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Robustness to non-normality of regression testst

By G. E. P. BOX anxp G. S. WATSON

University of Wisconsin and University of Toronto

1. SUMMARY

A number of statistical procedures involve the comparison of a ‘regression’ mean square
with a ‘residual’ mean square using the normal-theory F distribution for reference. The use
of the procedure for the analysis of actual data implies that the distribution of the mean-
square ratio is insensitive to moderate non-normality. Many investigators, in particular
Pearson (1931), Geary (1947), Gayen (1950), have considered the sensitivity of this distribu-
tion to parent non-normality for important special cases and a very general investigation
was carried out by David & Johnson (1951a, b).

The principal object of this paper is to demonstrate the overriding influence which the
numerical values of the regression variables have in deciding sensitivity to non-normality and
to demonstrate the essential nature of this dependency.

We first obtain a simple approximation to the distribution of the regression F statistic in
the non-normal case. This shows that it is ‘the extent of non-normality’ in the regression
variables (the z’s), which determines sensitivity to non-normality in the observations (the
y’s). Ourresults areillustrated for certain familiar special cases. In particular the well-known
robustness of the analysis of variance test to compare means of equal-sized groups and the
notorious lack of robustness of the test to compare two estimates of variance from inde-
pendent samples are discussed in this context. We finally show that it is possible to choose
the regression variables so that, to the order of approximation we employ, non-normality in
the #’s is without effect on the distribution of the test statistic. Our results demonstrate the
effect which the choice of experimental design has in deciding robustness to non-normality.

2. THE MEAN SQUARE RATIO R
Suppose that the response y,, observed at the uth set of levels xy,,, 5, ..., Z,,, of p regression
variables, may be represented by the response function
Yu = Pot+br%y+ o +Bi%p+ o+ By Xy te, (u=1,2,....N), (1)
where the error ¢, = y,— E(y,) is a random variable. The regression variables may be
quantitative or merely indicator variables denoting presence or absence of a certain quality.
We speak of the N values #,, as the elements of the ith regression vector x; and suppose that

the model is set up so that the regression vectors are linearly independent, with Yz, = 0.
We denote the usual least squares estimates of 8, ..., 8, by by, ..., b, and write ¥

N
Gy = 2 Liu Ly (7’7.7 =1, '-',p)'
n=1
To shed light on the plausibility of 85, 85, ..., B as possible values of the coefficients, the

ratio of mean squares R} = {Sys/0}/{Sul (N —p—1)} (2)

1 This research was supported in part by the United States Navy, through the Office of Naval
Research, and by the United States Army through the Office of Ordnance Research.
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may be calculated. The appropriateness of this ratio can be seen from the fact that the
regression sum of squares

Spe= 5 35 cylbi=p1) &= B)) (3)

”'M%

7

is a measure of overall discrepancy between the least-squares estimates b; and the contem-
plated values 87, while the residual sum of squares

N
Sp= 3 Gu—0 with §,=bp+ 3 by, (4)
u=1 i=1

measures the internal consistency of the data independently of the choice of g}. Further-
more, provided that the assumed form of response function is adequate, and that the errors
have equal variances and are uncorrelated one with another, the expected values of the
component sums of squares are

BS) = 3 S oylBim 1) (= B1) + 9o, ®)
E(Sg) = (N—-p-1)c™. (6)

If in addition the errors could be supposed to follow normal distributions, that is, if the joint
distribution of the e, was a spherical normal distribution, then when g = B (t=1,2,...,p)
R4 would have an F distribution with v; = p and v, = N —p — 1 degrees of freedom. Since
in the analysis of real data we do not know the precise distribution of the €,, one would like
to know under what circumstances the F distribution still supplied an adequate approxima-
tion to the distribution of R;,. In particular, as has been shown by Fisher (1947) and Scheffé
(1953), when the approximation was adequate the statistic R s+ could be used not only to
test hypotheses concerning particular values #* of the coefﬁments but also to supply interval
estimates for any linear combinations whatever of the f’s.
For the “special’ case ff = 0 (i=1, ..., p) we denote the mean-square ratio by R. Thus

0/p 7
= SN —p—1) ™
where 8, = % é cijbibs  Sp = SHE— Ng2— S, (8)

In what follows we consider only this case since the more general situation always can be
reduced to it. For example, if we calculate R from the constructed observations

Yu = yu_ﬂikxlu*ﬁ;xzu_ —ﬂzxpw
then R is identical with Ry In what follows the reference of R to the normal-theory
F distribution is referred to as the general regression test.

