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Multicollinearity and Imprecise Estimation

By S. D. SiLvey
University of Glasgow
[Received December 1968]

SUMMARY
For the standard linear model containing several explanatory variables, the
precision of estimation of linear parametric functions is analysed in terms
of latent roots and vectors of X’X, where X is the matrix of values of explana-
tory variables. This analysis provides a practical method for detecting
multicollinearity, and it is demonstrated that it is also useful in solving
problems of optimum choice of new values of explanatory variables.

1. INTRODUCTION

MULTICOLLINEARITY is a term used in econometrics to denote the presence of linear
relationships or “near linear relationships” among explanatory (independent, con-
comitant) variables in linear regression; see, for instance, Johnston (1963), Malinvaud
(1966). The problems created by this state of affairs are well known and are illustrated
clearly by a very simple example. Consider the single-variable linear regression model

yi=<x+/3xi+ei, i= 1,2,...,”, (1.1)

with the usual assumptions—known x;’s, unknown « and B, and uncorrelated errors
€; with common variance. There are two “explanatory” variables here, the constant
“variable” which is identically 1 and the variable x. The values of these two
explanatory variables occurring in the model (1.1) are linearly related if and only if
X; = Xy =...= X,,, the common value being x,, say. A scatter diagram makes it quite
clear that when this is the case and x,#0, there is no hope of estimating « and 8
separately. On the other hand, o+ Bx, can be estimated perfectly well—by

|
y= ;l(y1+y2+---+yn),

in fact.

Referring still to this simple example, it is clear that if the x,’s are not all equal but
are very closely grouped around their mean %, then « and B can be estimated sepa-
rately, but estimates of both of them will be very imprecise (unless % is near zero, in
which case «, but not 8, may be fairly precisely estimated). It remains true, of course,
that a4 B% can be estimated with relative precision.

We now consider the general linear model involving several explanatory variables,

y=XB+e, 1.2)

where y is an n-vector of observations, X a known nxk matrix of explanatory
variables, @ an unknown k-vector of regression coefficients and € an error vector with
zero mean and variance matrix ¢2I. There is “extreme” multicollinearity here when
there is at least one linear relationship among the columns of X; that is, when the rank
of X is less than k. Then { is not identifiable, and, as in the simple example, certain
linear functions of @ cannot be estimated at all, though others can.
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It is not as immediately obvious what we mean by saying that there is “nearly”
extreme multicollinearity in the model (1.2), though there are several obvious ways in
which we might define fairly precisely the “degree of multicollinearity”” present.
However there is a sense in which such an exercise is pointless, since there is an
infinite number of versions of any given linear model and while one version may
exhibit certain features on which we concentrate attention in defining “degree of
multicollinearity”, another may not. For instance we may take the view, as has been
done recently by Farrar and Glauber (1967), that multicollinearity is an opposite
extreme from orthogonality, and base a definition of “degree of multicollinearity” on
the departure from orthogonality of the columns of X. However, we can produce, by
suitable reparametrization, an orthogonal version of (1.2). This is done by deter-
mining a non-singular matrix T such that the matrix X* = XT has orthogonal
columns, which is always possible. Then if we set * = T~1 8 we have

XB =X(ITH) @ = (XT)(T1B) = X*B%,
and the model
y=X*B*+e

is a reparametrized version of (1.2) with orthogonal explanatory variables.

Rather than seek to define degree of multicollinearity, therefore, we might more
profitably make a direct attack on the basic problem arising from multicollinearity,
namely, that of imprecise estimation. So in this note we shall seek to answer the
following two questions. Given the model (1.2), what can be estimated with relative
precision and what cannot? Can we determine an efficient practical procedure for
arriving at this distinction? Not surprisingly, it turns out that in answering these
questions we obtain as a by-product an efficient practical method of analysing multi-
collinearity.

2. IMPRECISE ESTIMATION

We start by considering, for the model (1.2), the extreme situation when certain
real parameters cannot be estimated at all, in the absence of prior information about
them. This arises when the rank of X is less than k.

