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Miscellanea 669

Corrigenda

(1) Biometrika (1956), 43, 456-8.

‘ On the sum of squares of normal scores.’

By H. RuBEN
1 1
p. 457. In last line on right of equation (11), for m read 5;77—’ .
On right-hand side of equation (12), for (n—1)* read (n—1)~® and for (n—1)~® read

(n+1)~,
(2) Biometrika (1962), 49, pp. 93-106.

‘Robustness to non-normality of regression tests.’
By G. E. P. Box and G. S. WaTsoN
p- 97. (18) holds only if E ,(f) = E(f).
p- 97. (19) should read E ,(zz’) = {S,/N(N —1)} {NI—-11"}

for E,(22') = S,/{N(N — 1)} {NI—11"}.
p- 98. (24) should read ZM?%, =p—m for ZEM,,=p—m,
and IM My =p2—m  for XMy, Mg, = pt—m.

p. 98. Two lines below (24), and again two lines above (28) on p. 99
should read N(N+1)S, for N(N-—1)8,.
p. 99. Line 6
N N
should read m= 3 M2, for m= > M,,.
u=1

u=1

On p. 99, following (27), the argument should proceed as follows:

Take the definition of the k’s to be that of the k’s of the w’s since X% is zero. Hence get (28) in terms
of the k’s of the w’s and so get the desired form (29). Since C, depends only on X through m, it can be
asserted without error that the k’s may be taken as the &’s for the x’s. The formulae for the k’s of the

#'s should be (N—1)k§ =8, (N—1)®ki= N(N+1)8i—3(N—1) (S0,
(N — 1)@ klf = N(N +1)8§ — (N — 1) SS]— 2(N — 1) (Si)".

(3) Biometrika (1963), 50, pp. 459-98.

‘Table of percentage points of Pearson curves, for given ,/8, and f,, expressed in
standard measure.’

By N. L. JounsoN, Eric Nixon, D. E. Amos and E. S. PEARSON

p- 470. In the numerator of the expression
for dyldx, equation (9), read f,+3 for p,+3.

(4) Biometrika (1963), 50, 522-3.
‘ Some inequalities on characteristic roots of matrices.’
By T. W. ANDERsON and S. Das GurTa

Some of the results in this paper have been published previously in somewhat different form. In
particular (2-10) and (2-11) are special cases of Theorems 3-8 and 3-9 of * Extreme properties of eigen-
values of a Hermitian transformation and singular values of the sum and product of linear transforma-
tions’, by Ali R. Amir-Moéz (1956), Duke Math. J. 23, 463—76.
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