3. A FAMILIAR COMPARISON

That the answer to the question * What effect has non-normality on the general regression
test?’ is profoundly influenced by the nature of the « vectors may be demonstrated by a
familiar comparison. By different choices of the x vectors, almost the same regression model
can be made to reproduce on the one hand a test to compare means which is little affected by
non-normality and on the other a comparison of variances test which is notoriously sensitive
to non-normality.
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3-1. Comparison of means

If in the general regression model of equation (1) we write N = (p+1)n, 2, = p/(p+1)
foru=n(i—1)+¢t@=1,...,p;t=1,2,...,n) and x,, = — 1/(p + 1) otherwise, then we obtain
the regression model for the » observations in each of p + 1 groups, with the elements in each
regression vector adjusted to add to zero, so that the appropriate variance mean-square
ratio is Pl

n ¥ (J:—Y)?p
R i=1

m =

b (9)

IIMg

p+1
'§1 (yzt yz)z/(N_p_ 1)

where ¥, is the mean for the ith group of » observations and 7 the overall mean.

3-2. Comparison of variances

Suppose there are N —1 observations and in the general regression model let us tem-

N-1
porarily relax the provision that ¥ z,, = 0 and suppose that the constant term £, is known.
u=1

Now put z;, = 1 when v =14 (¢=1,2,...,p) and z,, = 0 otherwise. Then the mean-square
ratio is

% ﬂo 2p
N — .
2 (Us— BN —-p—1)

s=p+1

(10)

This has the form of the standard test for the comparison of variances (the population means
being known to equal £,) for two independent samples of size n;, = pand n, = N—p—1.

The criteria R,, and R, can each be obtained therefore as particular cases of the general
regression criterion. Furthermore, on the usual assumptions, the null distribution of each
criterion is the normal-theory F with v, = p and v, = N —p —1 degrees of freedom. It is
well known, however, that whereas R,, has a distribution which is remarkably insensitive
to departures from normality in the parent population this is not the case for E,.

Specifically, using a method which we discuss later in more detail, Box & Andersen (1955)
have shown that in the non-normal situation R,, and R, have distributions which may be
approximated by F distributions with modified degrees of freedom. They show that R, is
approximately distributed as F with v, = §,,p and v, = §,,(N —p— 1) degrees of freedom
and R, is approximately distributed as F with v, = §,p and v, = 0,(IN —p—1) degrees of
freedom, where for moderate non-normality and moderate numbers of observations the
d’s are approximately

St =1—(1N)T,, 8;1=1+3T, (11)

The measures of kurtosis I', and I}, in these expressions are basically similar one to the
other and take zero values when the distribution is normal. Explicitly¥

ky N+1m4}

T, = E{C,} = E{kz} I, = B{C,} = E{N - 3, (12)

T Asymptotic expansions for these constants in terms of the standardized cumulants of the parent
distributions are given by Box & Andersen (1955).
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where k, and k, are the usual k statistics for the whole sample of NV observations and m, is
the gth moment about the mean

7y N1+ N
mo= | E -t "5 - for-1)
u=1 s=mn+1
for the sample of NV —1 observations.

The insensitivity to non-normality shown by R,, arises because the corrective factor is of
order N1, whereas that for R, is of order 1. From our present point of view the example
serves to show that different choices of the 2’s in the general regression model can change
sensitivity to non-normality by a factor as large as 1NV.

We shall now investigate the specific nature of this dependence of sensitivity on the nature
of the x vectors. We shall be able to show that the corrective factor for the general regression

test is, to order N1
01=14T,0x/2N, (13)

where Cx is a measure analogous to I', of ‘non-normality’ in the ’s. In the two special
examples considered above Cx approaches respectively its smallest possible value of — 2 and
its largest possible value of N.

