R Data Types and Manipulation

140.776 Statistical Computing

August 21, 2011

140.776 Statistical Computing R Data Types and Manipulation

R operates on objects:
@ vectors
matrices
factors

°
°

o lists
@ data frames
°

functions

140.776 Statistical Computing R Data Types and Manipulation

Arithmetic expressions

[,1]1 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> sum(x)

> rowSums (x)

> colSums (x)

140.776 Statistical Computing R Data Types and Manipulation

Exercise

Use what you have learnt so far:

> load("ex1.rda")
> X

>y

> z<-matrix(x,6,6)

Zin*y1+ Ziox Yo+ ...+ Zig * Yo ="

140.776 Statistical Computing R Data Types and Manipulation

Exercise

> w<-matrix(y,nrow=6,ncol=6,byrow=TRUE)
> rowSums (w*z)

[1] -0.1160327 -0.2419110 0.2789480
-0.3061841 -0.1621261 1.1042598

140.776 Statistical Computing R Data Types and Manipulation

Matrix multiplication

For matrix multiplication, you have to use %*%:

> x
[,11 [,21 [,3]
[1,] 1 3 5
[2,] 2 4 6
>y
[,11 [,2]1 [,3]
[1,] 7 9 11
[2,] 8 10 12
> xUxhy
Error in x %*% y : non-conformable arguments
> xU*%t(y) ## t() obtains transpose of a matrix
[,11 [,2]
(1,1 62 71
[2,] 80 92

140.776 Statistical Computing R Data Types and Manipulation

Exercise

Use what you have learnt so far:

> zhxhy

[,1]
[1,] -0.1160327
[2,] -0.2419110
[3,] 0.2789480
[4,] -0.3061841
[5,] -0.1621261
[6,] 1.1042598

140.776 Statistical Computing R Data Types and Manipulation

Generalized transpose of an array

aperm(a, perm) creates a new array. If a is a k dimensional array,
then the new array is also k dimensional, but the dimension perm([j]
in the old array now becomes the j-th dimension of the new array:

> X
[,11 [,2]1 [,3]

[1,] 1 3 5

[2,] 2 4 6

> aperm(x,c(2,1)) ## here, aperm() is equivalent to t()
[,11 [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

140.776 Statistical Computing

R Data Types and Manipulation

Generalized transpose of an array

> x<-array(1:12,dim=c(2,3,2))
> x

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

[,11 [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

Without using your computer, tell us y[2,1,2] = 7
> y<-aperm(x,c(3,1,2))

140.776 Statistical Computing R Data Types and Manipulation

Generalized transpose of an array

> yl[2,1,2]
[1] 9

140.776 Statistical Computing R Data Types and Manipulation

Outer product of two arrays

a%0%b creates a new array c, dim(c)=c(dim(a),dim(b)), and data
vector in ¢ is obtained by forming all possible products of elements
of the data vector of a with those of b:
> a
[,11 [,2]
[1,] 1 3
[2,] 2 4
b

[,1]1 [,2]
[1,] 1 2
> a%o%b
, , 1, 1
[,1]1 [,2]
[1,] 1 3
[2,] 2 4
, , 1, 2
[,1]1 [,2]

140.776 Statistical Computing R Data Types and Manipulation

Linear equations and inversion

x1+3x =1

2x1 +4xp = —1
x|y =7, xop =7
Axx=05b
x=A1xb

140.776 Statistical Computing R Data Types and Manipulation

Linear equations and inversion

[,1]1 [,2]
[1,] 1 3
[2,] 2 4
> X
[1] 1 -1
> b<-AYx%x

> solve(A,b) ## gives x

[,1]

[1,] 1

[2,] -1

> solve(A) ## inverse of A
[,1]1 [,2]

[1,] -2 1.5
[2,] 1 -0.5

140.776 Statistical Computing R Data Types and Manipulation

Linear equations and inversion

o x<-solve(A)%*%b is numerically inefficient and potentionally
unstable

e solve(A,b) is preferred
o t(x)%*%solve(A,x) is better than t(x)%*%solve(A)%*%x

140.776 Statistical Computing R Data Types and Manipulation

Factors are used to represent discrete classifications (categorical
data). They can be thought of as integer vectors where each
integer has a label:

> state<-c("MD","CA","MD","MD","CA","CA")

> state

(1] "MD" "CA"™ "MD" "MD" "CA" "CA"

> statef<-factor(state)

> statef

[1] MD CA MD MD CA CA

Levels: CA MD

> table(statef)

statef

CA MD

3 3

> unclass(statef)

(1] 212211

attr(,"levels")

[1] "cA" "MD"

140.776 Statistical Computing R Data Types and Manipulation

@ Factors are useful in statistical analysis such as linear
regression, ANOVA, generalized linear regression

@ Using factors with labels to represent categorical data is
better than using integers because factors are self-describing.

