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16 One-Way Analysis of Variance

16.1 The Fixed Effects Model

The one-way ANOVA model is a linear model given by Y = Xβ + ε, i. e.


Y1

Y2
...

Yn

 =


1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0np 0np · · · 1np




µ1

µ2
...

µp

 +


ε1

ε2
...

εn

 ,

with n = n1 + . . . np. We assume ε ∼ N(0, σ2I). Note that rank(Xn×p) = p is of full rank. We want to
test the hypothesis H : µ1 = µ2 = · · · = µp. This can be written as a linear hypothesis Aµ = 0, i. e.


1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . .
...

0 · · · · · · 1 −1




µ1

µ2
...

µp

 =


0
0
...
0

 .

Note that rank(A) = p − 1. From Theorem 11.8 we have that the test statistic for testing H : Aβ = 0 is

F =
(RSSH − RSS)/(p − 1)

RSS/(n − p)

with F ∼ Fp−1, n−p if H is true.

16.1 Theorem: The least squares estimates for µi is Ȳi =
∑

j Yij/ni, and therefore

RSS = (Y − Ŷ)′(Y − Ŷ) =
∑

i

∑
j

(Yij − Ȳi)2.

16.2 Note: The term RSS =
∑

i

∑
j(Yij − Ȳi)2 is called the within group sums of squares. From Theorem

6.13 we have that RSS/σ2 ∼ χ2
n−p, and hence E[RSS/(n − p)] = σ2. The term RSS/(n − p), an

unbiased estimate of σ2, is called within group mean squares.

16.3 Theorem: Under H we have µ1 = . . . = µp = µ, and the least squares estimate for µ is Ȳ =∑
i

∑
j Yij/n. We therefore have

RSSH = (Y − ŶH)′(Y − ŶH) =
∑

i

∑
j

(Yij − Ȳ )2 =
∑

i

∑
j

(Yij − Ȳi)2 +
∑

i

∑
j

(Ȳi − Ȳ )2.

From the above it follows that

RSSH − RSS =
∑

i

∑
j

(Ȳi − Ȳ )2 =
∑

i

ni(Ȳi − Ȳ )2.
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16.4 Note: The term RSSH−RSS =
∑

i ni(Ȳi−Ȳ )2 is called between group sums of squares. From Theorem
11.6 it follows that if H is true, (RSSH − RSS)/σ2 ∼ χ2

p−1 , and E[(RSSH − RSS)/(p − 1)] = σ2.
The term (RSSH −RSS)/(p−1) is therefore another unbiased estimate of σ2, called between group mean
squares. Note that in Theorem 11.8 we showed that the between group mean squares are independent of the
within group mean squares!

16.5 Note: The above is usually summarized in an ANOVA table:

source sum of squares df mean square test statistic

between treatments SST =
∑

i ni(Ȳi − Ȳ )2 p − 1 MST = SST /(p − 1) F = MST /MSR

within treatments SSR =
∑

i

∑
j(Yij − Ȳi)2 n − p MSR = SSR/(n − p)

total
∑

i

∑
j(Yij − Ȳ )2 n − 1

16.6 Note: If H is false, we know from Theorem 11.15 that F ∼ Fp−1,n−p(λ), with

σ22λ = µ′(PΩ − Pω)µ = (RSSH − RSS)
∣∣
Y=µ =

∑
i

∑
j

(µi − µ)2 =
∑

i

ni(µi − µ)2.

From Theorem 11.6 follows that

E[MST ] = E[(RSSH − RSS)/(p − 1)] = σ2 +
∑

i ni(µi − µ)2

p − 1
.

Note that E[MSR] = E[RSS/(n − p)] = σ2, whether or not H is true.

16.2 The Random Effects Model

So far, we viewed models as conditional on a structure S. For example, by assuming fixed µi in the above,
we have used a model defined by the structure

E(Yij |S) = µi and cov (Yij, Yi′j′ |S) =

{
σ2 (i′, j′) = (i, j)
0 elsewhere.