4. PERMUTATION MOMENTS OF R

In matrix notation our model becomes
Y= 1"30+Xp+€’ (14)

where 1 is a column of N unities, X the N+ p matrix of the levels of the p regression variables,
y the column of the NV observed responses, and @ the column of coefficients g, ..., B, Then,
since we suppose that X'1 = 0, the least-squares estimators b, and b of 4, and B are given by

bo=7, b=(X'X)1XYy. (15)

Writing z for the column of N deviations z, = y,—7 (u=1,...,N) and M = {M,,} for the
symmetric idempotent matrix M = X(X'X)-1X’, we have b = (X'X)-1X'z, whence the
regression and residual sums of squares defined in (8) and (4) are given by

Sy=2Mz, Sp=z1-M)z. (16)
We are concerned with the distribution of B = {(N—p— 1) 8o}/{pSg} when B = 0, that
is when ,
y=1p+e

Now if the error vector € is spherically normally distributed, then R has an F distribution
with »; = p and v, = N —p — 1 degrees of freedom. Equivalently

S 8
8 +Sg z'z

has a beta distribution with », = p and v, = N —p— 1 degrees of freedom.

To study the distribution of R on less specific assumptions we suppose only that the errors
have a symmetric distribution, that is to say we suppose that the probability density function
p(e) of the vector e is a symmetric function of the elements of €. As a special case this

(17)

N
includes the chief possibility of interest to us here, that p(e) = ] p(€,), where p(e,) is any
u=1
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distribution whatever. Now suppose a probability density to be associated with a particular
€, then this same probability density is associated with every rearrangement of the elements
of e. Also, since 2, = y,— ¥y = €,— ¢, it follows that whatever be the probability density
associated with a particular z this same probability density is associated with every
rearrangement of the elements of z. The distribution obtained by associating a probability
1/N! with each of the possible N! values of any function f(z) obtained by rearranging the
elements e is called the permutation distribution of f(z). The mean and variance of this
permutation distribution we denote by E,f(2) and . f (z), respectively.

Now suppose we define different samples to mean vectors z which cannot be made identical
by rearrangement of the elements, then if K denotes the expected value taken over all
different samples z, the overall moments Ef (z) and Vf(z) of f (z) are given by

Ef (2) = B{Eyf (2),
Vf(z) = Blpf (2)}. }

N
To approximate the distribution of W for any error distribution of form p(e) = [1 p(e,)itis
u=1

(18)

convenient for our purpose to find E(W)and V(W) by first finding the appropriate permuta-
tion moments and then taking their expected values over all samples.
In what follows it is helpful to express our results in terms of the power sums

N
2 2y = Sr
u=1

which, of course, remain constant under permutations of the ¢,. We have in particular

8, =0, Sy=22=28,+8g W =25/S,

4-1. Ep(W)
Weo have Bp(@) = SN, Bplz,2,) = —S,/{N(N - 1)}
whence Ep(zz') = S/{N(N - 1)}{NI-11"}. (19)

Now z'Mz = tr (Mzz') where tr (A) denotes the race of the matrix A. Using the linearity of
the trace and expectation operators we have
S, Ep(W) = Ep(8S,) = Ep(z’Mz) = Eptr (Mzz’) (20)
= tr {ME p(zz')}.
But M1 = 0 and tr (M) = tr {X(X'X)1X'} = tr {X'X(X'X)~1} = p. Hence on substituting

(19) in (20) we obtain finally
So Ep(W) = pSy/(N —1),

that is E (W) = p/(N—1), (21)

as is obtained on classical regression assumptions. In particular we see that Ep(W) = Ey(W),
where E (W) is the expected value of W on the usual normal theory.

4-2. Vp(W)

In what follows summations and permutation expectations are taken over all combina-
tions for which the subscripts are unequal. Thus E p{2% 25 2} 23} means the average value of
2% 28 23 2% taken over all permutations for which ¢, u, v and w are unequal. Similarly XM, ; My,

7 Biom. 49
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means 3 ¥ ¥ M,M,. Also, since the #’s and hence the M’s can be regarded

t ust viust
as remaining fixed whilst the combinations of the 2’s pass through all possible permutations,

we have, for example,
BpXeie, 2}z Mz Mps = Ep(25 25 2y 23) ZMyq M.

