## Methods in Biostatistics 2 (140.652) ### Hypothesis testing (cont) #### Example 1 ```{r} # Example data x <- c(102.5, 106.6, 99.8, 106.5, 103.7, 105.5, 98.2, 104.1, 85.6, 105.5, 114.0, 112.2) y <- c( 93.7, 90.9, 100.4, 92.0, 100.2, 104.6, 95.4, 96.6, 99.2) # Two-sided t-test allowing un-equal population SDs t.test(x,y) # Plot the data with confidence intervals source("http://www.biostat.jhsph.edu/~iruczins/teaching/140.615/func/dotplot.r") # This function plots the data for two samples. dotplot(x,y) ``` ### Example 2 ```{r} # One-tailed test example x <- c(59.4, 52.3, 42.6, 45.1, 65.9, 40.8) y <- c(82.7, 56.7, 46.9, 67.8, 74.8, 85.7) # One-tailed t-test t.test(x,y,alt="less") # The dotplot dotplot(x,y) ``` #### Example 3 ```{r} # another one-tailed test example x <- c(63.3, 58.6, 59.0, 60.5, 56.3, 57.4) y <- c(75.6, 65.9, 72.3, 58.0, 64.4, 66.2) t.test(x,y,alt="less") dotplot(x,y) ``` #### Good plot / bad plot ```{r} x <- c(15.1, 13.1, 21.5) y <- c(35.1, 39.5, 58.8) par(mar=c(4,4,2,1),mfrow=c(1,2),las=1) barplot(c(mean(x),mean(y)),width=1,space=c(0.5,0.5), col=c("white","gray40"),xlim=c(0,3),names=c("A","B"), ylim=c(0,76)) segments(1,mean(x),1,mean(x)+sd(x),lwd=2) segments(0.8,mean(x)+sd(x),1.2,mean(x)+sd(x),lwd=2) segments(2.5,mean(y),2.5,mean(y)+sd(y),lwd=2) segments(2.3,mean(y)+sd(y),2.7,mean(y)+sd(y),lwd=2) mtext("Bad plot",cex=1.5,line=0.5) plot(rep(0:1,c(3,3)),c(x,y),xaxt="n",ylim=c(0,76),xlim=c(-0.5,1.5),ylab="",xlab="") abline(v=0:1,col="gray40",lty=2) points(rep(0:1,c(3,3)),c(x,y),lwd=2) mtext("Good plot",cex=1.5,line=0.5) xci <- t.test(x)$conf.int yci <- t.test(y)$conf.int segments(0.25,xci[1],0.25,xci[2],lwd=2,col="blue") segments(c(0.23,0.23,0.2),c(xci,mean(x)),c(0.27,0.27,0.3),c(xci,mean(x)),lwd=2,col="blue") segments(1-0.25,yci[1],1-0.25,yci[2],lwd=2,col="red") segments(1-c(0.23,0.23,0.2),c(yci,mean(y)),1-c(0.27,0.27,0.3),c(yci,mean(y)),lwd=2,col="red") u <- par("usr") segments(0:1,u[3],0:1,u[3]-diff(u[3:4])*0.03,xpd=TRUE) text(0:1,u[3]-diff(u[3:4])*0.08,c("A","B"),xpd=TRUE) ``` #### Pre/post example ```{r} x <- c(18.6, 14.3, 21.4, 19.3, 24.0) y <- c(17.8, 24.1, 31.9, 28.6, 40.0) t.test(y-x) ``` ### End of code