If however we entertain a model which specifies that the µi are a sample from a population of possible groups
which could have been selected for inclusion in the experiment, we have an entirely different situation. We
must specify the stochastic structure of the µi and then take expectations with respect to this structure to
obtain the expected values of the sums of squares.

One such model is the so called random effects model in which we assume that

E(µi) = µ and cov (µi, µi′) =

{
σ2

1 i′ = i
0 elsewhere.
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16.7 Theorem: This model implies that the Yij are correlated since

cov (Yij , Yi′j′) =


σ2 + σ2

1 (i′, j′) = (i, j)
σ2

1 i′ = i, j′ �= j
0 elsewhere.

The correlation between any two observations in the same group is given by

corr (Yij, Yij′ ) =
σ2

1

σ2 + σ2
1

,

which is called the intra-class correlation.

16.8 Theorem: For the random effects model we have:

(a) E[MST ] = σ2 + 1
p−1

(
n − ∑

i
n2

i
n

)
σ2

1,

(b) E[MSR] = σ2.

16.9 Note: If we have a random effects model with n1 = . . . = np = r, then E[MST ] = σ2 + rσ2
1.

16.10 Theorem: If in the random effects model we have n1 = . . . = np = r, then:

(a) SST /(σ2 + rσ2
1) ∼ χ2

p−1,

(b) SSR/σ2 ∼ χ2
p(r−1),

(c) SST and SSR are independent.

16.11 Note: We can testH : σ2
1 = 0 versus σ2

1 > 0 using the test statistic F = MST /MSR, with F ∼ Fp−1, p(r−1)

in the balanced case if H is true. If we reject H , we estimate the variance components as:

σ̂2 = MSR and σ̂2
1 = (MST −MSR)/r.
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16.12 Note: Since E[Yij ] = µ, it follows that Ȳ is an unbiased estimator of µ. However, the presence of correla-
tion between the Yij in the random effects model does not imply that Ȳ has any optimality properties.

16.13 Theorem: The best linear unbiased estimate (BLUE) for µ is

µ̂ =
1∑p

j=1

(
nj

σ2+njσ2
1

) p∑
i=1

ni

σ2 + niσ2
1

Ȳi.

16.14 Note: In the balanced case with n1 = . . . = np = r, the above reduces to µ̂ = Ȳ .

16.15 Theorem: For the fixed effects model we have

L(µ1, . . . , µp, σ
2|Y) = (2π)−

n
2 (σ2)−

n
2 exp

− 1
2σ2

p∑
i=1

ni∑
j=1

(Yij − Ȳi)2 − 1
2σ2

p∑
i=1

ni(Ȳi − µi)2
 .

16.16 Note: The sufficient statistics for µ1, . . . , µp and σ2 are Ȳ1, . . . , Ȳp and
∑

i

∑
j(Yij − Ȳi)2.

16.17 Theorem: For the random effects model we have

L(µ, σ2, σ2
1 |Y) = (2π)−

n
2 (σ2)−

n−p
2

( p∏
i=1

σ2
1 + niσ

2
1

)− 1
2

×

exp

− 1
2σ2

p∑
i=1

ni∑
j=1

(Yij − Ȳi)2 − 1
2

p∑
i=1

ni(Ȳi − µ)2

σ2 + niσ2
1

 .

16.18 Note: The sufficient statistics for µ, σ2 and σ2
1 are Ȳ1, . . . , Ȳp and

∑
i

∑
j(Yij − Ȳi)2 as well.

16.19 Note: In the balanced case with n1 = . . . = np = r, we have

p∑
i=1

ni(Ȳi − µ)2

σ2 + niσ2
1

=
r

∑p
i=1(Ȳi − µ)2

σ2 + rσ2
1

=
r

∑p
i=1(Ȳi − Ȳ )2 + rp(Ȳ − µ)2

σ2 + rσ2
1

,

and the sufficient statistics for µ, σ2 and σ2
1 are Ȳ ,

∑
i

∑
j(Yij − Ȳi)2, and

∑
i(Ȳi − Ȳ )2.