As is well known, (see for instance Scheffé, 1959), when X does not have full rank,
certain linear parametric functions, that is, functions of the form

CB=cpritcafot... B

do not possess unbiased linear estimators. Indeed ¢’@ possesses an unbiased linear
estimator if and only if ¢’ can be expressed as a linear combination of the rows of X.
When X has full rank, every ¢’ can be expressed in this way, but otherwise some can
not. An equivalent, and potentially much more useful condition for ¢’ to be estim-
able, is that the vector ¢ can be expressed as a linear combination of the columns (or
rows) of X'X, a result proved by Rao (1965). This in turn is translated into an
immediately useable form by the following result.

Theorem 1. The linear parametric function ¢’8 is estimable if and only if ¢ is a
linear combination of latent vectors of X'X corresponding to non-zero latent roots of
this matrix.

Proof. The range of X'X, that is, the set of vectors expressible as linear combina-
tions of the columns of X'X is spanned by a linearly independent set of latent vectors
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of X'X corresponding to its non-zero roots. The result follows immediately from the
result of Rao quoted above.

There is an illuminating way of looking at this result. As indicated in the intro-
duction we obtain an orthogonal version of the model (1.2) by writing

X =XD)(TP),

where T is a non-singular matrix chosen in such a way that the columns of XT are
orthogonal. There are many possible choices of T. One choice is V, an orthogonal
matrix whose columns are orthonormal latent vectors of X'X: since VV' =1, we
may write

XB =XV)(V'B) = Zy,
where Z = XV and V'8 = y. The columns of XV are orthogonal since
XV)'XV = V'X'XV = diag{A;, Ay, ..., A}

where the A’s are latent roots of X'X. Now suppose that X'X has the latent root 0 of
multiplicity j. Then j of the columns of XV are zero—say the last j. It follows that the
last j components of y are annihilated—they just do not appear in the model at all,
essentially. So we cannot estimate yj_;.1, Yx—ji2 .-, Yi from our observations. On
the other hand, we can estimate vy, y,, ..., yx_;» Or any linear combination of these.
Therefore we can estimate ¢'@iff ¢’B transforms into oy y;+agye+ ...+ g vi—j
Now ¢'B =¢'VV'B = (V'c)’y. Hence we can estimate ¢'Biff the last j components of
V'c are zero. This is what the theorem says if we write V'c = & in the equivalent
form ¢ = Va.

This theorem is useful in practice because normally the order of the matrix X'X
is not excessive. (Its order is, of course, k x k, where k is the number of explanatory
variables). Moreover computer programs are available for calculating its latent roots
in descending order of magnitude, A, > A, >... > A;, say, and a corresponding ortho-
normal set, v, V,,...,V; of latent vectors. Let V be the orthogonal matrix whose
columns, in order, are those latent vectors, and suppose that the last j of the A’s are
zero. Then to determine whether ¢’ is estimable we need only calculate V'c; as above,
¢'B is estimable if and only if the last j components of V’c are all zero.

This analysis in terms of the latent roots and vectors of XX not only enables us
to distinguish between linear parametric functions which can be estimated and those
which cannot, but also provides a ready means of determining those which can be
estimated precisely, and those which are estimable but can be estimated only
imprecisely. To see this, let us suppose first that v is a unit latent vector of X'X
corresponding to a non-zero latent root A. Then, by the above theorem, v'@ is
estimable. Moreover the general version of the Gauss-Markov theorem, as proved for
example by Scheffé (1959), shows that the minimum-variance unbiased linear esti-
mator of v'@ is v'@ where B is any solution of the normal equations

X'XB = Xy.
Now
VX'XB =vXy,
and so
AWB =vXYy,
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since X'Xv = Av, or vX'X = Av'. It follows that
X2var (v') = v'X' var (y) Xv
= a?v'X'Xv
= Ao2v'y
= Ao?,

since v'v = 1.
Therefore

var (V') = o%/A.

A similar argument shows that, if v, and v, are orthogonal latent vectors of X'X
corresponding to non-zero roots, then cov(vy 3, v5 ) = 0.

