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Objects

R operates on objects:

vectors

matrices

factors

lists

data frames

functions
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Arithmetic expressions

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

> sum(x)

> rowSums(x)

> colSums(x)
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Exercise

Use what you have learnt so far:

> load("ex1.rda")
> x
> y
> z<-matrix(x,6,6)

zi1 ∗ y1 + zi2 ∗ y2 + ... + zi6 ∗ y6 =?
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Exercise

> w<-matrix(y,nrow=6,ncol=6,byrow=TRUE)
> rowSums(w*z)
[1] -0.1160327 -0.2419110 0.2789480
-0.3061841 -0.1621261 1.1042598
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Matrix multiplication

For matrix multiplication, you have to use %*%:

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> y

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
> x%*%y
Error in x %*% y : non-conformable arguments
> x%*%t(y) ## t() obtains transpose of a matrix

[,1] [,2]
[1,] 62 71
[2,] 80 92
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Exercise

Use what you have learnt so far:

> z%*%y
[,1]

[1,] -0.1160327
[2,] -0.2419110
[3,] 0.2789480
[4,] -0.3061841
[5,] -0.1621261
[6,] 1.1042598
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Generalized transpose of an array

aperm(a, perm) creates a new array. If a is a k dimensional array,
then the new array is also k dimensional, but the dimension perm[j]
in the old array now becomes the j-th dimension of the new array:

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> aperm(x,c(2,1)) ## here, aperm() is equivalent to t()

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
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Generalized transpose of an array

> x<-array(1:12,dim=c(2,3,2))
> x

, , 1
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

# Without using your computer, tell us y[2,1,2] = ?
> y<-aperm(x,c(3,1,2))
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Generalized transpose of an array

> y[2,1,2]
[1] 9
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Outer product of two arrays

a%o%b creates a new array c, dim(c)=c(dim(a),dim(b)), and data
vector in c is obtained by forming all possible products of elements
of the data vector of a with those of b:

> a
[,1] [,2]

[1,] 1 3
[2,] 2 4
> b

[,1] [,2]
[1,] 1 2
> a%o%b
, , 1, 1

[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 1, 2

[,1] [,2]
[1,] 2 6
[2,] 4 8
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Linear equations and inversion

x1 + 3x2 = 1
2x1 + 4x2 = −1
x1 =?, x2 =?

A ∗ x = b
x = A−1 ∗ b
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Linear equations and inversion

> A
[,1] [,2]

[1,] 1 3
[2,] 2 4
> x
[1] 1 -1
> b<-A%*%x

> solve(A,b) ## gives x
[,1]

[1,] 1
[2,] -1
> solve(A) ## inverse of A

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5
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Linear equations and inversion

x<-solve(A)%*%b is numerically inefficient and potentionally
unstable

solve(A,b) is preferred

t(x)%*%solve(A,x) is better than t(x)%*%solve(A)%*%x
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Factors

Factors are used to represent discrete classifications (categorical
data). They can be thought of as integer vectors where each
integer has a label:

> state<-c("MD","CA","MD","MD","CA","CA")
> state
[1] "MD" "CA" "MD" "MD" "CA" "CA"
> statef<-factor(state)
> statef
[1] MD CA MD MD CA CA
Levels: CA MD
> table(statef)
statef
CA MD
3 3
> unclass(statef)
[1] 2 1 2 2 1 1
attr(,"levels")
[1] "CA" "MD"
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Factors

Factors are useful in statistical analysis such as linear
regression, ANOVA, generalized linear regression

Using factors with labels to represent categorical data is
better than using integers because factors are self-describing.
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Factors

A useful function is tapply() which applies a function to each
group of values given by levels of a factor:

> income
[1] 10 12 9 13 8 17
> statef
[1] MD CA MD MD CA CA
Levels: CA MD

> tapply(income,statef,mean)
CA MD

12.33333 10.66667
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Factors

Factors can be ordered or unordered:

> x<-c("Medium","High","Low","Low","High")
> factor(x)
[1] Medium High Low Low High
Levels: High Low Medium

## useful for linear modelling, specifies the baseline level
> factor(x, levels=c("Low", "Medium", "High"))
[1] Medium High Low Low High
Levels: Low Medium High

## levels have natural ordering which we want to use
> ordered(x, levels=c("Low", "Medium", "High"))
[1] Medium High Low Low High
Levels: Low < Medium < High
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Lists

List is an object that contains a collection of objects known as
components. Components of a list can have different modes or
types (i.e. they could belong to different classes), or dimensions.

> x<-list(course="computing", active=TRUE, grade=c(8,10,9))
> x
$course
[1] "computing"

$active
[1] TRUE

$grade
[1] 8 10 9
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Lists

Components of a list can be accessed using [[ ]]:

> x<-list(course="computing", active=TRUE, grade=c(8,10,9))
> x[[1]]
[1] "computing"

> x[[3]]
[1] 8 10 9

> x[[3]][2]
[1] 10

140.776 Statistical Computing R Data Types and Manipulation



Lists

[[ ]] and [ ] have different meanings:

## [[ ]] selects a single element
## [ ] can select multiple elements
> x[[2:3]]
Error in x[[2:3]] : subscript out of bounds
> x[2:3]
$active
[1] TRUE
$grade
[1] 8 10 9

## [] returns a list, not true for [[]]
> y<-x[3]
> class(y)
[1] "list"
> z<-x[[3]]
> class(z)
[1] "numeric"
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Lists

List components can also be accessed via names:

> names(x)
[1] "course" "active" "grade"
> x$grade
[1] 8 10 9
> x$grade[2]
[1] 10

> x$course
[1] "computing"
> x[["course"]]
[1] "computing"
> x$cour
[1] "computing"
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Lists

Two lists can be combined using c():

> y<-list(dept="biostatistics")
> z<-c(x,y)
> z
$course
[1] "computing"

$active
[1] TRUE

$grade
[1] 8 10 9

$dept
[1] "biostatistics"
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Exercise

> load("student.rda")
> ls()

What is the data structure of Student.
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Exercise

The min score of the second student + Mary’s third score = ?
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Exercise

> min(Student[[2]]$grade)+ Student$Mary$grade[3]
[1] 177
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Data frames

Data frames are used to store tabular data

They are lists with class “data.frame”

Each element in the list must have the same length

Unlike matrices, columns can store different classes of objects

Have a special attribute called row.names

Can be converted to a matrix by data.matrix()
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Data frames

> x<-data.frame(id=1:4,val=c(T,F,T,F))
> x

id val
1 1 TRUE
2 2 FALSE
3 3 TRUE
4 4 FALSE
> nrow(x)
[1] 4
> ncol(x)
[1] 2
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Class

In R, every object comes from a class. Class defines behaviors of
operations:

> x<-data.frame(id=1:4,val=c(T,F,T,F))
> x
id val

1 1 TRUE
2 2 FALSE
3 3 TRUE
4 4 FALSE
> unclass(x)
$id
[1] 1 2 3 4

$val
[1] TRUE FALSE TRUE FALSE

attr(,"row.names")
[1] 1 2 3 4
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