
R: Programming

140.776 Statistical Computing

September 8, 2011

140.776 Statistical Computing R: Programming

Why programming?

−10 −5 0 5 10

−
10

−
5

0
5

10

u

v ● ●

● ●

140.776 Statistical Computing R: Programming

Why programming

−10 −5 0 5 10

−
10

−
5

0
5

10

u

v

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

140.776 Statistical Computing R: Programming

Why programming

−10 −5 0 5 10

−
10

−
5

0
5

10

u

v

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ● ● ●

● ●

140.776 Statistical Computing R: Programming

Control structures

Programming is more than just putting commands you’ve learnt so
far into a *.R file. A key element of programming (which is also
true for other languages) is that you can use control structures to
control the flow of execution of the program.

For example, “for()” is a control structure in R to repeatedly
execute a series of similar commands.

140.776 Statistical Computing R: Programming

Control structures

Control structures commonly used in R include:

if, else: testing a condition

for: execute a loop for a fixed number of times

while: execute a loop while a condition is true

repeat: execute a loop until seeing a break

break: break the execution of a loop

next: skip an iteration of a loop

return: exit a function

140.776 Statistical Computing R: Programming

Conditional execution: if statements

if(<condition>) {
do something

} else {
do something else

}

if(<condition1>) {
do something

} else if (<condition2>) {
do something different

} else {
do something else

}

140.776 Statistical Computing R: Programming

Conditional execution: if statements

Example: compute the absolute value of x and assign it to y.

if(x<0) {
y<-(-x)

} else {
y<-x

}

140.776 Statistical Computing R: Programming

Conditional execution: if statements

The else clause is not necessary:

if(<condition1>) {
do something

}

is equivalent to

if(<condition1>) {
do something

} else {
do nothing

}

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

Conditions often use && (AND) and || (OR).

if(x>0 && x<1) {
y<-x^2

} else {
y<-x^4

}

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

> x<-c(1>2,2<3,3==4)
> x
[1] FALSE TRUE FALSE
> y<-c(1<2,2<3,3!=4)
> y
[1] TRUE TRUE TRUE

> x&&y

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

> x
[1] FALSE TRUE FALSE
> y
[1] TRUE TRUE TRUE

> x&&y
[1] FALSE

> x&y

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

> x
[1] FALSE TRUE FALSE
> y
[1] TRUE TRUE TRUE

> x&&y
[1] FALSE

> x&y
[1] FALSE TRUE FALSE

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

&& and || are different from & and |:
The shorter form (& and |) performs elementwise comparisons
in much the same way as arithmetic operators.

The longer form (&& and ||) evaluates left to right, examining
only the first element of each vector. Evaluation proceeds only
until the result is determined.

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

1<2 || 2>3 && 1>2

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

Compare the following three expressions:

> 1<2 || 2>3 && 1>2
[1] TRUE

> (1<2 || 2>3) && 1>2
[1] FALSE

> 1<2 || (2>3 && 1>2)
[1] TRUE

Why do you obtain different results?

140.776 Statistical Computing R: Programming

&& (AND) and || (OR) in conditions

In R, operators belong to different precedence groups. && has
higher precedence than ||, therefore && is evaluated first.
About precedence of operators:

Use help(Syntax) to learn precedence of operators.

Within an expression, operators of equal precedence are
evaluated from left to right.

If you are not sure about which operator is evaluated first, I
recommend you to explicitly specify the priority by using ().

There are substantial precedence differences between R and S.
For example, in S, &, &&, | and || have equal precedence.

140.776 Statistical Computing R: Programming

Repetitive execution: for loops

for(var in seq) {
expr

}

For loops are commonly used for iterating over the element of an object
(list, vector, etc.). For example:

for(i in 1:10) {
print(i)

}

140.776 Statistical Computing R: Programming

Repetitive execution: for loops

These loops have the same behavior:

x<-c("a","b","c","d")

for(i in 1:4) {
print(x[i])

}

for(i in seq_along(x)) {
print(x[i])

}

for(letter in x) {
print(letter)

}

for(i in 1:4) print(x[i])

140.776 Statistical Computing R: Programming

Find banana

> load("apple-banana-array.rda")

140.776 Statistical Computing R: Programming

Nested loops

Loops can be nested:

x<-matrix(1:60,6,10)

for(i in seq_len(nrow(x))) {
for(j in seq_len(ncol(x))) {

print(x[i,j])
}

}

140.776 Statistical Computing R: Programming

Repetitive execution: while

while(cond) {
expr

}

While loops evaluate a condition repetitively. If the condition is true,
then the expression in the loop body is executed. Otherwise, the loop will
be ended. For example:

count<-0
while(count<10) {

print(count)
count<-count+1

}

140.776 Statistical Computing R: Programming

Repetitive execution: while

Another example:

simulate a random walk
z<-5
while(z>=3 && z<=10) {

print(z)
coin<-rbinom(1,1,0.5)
if(coin == 1) {

z<-z+1
} else {

z<-z-1
}

}

140.776 Statistical Computing R: Programming

Repetitive execution: repeat

repeat {
expr

}

This statement executes the expression in the loop repeatedly until it sees
a break. For example:

x0<-1
tol<-1e-8
repeat {

x1<-computeEstimate()

if(abs(x1-x0)<tol) {
break

} else {
x0<-x1

}
}

140.776 Statistical Computing R: Programming

Breaking a loop: break

The break statement can be used to terminate any loop. It is the
only way to terminate repeat loops. For example:

x0<-1
tol<-1e-8
err<-10
iter<-0
while (err>tol) {

x1<-computeEstimate()
err<-abs(x1-x0)
x0<-x1
iter<-iter+1
if(iter == 100) {

break
}

}

140.776 Statistical Computing R: Programming

next and return

next is used to skip an iteration of a loop.

for(i in 1:5) {
if(i<=3) {

next
}
print(i)

}

[1] 4
[1] 5

return signals that a function should exit and return a given value.

140.776 Statistical Computing R: Programming

Find banana

> load("apple-banana-list.rda")

(name="apple", nextnode)
|
V

(name = "apple", nextnode)
|

...
V

(name = "banana", nextnode)
|

...
V

NA

140.776 Statistical Computing R: Programming

Signalling Conditions

There are 4 main functions for signalling or handling conditions
(i.e. unusual situations) in R.

message: print a message to the console (not necessarily a
bad thing)

warning: non-fatal problem; print a message to the console

stop: problem is fatal, execution of the program is halted

try, tryCatch: testing for conditions and executing alternate
code (exception handling)

140.776 Statistical Computing R: Programming

Warnings, Messages

for(i in seq_along(x)) {
if(<minor condition>) {

message("a minor condition occurred")
}
if(<more serious condition>) {

warning("something unusual is going on")
}
if(<fatal condition>) {

stop("cannot continue, aborting")
}

}

140.776 Statistical Computing R: Programming

Good habits

Correct grammar
R code: immediately source-able; C code: can be compiled
without errors

Correct results
Produce logically correct answer

Code readability
Use monospace font; <80 characters/line; indent your code;
comment your codes

Code efficiency
Organize into functional modules; keep the code short if
possible

Computational efficiency
Whoever runs fastest wins

140.776 Statistical Computing R: Programming

Grading criteria

Example:

correctness 60%
+ computational efficiency 20%
+ readability 10%
+ code efficiency 10%
= 100%

140.776 Statistical Computing R: Programming