On squaring the expression
Sy = Z2f My, + X2, 2, My,

and taking expectations, we then have
- Ep(S8) = Ep(s) ZM%y + Ep(2323) (22 M3, + SMy, M)
+ B p(2y 23 25) (405 Myy + 25 M,y M)
+Ep(32y) 4X My, My, v
+ B p(2)292324) Z My My, : (22)
Using David & Kendall’s tables (1949)
NEp(#) = 84, NOEp(12}) = 858,
NOE (2, 282;5) = 28, — 82, NOEp(22,) = —8,, (23)
NOE p(2,2,252,) = 352 —68,,
r—1
where N® = T] {N—1}.
i=0

Also, using the relations M1 = 0, M2 = M, tr M = P, we find rather remarkably that each

N
of the sums involving the elements of M can be expressed in terms of m = Y, M2,. In fact
u=1

LMy =p—m, EMy My = p—m, 2 My My = 2m —p, } (24)
ZMyy Moy = 2m—p2%, SMy, My, = —m, XMy Myy = — 6m+ 2p + p2.
On substituting (23) and (24) in (22) and writing §; and S, in terms of Fisher’s k statistics
N =1k, = 8, (N—1)®ky = N(N—1)8,—3(N—1)8%,
wehave  Vo(W) = Ep(SY)/S3— {Bp (W)}

= 2pWN—p—1) /R ‘m_zf_%(l\’—p—l)}
(N+1)(N-1p" (N-12| "N~ N®+1) |

We now put C, = k,/k} and for reasons which will be apparent later we write

_ NN-1)(N+1) _p_2pN-p-1)
i e T Y L V) (26)
so that we have finally
_ (N-38)C,0x
VP(W) - VN(W) {1 =+ m} s (26)
where v 2p(N —p—1)

Y = enwr-p

is the variance of W on the usual normal theory.
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5. Cx AS A MEASURE OF ‘NON-NORMALITY  OF THE Z’S

We now show that the function Cx of the 2’s is analogous with the function C, of the y’s and
is a measure of ‘non-normality’ of the z’s. We first notice that M is invariant under any
non-singular transformation W = XT. For

M= XX'X)1X' = XTT(X'X)1T1T'X' = WWW)1 W',
N
If we now regard m = 3, M, as a function of m{X} of the elements x,, of X, we see that its
u=1

value is unchanged when every element x,, is replaced by the corresponding w,.

N
Now let us choose T so that W'W is diagonal with the ¢th element equal to 3 w?,. Then
u=1

N N D N 2
1 u=1

u=1 u=1 \i=
that is P P P et e
m= ¥ Zf(Z3)+ X X ZH/(X3X3) (27)
i=1 i=1 j+i=1
where ) N ) N » N
u=1 u=1 u=1

Now, because of the invariant property of m, equation (27) is still true if the corresponding
power sums for the 2’s (which we write as S, S, S%) replace the power sums Zf, 37, 33 for
the w’s.
Defining k statistics for the «’s in the usual way by
(N—1)kf =8 (N—1)®kf=N(N-1)8i—3(N-1)(8)%
(N — 1)k}, = NN +1) S — (N —1) 8§54
we find after a little reduction that
(N —2) (N —3) [ v { k } 2, 2 l kg }] (N=1)p(p+2)
= 4 =M+ = 28
WD NI L2 G T A e T N (29)
Substituting this expression in (25) we have finally

N—2 (2 kK » 2 ki }
X p(N—p-1) {j§1 (k5)? i§1 j=i=i2=1 ki K}

We see that just as C, = k,/k} is a measure of non-normality (specifically a measure of
kurtosis) for the y’s so Cy can be regarded as its multi-variable analogue for the 2’s. In
particular:

(@) If p = 1 then Cy is the same function of the elements of the single vector z; as C, is of
the elements of y.

