
R: Programming

140.776 Statistical Computing

September 8, 2011

140.776 Statistical Computing R: Programming

Functions

Functions can keep your program concise and readable. Proper use
of functions makes debugging and maintenance much easier. For
example:

−10 −5 0 5 10

−
10

−
5

0
5

10

u

v

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

140.776 Statistical Computing R: Programming

Functions

draw a panda at (p1,p2)

addpanda<-function(p1,p2) {

draw face

x<-seq(0,2*pi,by=0.001)

y<-p1+sin(x)

z<-p2+cos(x)

lines(y,z,type="l")

draw eyes

points(p1-0.5,p2,pch=20)

points(p1+0.5,p2,pch=20)

draw ears

points(p1-0.8,p2+0.8,pch=20,cex=2)

points(p1+0.8,p2+0.8,pch=20,cex=2)

draw mouth

points(p1,p2-0.5,pch=25,cex=0.6)

}

140.776 Statistical Computing R: Programming

Functions

now let’s draw six pandas

x<-seq(0,by=(2*pi/6),length=6)

y<-5*sin(x)

z<-5*cos(x)

u<-0

v<-0

plot(u,v,type="n",xlim=c(-10,10),ylim=c(-10,10))

for(i in 1:length(x)) {

addpanda(y[i],z[i])

}

140.776 Statistical Computing R: Programming

Functions

In R, functions are defined as follows:

funcname<-function(arg_1, arg_2, ...) {
expr

}

Functions in R

are objects of class “function” and can be treated much like any
other R object;

can be passed as arguments to other functions;

can be nested, so that a function can be defined within another
function.

The return value of a function is its last expression.

140.776 Statistical Computing R: Programming

Functions

mean<-function(z) {
zmean<-0
for(i in seq_along(z)) {

zmean<-zmean+z[i]
}
zmean<-zmean/length(z)

}

compute mean for x
xmean<-mean(x)

compute mean for y
ymean<-mean(y)

140.776 Statistical Computing R: Programming

Named arguments and defaults

Functions have named arguments which potentially have default
values. For example:

em<-function(data, tol=1e-6, maxiter=100) {
function body

}

The defaults may be arbitrary expressions, even involving other
arguments to the same function. They are not restricted to be constants.
For example

ff<-function(x, n=x^2) {
n^x

}

ff(2) = ?

140.776 Statistical Computing R: Programming

Argument matching

When using the function,

the argument sequence may be given in an unnamed,
positional form;

or it may be given in any order if specified in the
“name=object” form.

> em(mydata)
> em(mydata, 1e-8, 1000)
> em(data=mydata, tol=1e-8)
> em(maxiter=1000, data=mydata)
> em(tol=1e-8, mydata)

140.776 Statistical Computing R: Programming

Argument matching

You can mix positional matching with matching by name. When
an argument is matched by name, it is taken out of the argument
list and the remaining unnamed arguments are matched in the
order that they are listed in the function definition.

> args(lm)
function (formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE,
qr = TRUE, singular.ok = TRUE, contrasts = NULL,
offset, ...)

The following two calls are equivalent.

lm(data=mydata, y~x, model=FALSE, 1:100)
lm(y~x, mydata, 1:100, model=FALSE)

140.776 Statistical Computing R: Programming

Argument matching

Named arguments are useful when you have a long argument
list and you want to use the defaults for everything except for
an argument near the end of the list.

Named argments also help if you can remember the name of
the argument and not its position on the argument list
(plotting is a good example).

140.776 Statistical Computing R: Programming

Lazy evaluation

Arguments to functions are evaluated lazily, so they are evaluated
only as needed.

f<-function(a,b) {
a^2

}
f(2)

This function never actually uses the argument b, so calling f(2) will not

produce an error because the 2 gets positionally matched to a.

140.776 Statistical Computing R: Programming

Lazy evaluation

Another example:

f<-function(a,b) {
print(a)
print(b)

}

> f(45)
[1] 45
Error in print(b) : argument "b" is missing, with no default

Notice that “45” got printed first before the error was triggered. This is

because b did not have to be evaluated until after print(a). Once the

function tried to evaluate print(b) it had to throw an error.

140.776 Statistical Computing R: Programming

The “...” argument

Often we wish to allow one function to pass on argument settings
to other functions. This can be done using “...”. This is often used
when extending another function and you don’t want to copy the
entire argument list of the original function.

