Homework Assignment #4 (Due Monday, October 24, 2005)

Please hand in a hard copy of your R code, and send an electronic version of it to Kenny (kshum@jhsph.edu).

- 1. Let A_1 , A_2 and A_3 be objects of unknown weights β_1 , β_2 and β_3 respectively. To obtain the weights of A_1 , A_2 and A_3 , we use the following three weighings on a balance (scale), all of which are repeated twice.
 - A_1 on the balance (results y_{11} and y_{12}),
 - A_2 on the balance (results y_{21} and y_{22}),
 - A_3 on the balance (results y_{31} and y_{32}).

Assume that the y_{ij} 's come from random variables Y_{ij} which are independent, normally distributed with the same variance σ^2 . Also assume that the balance has an unknown systematic error θ .

- (a) Show that the β_i 's are not estimable.
- (b) Show that $\beta_i \beta_j$ for $i \neq j$ are estimable. Find the BLUE of $\beta_1 \beta_2$ and an estimate of its variance.
- (c) If we include two more readings in which we weigh all three objects on the balance (results y_{41} and y_{42}), show that the β_i 's are estimable and that θ is estimable. Find the BLUE of each of the estimates, and an estimate of the standard error of each estimate.
- 2. (a) If $H : \mathbf{A}\boldsymbol{\beta} = \mathbf{0}$ is a testable hypothesis, show that

$$cov(\mathbf{A}\hat{\boldsymbol{\beta}}) = \sigma^2 \mathbf{A} (\mathbf{X}'\mathbf{X})^{-} \mathbf{A}'.$$

(b) Assuming rank(\mathbf{A}) = q, show that

$$(RSS_H - RSS)/\sigma^2 = (\mathbf{A}\hat{\boldsymbol{\beta}})'[\text{cov}(\mathbf{A}\hat{\boldsymbol{\beta}})]^{-1}(\mathbf{A}\hat{\boldsymbol{\beta}}).$$

(c) Conclude from the above that

$$E[RSS_H - RSS] = \sigma^2 q + (\mathbf{A}\boldsymbol{\beta})' [\mathbf{A}(\mathbf{X}'\mathbf{X})^{-} \mathbf{A}']^{-1} (\mathbf{A}\boldsymbol{\beta}),$$

and when $H : \mathbf{A}\boldsymbol{\beta} = \mathbf{0}$ is true and $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$,

$$(RSS_H - RSS)/\sigma^2 \sim \chi_q^2$$
.

In the above exercise, you can use the fact that $\dim(\omega^{\perp} \cap \Omega) = \dim(\mathcal{R}(\mathbf{P}_{\Omega}\mathbf{M}')) = q$ if rank $(\mathbf{M}) = q$.

3. Consider a one-way ANOVA with 4 groups. Assume there are *n* observations per group. We are testing the hypothesis that all group means are equal, and the usual assumptions are met. Assume the following cases, in which the null is false:

In case 1, the group means of A and B are equal, the group means of C and D are equal, but the group means of A and D differ by 3 units (3c, say). In case 2, the group means of B and C are equal, but the group means of A and B differ by 1.5c, and the group means of C and D differ by 1.5c. In case 3, the group means of A and B differ by 1c, the group means of B and C differ by 1c, and the group means of C and D differ by 1c.

- (a) For each of those cases, calculate the non-centrality parameter λ for the distribution in the F-test as a function of c/σ , where σ^2 is the within-group variance.
- (b) For each of those cases, plot the power of the F-test as a function of c/σ , for n=5,10,15,20.
- (c) For n = 10 and cases 1 and 2, verify your findings by a simulation.