(b) The expected value of Cy is zero for samples from a normal population. This is so
because the ratio of & statistics which Uy contains are homogeneous functions of degree zero
in the a’s. All such functions of normal variates are distributed independently of scaling
statistics & (i=1,2,...,p) and consequently the expected values of these ratios are the
ratios of the expectations. But for a normal distribution,

E(ki) = B{k} =0 (+j=12,...,p).

(¢) Cx is invariant under linear transformations of the z’s. Any sensible measure of
multi-variate non-normality would clearly need to possess this property.
7-2
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Upper and lower bounds for Cx

p? N-1
We first show that N Sms P

Because of the invariant property of m we may suppose, without loss of generality, that
X'X = 1. Then

N
But > Mgu_( } /N

Hence m—EM /N

Now suppose N — p further columns are added to X, the first of which is N —41, to form an
orthogonal matrix H. Then since the sums of squares of the elements of each row of H is unity

D
= X %, <1-1/N,
i=1

whence M2, < M, (1-1/N).
But M, = p,
whence : m = ZM;, < {(N-1)[N}EM,, = p(N—1)/N

Substituting these bounds in (25) we have finally
—2< +—Cx <N-L (30)

We shall show later that the lower bound is actually obtainable. The upper bound is
approached but cannot be attained in finite samples as is clear from the manner of its
derivation.

6. APPROXIMATE DISTRIBUTION OF R
Case 1. Permutation distribution of R

Following Pitman (1937) and Welch (1937) we now approximate the permutation distri-
bution of W with a beta distribution with degrees of freedom adjusted so as to have the
correct mean and variance. If v, = pand v, = N—p — 1 are the degrees of freedom of the beta
distribution appropriate on normal theory, then it is readily shown that the approximating
distribution has degrees of freedom dv, and v, where

_ (N+1)a . N-3
1_ 1
o= 1+Nﬁl—2a1 with o, = SNV 1)0 'x Cy- (31)

Equivalently the permutation distribution of R is approximated by an F distribution with
degrees of freedom v, = 6, p and v, = §;(N —p—1). In those cases where Cx and C, are not
simultaneously close to upper bounds we have to order N—!

871 = 1+ Cx C,[2N. (32)
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Case 2. Distribution of R under general non-normality of y. X fixed

If we now take expectations of the permutation moments over all samples, then C, in
V(W)isreplaced by E(C,) which we denote by I',. Again using the beta-distribution approxi-
mation we have that if p(e€) is any symmetric function of the elements of € and in particular
if the ¢’s may be regarded as independent random drawings from any probability distribution
whatever, R is distributed approximately as F with v; = 8, p and v, = §,(IV —p— 1) degrees
of freedom, where

—1 _ (N+1)(Z2 — 71\77_73,
ot = 1+N7—1—2oc2 and a2—2N(N—1)OXF” (33)
or, to order N1, 0;'=1+C0x T /2N. (34)

Case 3. Distribution of R under general non-normality of y and x

Finally, we may suppose that the regression variables themselves are random variables
distributed independently of the ¢’s in some p-variate distribution and that it is the devia-
tions of these variates from their sample means that is recorded in the matrix X.

Taking expectations of the moments over all realizations of X, Cy in (31) must be replaced
by E{Cx} which we denote by I'x.

Once again using the beta approximation, R will be approximately distributed as F with
v, = 03 p and v, = §5(IV —p — 1) degrees of freedom, where

—1 __ (N+1)OL3 3 — _Z&Ti
0t = 1+N———~—_1_2a3 with a5 = 2N(N—1)FXF”’ (35)
or, to order N1, 031 =1+TxT,/2N. (36)

7. ACCURACY OF THE APPROXIMATION

It should be noticed that the above approximations do not depend for their accuracy on
the fitting of an arbitrary distribution to the first two moments of W. The distribution of W
is known to be given exactly by the approximation when in case 2 the observations y are
normally distributed and when in case 3 either the observations y or the regression variables z,
or both, are normally distributed. We might expect to be able to represent moderate
departures from normality by suitable changes in the mean and variance of a system of
curves which are of the right basic shape. Evidences that such a hope is justified are:

(@) For case 1, Pitman (1937) has shown for analysis of variance tests that except in
very unlikely samples the third and fourth moments of W agree fairly closely with those
of the approximating beta distribution. We show later that the analysis of variance test for
equal groups corresponds to the general regression test when Cy attains its lower bound.

