R Data Types and Manipulation

Lists

[[]] and [] have different meanings:

[[]] selects a single element
[] can select multiple elements
> x[[2:3]]
Error in x[[2:3]] : subscript out of bounds
> x[2:3]
$active
[1] TRUE
$grade
[1] 8 10 9

[] returns a list, not true for [[]]
> y<-x[3]
> class(y)
[1] "list"
> z<-x[[3]]
> class(z)
[1] "numeric"

140.776 Statistical Computing R Data Types and Manipulation

Lists

List components can also be accessed via names:

> names(x)
[1] "course" "active" "grade"
> x$grade
[1] 8 10 9
> x$grade[2]
[1] 10

> x$course
[1] "computing"
> x[["course"]]
[1] "computing"
> x$cour
[1] "computing"

140.776 Statistical Computing R Data Types and Manipulation

Lists

Two lists can be combined using c():

> y<-list(dept="biostatistics")
> z<-c(x,y)
> z
$course
[1] "computing"

$active
[1] TRUE

$grade
[1] 8 10 9

$dept
[1] "biostatistics"

140.776 Statistical Computing R Data Types and Manipulation

Exercise

> load("student.rda")
> ls()

What is the data structure of Student.

140.776 Statistical Computing R Data Types and Manipulation

Exercise

The min score of the second student + Mary’s third score = ?

140.776 Statistical Computing R Data Types and Manipulation

Exercise

> min(Student[[2]]$grade)+ Student$Mary$grade[3]
[1] 177

140.776 Statistical Computing R Data Types and Manipulation

Data frames

Data frames are used to store tabular data

They are lists with class “data.frame”

Each element in the list must have the same length

Unlike matrices, columns can store different classes of objects

Have a special attribute called row.names

Can be converted to a matrix by data.matrix()

140.776 Statistical Computing R Data Types and Manipulation

Data frames

> x<-data.frame(id=1:4,val=c(T,F,T,F))
> x

id val
1 1 TRUE
2 2 FALSE
3 3 TRUE
4 4 FALSE
> nrow(x)
[1] 4
> ncol(x)
[1] 2

140.776 Statistical Computing R Data Types and Manipulation

Class

In R, every object comes from a class. Class defines behaviors of
operations:

> x<-data.frame(id=1:4,val=c(T,F,T,F))
> x
id val

1 1 TRUE
2 2 FALSE
3 3 TRUE
4 4 FALSE
> unclass(x)
$id
[1] 1 2 3 4

$val
[1] TRUE FALSE TRUE FALSE

attr(,"row.names")
[1] 1 2 3 4

140.776 Statistical Computing R Data Types and Manipulation

