Homework Assignment #3 (Due Wednesday, October 12, 2005)

Please hand in a hard copy of your R code, and send an electronic version of it to Kenny (kshum@jhsph.edu).

- 1. Assume that **A** is a symmetric $n \times n$ matrix with real eigenvalues, and that $\mathbf{u}_1, \dots, \mathbf{u}_n$ are linear independent eigenvectors of **A**. Let $\mathbf{U} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$. Show that:
 - (a) $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$ for some diagonal matrix $\mathbf{\Lambda}$.
 - (b) $I + A = UDU^{-1}$ for some diagonal matrix D.
 - (c) If **D** is non-singular, then I + A is non-singular, and $(I + A)^{-1} = UD^{-1}U^{-1}$.
- 2. Let **J** be the $n \times n$ matrix with all entries equal to 1.
 - (a) Show that $\mathbf{u}_1 = (1, \dots, 1)'$, $\mathbf{u}_2 = (1, -1, 0, \dots, 0)'$, $\mathbf{u}_3 = (1, 0, -1, 0, \dots, 0)'$, $\mathbf{u}_4 = (1, 0, 0, -1, 0, \dots, 0)'$, \dots , $\mathbf{u}_n = (1, 0, \dots, 0, -1)'$ are eigenvectors of \mathbf{J} , and that they are linearly independent.
 - (b) Find $(\mathbf{I} + a\mathbf{J})^{-1}$ for the numbers $a \in \mathbb{R}$ for which the inverse exists.
 - (c) Show that $(\mathbf{I} + a\mathbf{J})^{-1}$ is of the form $\mathbf{I} + b\mathbf{J}$, and find b.
- 3. Consider the random variables Y_1, \ldots, Y_n defined as $Y_i = U + Z_i$, where $U \sim N(\xi, \tau^2), Z_i \sim iidN(\mu, \sigma^2)$, and U and Z_i are independent. Let $\mathbf{Y} = (Y_1, \ldots, Y_n)'$.
 - (a) What is the distribution Y_i ?
 - (b) Find $cov(Y_i, Y_j)$ and $corr(Y_i, Y_j)$ for $i \neq j$.
 - (c) What is the distribution of \mathbf{Y} ?
 - (d) Consider the estimator $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Is \bar{Y} an unbiased estimator for $E[Y_1]$?
 - (e) Let $\hat{\mathbf{Y}}$ be the n-vector whose entries are all \bar{Y} . Show that $\hat{\mathbf{Y}} = \mathbf{M}\mathbf{Y}$ for some projection matrix \mathbf{M} .
 - (f) Consider the estimator $S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$. Show that $(n-1)S^2 = \mathbf{Y}'\mathbf{P}\mathbf{Y}$ for some projection matrix \mathbf{P} .
 - (g) What is the distribution of S^2 ?
 - (h) Is S^2 an unbiased estimator for $var(Y_1)$?
 - (i) Let $\mathbf{V} = var(\mathbf{Y})$. Find the inverse \mathbf{V}^{-1} and the determinant $det(\mathbf{V})$.

4. Write an R function myrmvn() that generates samples from a multivariate normal distribution, starting with the standard normal distribution (i. e. using rnorm()). Your function takes as arguments mu (the mean vector of length n), sigma (the $n \times n$ covariance matrix), and hm (the number of independent samples from the multivariate distribution).

Generate a scatter plot of 1000 independent samples of your favorite bivariate normal distribution (with mean not equal to (0,0)', and non-zero off-diagonal elements in the covariance matrix).

- 5. (a) Write an R function myrchisq() that generates independent random samples from the non-central χ^2 distribution, using only the R function rnorm(). Your function myrchisq() takes as arguments n (the number of independent samples), df (the degrees of freedom), and lambda (the non-centrality parameter)
 - (b) Using the above myrchisq(n,df,lambda), write a function mypchisq(q,n,df,lambda) that returns $F(q) = P(\chi^2_{df}(\lambda) \le q)$, approximated by simulation.
 - (c) How large do you have to choose n to guarantee that your estimate has a standard deviation less than 0.01?