(b) For case 1, Box & Andersen showed by means of sampling experiments that the
permutation distribution appropriate to the comparison of two independent variances was
well represented by the approximation for distributions as non-normal as the rectangular
and the double exponential. As we shall see, the test they considered can be very nearly
reproduced in the general regression framework when Cy approaches its upper bound.

(c) For case 2, Box & Andersen showed the close agreement between the results of Gayen
(1950) and results obtained by this approximation in analysis of variance tests. This confirms
in particular the appropriateness of the general regression approximation at the lower
bound of Cy.
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(d) For case 2, Box (1953), using an argument not employing permutation theory,
obtained an F approximation to the distribution of R for the comparison of two independent
sample variances. In this the degrees of freedom were modified by functions which to order
N-1areidentical with those given by the approximating F distribution derived via permuta-
tion theory. This supports the essential validity of the approximation as Cx approaches its
upper bound.

8. SPECIAL CASE OF THE GENERAL ONE-WAY CLASSIFICATION
We can readily check our formulae against those of Welch for the one-way classification
analysis of variance with not necessarily equal groups. In the general regression model we
arrange that the uth element ;, of the ith x vector is 1 —n;/N when ¥, falls in the ¢th group
and —n,/N otherwise. Asis well known the general regression test then reduces to the usual
‘one way classification’ analysis of variance test for the comparison of p + 1 means. Then

p+1
Sy=2'Mz =y'My = ¥ n,5?— Ny,
i=1
where the overall sample mean is 7 and the sample mean for n; observations in the ith group
is ;.
Now ify, is any one of the n; observations in the ith group then the corresponding diagonal
element M, of M is n;1— N-1. Hence
N p+1
m = 2 Muu = E n’i(ni_l_N—l)z
u=1 i=1

P .—l_g?il

= iz=:1 n; N (37)
N—=3 ., [ NO+1) (251 __ (p41)
Fo1%x= 2[2p<N—p—1>{El”i B }‘1]' (38)

Substituting this expression in (21) gives the value obtained by Welch for Vo(W) and the
corresponding F approximation given by Box & Andersen.

8:1. Equal groups
If the number of observations is the same in every group so that

nz=n=N/(p+1) (i=1,2,“'9N),

we have using equation (31)

_P N-3, _
m= and N—_IOX——Z. (39)
The lower bound of the inequality (30) is thus actually attained for the equal groups analysis
of variance test.

Substituting the result in (31) we obtain correctly

1 N+1
-1 1 )T
=1 NG;LMQWVQ

or, to order N1, 01=1-C,/N. (40)
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The corresponding result with I', = F(C,) replacing C, provides the appropriate correction
factor for case 2 exemplifying the approximate effect of parent non-normality.

8:2. Very unequal groups
It is not possible to reproduce exactly the test for the comparison of two variances from the
present general regression set-up. As we have already mentioned in § 3-2 we can, however,
reproduce such a test with a slightly modified model in which the overall mean g, is supposed
known.
The permutation approximation given by Box & Andersen for the set-up of §3-2 with
n,+ny, = N —1 observations is
1( N+1 ,
= +§{N_T_zi;} G
or, to order N°, 81=1+4C, (41)
where (', is defined in equation (12). The corresponding result which gives the effect of non-
normality on this comparison of variances test is obtained as before by replacing ), with
I', = B(C,). Itis also possible by a different modification in which both the group means are
eliminated to reproduce the usual test to compare two variances when their group means are
estimated from the samples. With the present unmodified set-up we come closest to repro-
ducing the test for the comparison of two variances by selecting the ith vector to have an
element z,, = (N —1)/N when » = 7and x,;,, = — 1/N otherwise. This then corresponds to the
analysis of variance test discussed above with one observation in each of p groups and the
remaining N — p in the remaining groups. After a little manipulation we obtain for this case

£ -7 - [
. ,

X Y~y PI(WN-p-1)
s=p+1

where 7’ is now used for the sample mean of the first p observations and y” for the sample
mean of the last N —p observations.
The usual test criteria to compare the variances of two samples of p and N — p observations

would be l@él (. —7')? }/(p —1)
n ;

(¥s—y")?/(N—p—1)
s=p+1

which differs from R above only in that the latter contains a single extra comparison which
contrasts the mean 7'of the first p observations with the overall mean 7.