An example is the plot(x, y, ...) function, which passes on
graphical parameters to par(). Here is another example:

myplot<-function(x,y,...) {
plot(x,y,...)

}

> x<-rnorm(100)
> y<-x+rnorm(100)
> myplot(x,y,type="o",pch="1",col="blue")

140.776 Statistical Computing R: Programming

The “...” argument

The “...” argument is also necessary when the number of
arguments passed to the function cannot be known in advance.

> args(paste)
function (..., sep = " ", collapse = NULL)

> args(cat)
function (..., file = "", sep = " ", fill = FALSE,
labels = NULL, append = FALSE)

140.776 Statistical Computing R: Programming

Binding values to symbol

Sometimes you see code like this:

f<-function(x,y) {
x^2+y/z

}

z is not an argument of the function, how is its value determined?

140.776 Statistical Computing R: Programming

Binding values to symbol

When R tries to bind a value to a symbol, it searches through a series of
environments to find the appropriate value. When you are working on the
command line and need to retrieve the value of an R object, the order is
roughly

1 Search the global environment for a symbol name matching the one
requested.

2 Search the namespaces of each of the packages on the search list.

The search list can be found by using the search() function:

> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

140.776 Statistical Computing R: Programming

Classification of symbols

In general, how to bind values to symbols is determined by scoping rules.
The symbols occurring in a function can belong to one of the three
classes:

Formal parameters: symbols that occur in the argument list of the
function.

Local variables: variables whose values are determined by the
evaluation of expressions in the body of the function.

Free variables: variables which are not formal parameters or local
variables.

f<-function(x) {
y<-2*x
print(x)
print(y)
print(z)

}
x: formal parameter; y: local variable; z: free variable.

140.776 Statistical Computing R: Programming

Lexical scoping

In R, the values associated with free variables are resolved by first
looking in the environment in which the function was created. This
is called lexical scoping. Example:

cube<-function(n) {
square<-function() {

n*n
}
n*square()

}

n is not an argument of square(), but since square() was defined within

cube(), the value of n can be determined by the n in the cube() function.

140.776 Statistical Computing R: Programming

Environment

An environment is a collection of (symbol, value) pairs, i.e. x
is a symbol and 3.14 might be its value.

Every environment has a parent environment; it is possible for
an environment to have multiple “children”.

The only environment without a parent is the empty
environment.

A function + an environment = a closure or function closure.

140.776 Statistical Computing R: Programming

Lexical scoping

Searching for the value for a free variable:

If the value of a symbol is not found in the environment in
which a function was defined, then the search is continued in
the parent environment.

The search continues down the sequence of parent
environment until we hit the top-level environment; this is
usually the global environment (workspace) or the namespace
of a package.

After the top-level environment, the search continues down
the search list until we hit the empty environment.

If a value for a given symbol cannot be found once the empty
environment is arrived at, then an error is thrown.

140.776 Statistical Computing R: Programming

Lexical scoping

Why does all this matter:

Typically, a function is defined in the global environment, so
that the values of free variables are just found in the user’s
workspace.

This behavior is logical for most people and is usually the
“right thing” to do.

However, in R you can have functions defined inside other
functions (Languages like C don’t allow this).

Now things get interesting – In this case the environment in
which a function is defined is the body of another function.

140.776 Statistical Computing R: Programming

Lexical scoping

make.power<-function(n) {
pow<-function(x) {

x^n
}
pow

}

This function returns another function as its value.

> cube<-make.power(3)
> square<-make.power(2)
> cube(3)
[1] 27
> square(3)
[1] 9

140.776 Statistical Computing R: Programming

Exploring a function closure

What’s in a function’s environment?

> ls(environment(cube))
[1] "n" "pow"
> get("n",environment(cube))
[1] 3

> ls(environment(square))
[1] "n" "pow"
> get("n",environment(square))
[1] 2

140.776 Statistical Computing R: Programming

Lexical vs. dynamic scoping

y<-10

f<-function(x) {
y<-2
y^2+g(x)

}

g<-function(x) {
x*y

}

What is the value of

f(3)

140.776 Statistical Computing R: Programming

Lexical vs. dynamic scoping

With lexical scoping, the value of y in the function g is looked
up in the environment in which the function was defined, in
this case the global environment, so y=10.

With dynamic scoping, the value of y is looked up in the
environment from which the function was called (i.e. calling
environment; in R, calling environment is known as the parent
frame), so y=2.

R uses lexical scoping, so

> f(3)
[1] 34

140.776 Statistical Computing R: Programming