140.776 Statistical Computing R Data Types and Manipulation

A useful function is tapply() which applies a function to each
group of values given by levels of a factor:

> income

[1] 10 12 9 13 8 17
> statef

[1] MD CA MD MD CA CA
Levels: CA MD

> tapply(income,statef,mean)
CA MD
12.33333 10.66667

140.776 Statistical Computing R Data Types and Manipulation

Factors can be ordered or unordered:

> x<-c("Medium","High","Low","Low","High")
> factor(x)

[1] Medium High Low Low High
Levels: High Low Medium

useful for linear modelling, specifies the baseline level
> factor(x, levels=c("Low", "Medium", "High"))

[1] Medium High Low Low High

Levels: Low Medium High

levels have natural ordering which we want to use
> ordered(x, levels=c("Low", "Medium", "High"))

[1] Medium High Low Low High

Levels: Low < Medium < High

140.776 Statistical Computing R Data Types and Manipulation

List is an object that contains a collection of objects known as
components. Components of a list can have different modes or
types (i.e. they could belong to different classes), or dimensions.

> x<-list(course="computing", active=TRUE, grade=c(8,10,9))
> x

$course
[1] "computing"

$active
[1] TRUE

$grade
[1] 810 9

140.776 Statistical Computing R Data Types and Manipulation

Components of a list can be accessed using [[]]:

> x<-list(course="computing", active=TRUE, grade=c(8,10,9))
> x[[1]]

[1] "computing"

> x[[3]]
[1] 810 9

> x[[3]11[2]
[1] 10

140.776 Statistical Computing R Data Types and Manipulation

[[1] and [] have different meanings:

[[]] selects a single element

[] can select multiple elements

> x[[2:3]]

Error in x[[2:3]] : subscript out of bounds
> x[2:3]

$active

[1] TRUE

$grade

[1] 810 9

[] returns a list, not true for [[]]
> y<-x[3]

> class(y)

[1] "list"

> z<-x[[3]]

> class(z)

[1] "numeric"

140.776 Statistical Computing R Data Types and Manipulation

List components can also be accessed via names:

> names (x)
[1] "course" "active" "grade"

> x$grade
[1] 810 9
> x$grade[2]
(11 10

> x$course

[1] "computing"
> x[["course"]]
[1] "computing"
> x$cour

[1] "computing"

140.776 Statistical Computing R Data Types and Manipulation

Two lists can be combined using c():

> y<-list(dept="biostatistics")
> z<-c(x,y)

> z

$course

[1] "computing"

$active
[1] TRUE

$grade
[1] 810 9

$dept
[1] "biostatistics"

140.776 Statistical Computing R Data Types and Manipulation

Exercise

> load("student.rda")
> 1s()

What is the data structure of Student.

140.776 Statistical Computing R Data Types and Manipulation

Exercise

The min score of the second student + Mary’s third score = 7

140.776 Statistical Computing R Data Types and Manipulation

Exercise

> min(Student [[2]]$grade)+ Student$Mary$grade [3]
(1] 177

140.776 Statistical Computing R Data Types and Manipulation

Data frames are used to store tabular data
@ They are lists with class “data.frame”
Each element in the list must have the same length
Unlike matrices, columns can store different classes of objects

Have a special attribute called row.names

e 6 o6 o

Can be converted to a matrix by data.matrix()

140.776 Statistical Computing R Data Types and Manipulation

\4

x<-data.frame(id=1:4,val=c(T,F,T,F))
X

id val

1 1 TRUE
2 2 FALSE
3 3 TRUE
4

>

v

4 FALSE
nrow (x)
[1] 4
> ncol(x)
[1] 2

140.776 Statistical Computing R Data Types and Manipulation

Class

In R, every object comes from a class. Class defines behaviors of
operations:

> x<-data.frame(id=1:4,val=c(T,F,T,F))
> x

id val

1 TRUE

2 FALSE

3 TRUE

4 FALSE
unclass(x)
$id

[11 12314

DS W NN -

\4

$val
[1] TRUE FALSE TRUE FALSE

attr(,"row.names")
[1] 12314

140.776 Statistical Computing R Data Types and Manipulation