For this extreme case of very unequal groups, which nearly reproduces the comparison of
variances test, we have

R:

(42)

R = (43)

(N—p—l)} N-3 @)

_Ply_ WP Y00 o N1 (2

m_N{N 1 N—p and N—IOX N-1 (N—p

Provided that the ratio of p to IV is small, Cx will approach its upper bound of N —1 quite
closely.

If we write IV for N —1 — (N + 1)/(N — p), the modifying factor appropriate to this case is

IN-1 N
0 l=1+_ - c,,
* :N “1- Nq,/N} v

N+1)

3 W (45)
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which is very similar to the corresponding expression in equation (41) and once more, to
order N°, -1 = 1+4C;,.

8:3. Group sizes which approvimately nullify the effect of non-normality

We have seen that particular choices of group sizes can be made so that Cx approaches
a lower value of —2 and an upper value of N, giving rise to proportionate corrections.
Provided the number of observations is not very small, the slight corrective increase in
the degrees of freedom at the lower extreme is usually of little concern, but the considerable
corrective decrease at the upper extreme is much more serious. Consideration of equa-
tions (31), (33) and (35) shows that in general if in cases 1 and 2 we choose X so that Cx=0,
or, in case 3, sample from a population in which I'y = 0, the corrective factor supplied by
our approximations are all zero irrespective of the y’s or their distribution. One way of
exploiting this fact in experimental design theory has been noted by Box (1952).

Returning, now, to the one-way classification analysis of variance we see from equation (38)
that, if we choose the group sizes n, so that

2p(N—p-1)

(N+1) ° (46)

p+1
N 3 n'l—(p+1)p2=
i=1
then Uy = 0 and the correction term is zero. Rather surprisingly therefore the effect of non-
normality as measured by our approximation is not smallest for equal group sizes.
As an example, suppose there are just two groups of size n; =rN and n, = (1—7)N.

Substituting in (46) we obtain
1 N -2
"25{1%/TN} (47)

for the optimum ratio of subgroup sizes. If N = 12, for example, then approximately the
optimal group sizes are 9 and 3. For large N the optimal sizes are approximately in the
ratio 4:1.

At first sight the idea that unequal group sizes could produce less sensitivity to non-
normality seemed sufficiently surprising as to be almost unacceptable. In fact, as we show
in the next section, it is not difficult to explain it. The result itself may be confirmed inde-
pendently by study of the results of Gayen (1950). This author obtained the exact distribu-
tion of R for the one-way classification analysis of variance test for a parent population
expressed by an Edgeworth series. His method of derivation is, of course, quite different
from that used here. His corrective factor for kurtosis is proportional to a quantity which he
denotes by
20y vy — (k2 —k'2) (v, + vy + 2)

8(ni+vy+1) (v +v,+2)

p+1
In our notation v, =p, v, =N—p—1, k=p+1, k' = (p+12—N 3 n;L Making the
i=1

(vgg) =

necessary substitution we see that when (46) is satisfied Gayen’s quantity (vy,) is zero,
providing verification of our result.

We do not of course suggest that one would deliberately seek unequal sample sizes to
lessen the effect of non-normality in a test to compare means. The reduction in precision with
which comparison among the means could be made and the increase in sensitivity to variance
inequalities which would result would certainly not be worth the small increase in robustness
to non-normality.
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9. ROBUSTNESS DETERMINED BY ‘NORMALITY IN THE xS

We shall conduct the following discussion in terms of the situation (cases 2 and 3) where
the error vector € is drawn from any symmetric distribution. We have seen that our modi-
fying factor involves a measure of non-normality in the y’s multiplying an analogous
measure of ‘non-normality’ in the x’s. That such factors would be involved symmetrically
is to be expected from geometric considerations. The criterion R is a function of the angle
between the observation vector and the plane of the x vectors and, as was first shown by
Fisher, will follow its normal theory distribution if the y’s or the a’s or both are normally
distributed. The multiplicative characteristic shows how non-normality in the y’s is
magnified or diminished depending on whether the x’s are ‘normal-looking’ or not.
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Fig. 1. Some distributions of the elements of « for N = 20.

