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4 The Multivariate Normal Distribution

The following are three possible definitions of the multivariate normal distribution (MVN). Given a vector
µ and a positive semidefinite matrix Σ,Y ∼ Nn(µ,Σ) if:

4.1 Definition: For a positive definite Σ, the density function ofY is

fY(y) = (2π)−n/2|Σ|−1/2 exp{−1
2
(y − µ)′Σ−1(y − µ)}.

4.2 Definition: The moment generating function (m.g.f.) ofY is

MY(t) ≡ E[et′Y] = exp{µ′t +
1
2
t′Σt}.

4.3 Definition: Y has the same distribution as AZ + µ, where Z = (Z1, . . . , Zk) is a random sample from
N(0, 1) and An×k satisfies AA′ = Σ.

4.4 Theorem: Definitions 4.1, 4.2, and 4.3 are equivalent for Σ > 0 (positive definite). Definitions 4.2 and
4.3 are equivalent for for Σ ≥ 0 (positive semidefinite). If Σ is not positive definite, then Y has a singular
MVN distribution and no density function exists.

4.5 Theorem: IfZ = (Z1, . . . , Zn) is a random sample fromN(0, 1), then Z has theN(0n, In×n) distribution.

4.6 Theorem: E[Y] = µ, cov(Y) = Σ.

4.7 Example: Let Z = (Z1, Z2)′ ∼ N2(0, I), and letA be the linear transformation matrix

A =
(

1/2 −1/2
−1/2 1/2

)
.

LetY = (Y1, Y2)′ be the linear transformation

Y = AZ =
(

(Z1 − Z2)/2
(Z2 − Z1)/2

)
.

By Definition 4.3 Y ∼ N(0,Σ) where Σ = AA′.

4.8 Theorem: If Y ∼ Nn(µ,Σ) and Cp×n is a constant matrix of rank p, then CY ∼ Np(Cµ,CΣC′).

4.9 Theorem: Y is MVN if and only if a′Y is normally distributed for all non-zero constant vectors a.

4.10 Theorem: Let Y ∼ Nn(µ, σ2I), and letT be an orthogonal constant matrix. Then TY ∼ Nn(Tµ, σ2I).
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4.11 Note: Theorem 4.10 says that mutually independent normal random variables with common variance re-
main mutually independent with common variance under orthogonal transformations. Orthogonal matrices
correspond to rotations and reflections about the origin, i.e., they preserve the vector length:

||Ty||2 = (Ty)′(Ty) = y′T′Ty = y′y = ||y||2.

LetY ∼ Nn(µ,Σ) be partitioned as

Y =
(

Y1

Y2

)
,

where Y1 is p × 1 and Y2 is q × 1, (p + q = n). The mean and covariance matrix are correspondingly
partitioned as

µ =
(

µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
cov(Y1) cov(Y1,Y2)

cov(Y2,Y1) cov(Y2)

)
.

4.12 Theorem: The marginal distributions are Y1 ∼ Np(µ1,Σ11) and Y2 ∼ Nq(µ2,Σ22).

4.13 Theorem: Uncorrelated implies independent: Y1 and Y2 are independent if and only if Σ12 = Σ′
21 = 0.

4.14 Theorem: If Σ is positive definite, then the conditional distribution ofY1 given Y2 is

Y1|Y2 = y2 ∼ Np(µ1 + Σ12Σ−1
22 (y2 − µ2),Σ11 − Σ12Σ−1

22 Σ21).

4.15 Definition: For any positive integer d, χ2
d is the distribution of

∑d
i=1 Z2

i , where Z1, . . . , Zd are inde-
pendent and identically distributed N(0, 1) random variables.

4.16 Example: Let Y1, . . . , Yn be independent N(µ, σ2) random variables. Then Ȳ and S2 are independent and
(n − 1) × S2/σ2 ∼ χ2

n−1.

In linear model theory, test statistics arise from sums of squares (special cases of quadratic forms) with χ2

distributions.

4.17 Theorem: If Y ∼ Nn(µ,Σ) and Σ is positive definite, then (Y − µ)′Σ−1(Y − µ) ∼ χ2
n.

4.18 Theorem: Let Y ∼ Nn(µ, σ2I) and Pn×n be symmetric of rank r. Then Q = (Y−µ)′P(Y−µ)/σ2 ∼
χ2

r if and only if P is idempotent (i.e. P2 = P), and hence a projection.

4.19 Note: Theorem 4.18 says that in the spherically symmetric case Σ = σ2I, the only quadratic forms with
χ2 distributions are sums of squares, i.e. squared lengths of projections: x′Px = ||Px||2.
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Theorem 4.22 addresses conditions under which the difference of two χ2-distributed quadratic forms is χ2

(to be applied to the ANOVA decomposition of the sum of squares). To prove the theorem, we will need to
know when the difference of two projection matrices is a projection matrix.

4.20 Theorem: Assume that P1 and P2 are projection matrices and that P1 −P2 is positive semidefinite. Then

(a) P1P2 = P2P1 = P2,

(b) P1 − P2 is a projection matrix.

4.21 Note: The actual interpretation of Theorem 4.20 is:

1. P1 is a projection onto a linear space Ω.

2. P2 is a projection onto a subspace ω of Ω.

3. P1 − P2 is a projection onto the orthogonal complement of ω within Ω.

4.22 Theorem: Let Y ∼ Nn(µ, σ2I) and Qi = (Y − µ)′Pi(Y − µ)/σ2 , where Pi is a symmetric n × n
matrix for i = 1, 2. If Qi ∼ χ2

ri
and Q1 − Q2 ≥ 0 , then Q1 − Q2 and Q2 are independent, and

Q1 − Q2 ∼ χ2
r1−r2

.

4.23 Definition: The non-central chi-squared distribution with n degrees of freedom and non-centrality param-
eter λ, denoted χ2

n(λ), is defined as the distribution of
∑n

i=1 Z2
i , where Z1, . . . , Zn are independent

N(µi, 1) random variables, and λ =
∑n

i=1 µ2
i /2.

4.24 Note: For any n we have χ2
n(0) ≡ χ2

n, which we refer to as the central chi-square distribution.

4.25 Theorem: If Y ∼ Nn(µ, I), then Y′Y has moment generating function

MY′Y(t) = (1 − 2t)−
n
2 exp

{
µ′µ
2

[ 1
1 − 2t

− 1
]}

, t < 1/2.

4.26 Theorem: Let Y ∼ Nn(µ, σ2In) and P = P′. Then P = P2 of rank r if and only if

Y′PY/σ2 ∼ χ2
r(µ

′Pµ/2σ2).

4.27 Theorem: If Y ∼ χ2(n, λ), then E[Y ] = n + 2λ, var[Y ] = 2(n + 4λ).

4.28 Theorem: If Y ∼ χ2
n with n > 2, then E[ 1

Y ] = 1
n−2 .

4.29 Theorem: χ2
n(λ), like χ2

n, has the convolution property.