The effects can be understood intuitively by means of particular examples. Consider the
analysis of variance test for two equal groups. In this case the single vector x; has for its
elements 1N values equal to — % and LN values equal to + %. The distribution of individual
«’s is like that shown in Fig. 1(a) (for N = 20) and represents the most ‘platykurtic’
distribution possible, for which the value Cx tends to its lower limit of — 2. The set-up
involving very unequal groups, discussed in §8-2, comes closest to representing the com-
parison of two independent variances. The x vectors then each have one value equal to
(N —1)/N and the remaining N — 1 values equal to —1/N. The distribution for N = 20 is
that of the full circles shown in Fig. 1(c). This distribution has the same measure of kurtosis
as when its mirror image, shown by open circles, is added. This represents the most lepto-
kurtic distribution possible and the value of C'y tends to its upper limit, N. The full circles
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in Fig. 1(b) show a distribution in which } of the observations are set a distance $ from the
origin and the remaining 2 of the observations are set a distance —}. This distribution
is close to that expected to minimize the effect of non-normality in the y’s. Again the mirror
image distribution of open circles is added. We see that in this example the distribution of
the 2’s is doing its best to approximate a normal curve which accounts for the resulting
insensitivity to non-normality in the y’s.

10. CoNcLUSION

Our results may be summarized in the simple statement that sensitivity to non-normality
in the y’s is determined by the extent of the ‘non-normality of the 2’s’. The small effect in
one direction experienced with the equal groups analysis of variance test and the much
larger effect in the opposite direction found in the test for the comparison of independent
variances provide extremes of sensitivity within which the sensitivity of the general test
will be found. In the analysis of data arising from experimental designs such as factorials,
a small and usually unimportant degree of sensitivity characteristic of the equal groups
analysis of variance may be expected. With data in which the 2’s themselves are drawn
from near normal distributions an even smaller degree of sensitivity is to be expected. Tests
which employ x vectors in which one or two elements are very different in magnitude from
the remainder may be expected to show much greater sensitivity to non-normality in the y’s.
In addition to the tests for comparing variances, certain tests concerned with outliers and
with missing observations will show this greater sensitivity. One would expect that the
usual normal theory multi-variate overall regression tests will have analogous corrective
factors.

REFERENCES

Box, G. E. P. (1952). Multifactor designs of the first order. Biometrika, 39, 49-57.

Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318-35.

Box, G. E. P. & ANDERSEN, S. (1955). Permutation theory in derivation of robust criteria and the
study of departures from assumption. J. R. Statist. Soc. 17, 1-26.

Davip, F. N. & Jornson, N. L. (1951a). A method of investigating the effect of non-normality and
heterogeneity of variance on tests of the general linear hypothesis. Ann. Math. Statist. 22, 382-92.

Davip, F. N. & Jornson, N. L. (19518). The effect of non-normality on the power function of the
F-test in the analysis of variance. Biometrika, 38, 43-57.

Davip, F. N. & KenNparn, M. G. (1949). Tables of symmetric functions—Part 1. Biometrika, 36,
431-49.

FisuER, R. A. (1947). The Design of Experiments, 4th ed. Edinburgh and London: Oliver and Boyd.

GaveN, A. K. (1950). The distribution of the variance ratio in random samples of any size drawn from
non-normal universes. Briometrika, 37, 236-55.

Grary, R. C. (1947). Testing for normality. Biometrika, 34, 209-42.

PEeARsON, E. 8. (1931). Analysis of variance in cases of non-normal variation. Biometrika, 23, 114-33.

Prruan, E. J. G. (1937). Analysis of variance test for samples from any population. Biometrika, 29,
322-35.

Scurrrh, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika, 40,
87-104.

WEeLcH, B. L. (1937). On the z-test in randomised blocks and Latin squares. Biometrika, 29,:21-52,