Now let ¢'B be an estimable function. By the above theorem, ¢ can be expressed
in the form

€ =0V +ayVot...+a;V;, 2.1

where V;, Vs, ..., V; are orthonormal latent vectors of X'X corresponding to non-zero
roots A, A, ..., A;. By the Gauss—-Markov theorem, the minimum-variance unbiased
linear estimator of ¢'B is ¢/, and by the results just proved,

2
X2
Ay

The variance of ¢’{# depends, amongst other things, on the length of the vector c.
So in order to “normalize” the discussion and concentrate attention on the directions
which admit precise or imprecise estimation, we shall consider parametric functions
¢’B for which ¢’c=1. When c is expressed in the form (2.1), this implies that
Ya? = 1. The equation (2.2) then demonstrates quite clearly the distinction between
precisely and imprecisely estimable functions. Relatively precise estimation is possible
in the directions of latent vectors of X'X corresponding to large latent roots; relatively
imprecise estimation in these directions corresponding to small latent roots. Knowledge
of the latent roots of X'X provides a great deal of immediate information about the
possibilities of precise estimation. For instance, from (2.2) we can easily deduce that

var (¢'B)/o2 < 1/min (A, Ay, ..., Ap).

Thus if the minimum latent root of X'X is large, every linear parametric function can
be estimated relatively precisely. On the other hand if X'X has at least one very small
root, then there is the possibility of only imprecise estimation in at least one direction.
If the latent roots of X'X are all equal, every ¢’ such that ¢c = 1 can be estimated with
equal precision, and so on.

It is perhaps worth remarking that the sum of the latent roots of X'X is its trace,
and this is the sum of squares of the components of X. Thus if # is appreciable and X
does not have many zero or near zero components, the sum of the latent roots of X'X
will be large. It follows that if the number of explanatory variables is reasonably
small, XX will have at least one fairly large latent root, so that relatively precise
estimation will be possible in at least one direction. This is the analogue for the
model (1.2) of the obvious result for model (1.1) that relatively precise estimation of
at least one linear parametric function is always possible.

2
%4

A;

J

A 2
var (¢'B)/o? = %+ ot (2.2)
1
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The very natural transformation introduced in this section is not, of course, new,
and it will be recognized as that adopted in principal component analysis. Its use in
connection with multicollinearity has already been proposed by Kendall (1957).
Essentially what we have done is to change the emphasis in the analysis by asking
about the precision of estimation of linear parametric functions instead of enquiring
about which linear combinations of the explanatory variables should be omitted
from the regression equation. As suggested by Farrar and Glauber (1967) it may be
misleading to omit a linear combination of explanatory variables from the regression
equation merely because we have insufficient evidence about its effect on the dependent
variable. The change of emphasis which we have adopted has the merit of con-
centrating on the analysis of the information content of available data, and leaving
other questions to be discussed separately.

3. MULTICOLLINEARITY

As indicated, at least implicitly, by Kendall (1957), calculation of the latent roots
and an orthonormal set of latent vectors of X'X provides a very clear cut analysis of
multicollinearity.

Let us suppose that there is extreme multicollinearity in the model (1.2). Then
X'X has the latent root 0 of multiplicity k& — rank (X), since rank (X'X) = rank (X).
If rank (X) = k—1, then there is essentially one unit vector v such that X'Xv = 0.
(We say essentially one, because if X'Xv = 0 then also X'X(—v) = 0). The fact that
X'Xv = 0 implies, by the theorem, that v'@ is inestimable, as is any linear parametric
function ¢'@, for which ¢ has a non-zero component in the direction of v.

Now X'Xv=0 if and only if Xv=0. Consequently the multicollinearity is
attributable to the fact that every row of X is orthogonal to v; that is, the values of the
explanatory variables at which observations have been made satisfy the linear
relationship

vy X1+ 0 Xo+ ... +UL X, =0,

where (01, 0,, ..., ;) = V'. From this we can deduce immediately how to choose a new
set of values of the explanatory variables x;, Xy, ..., X, in order to get rid of the multi-
collinearity. We simply choose a new set in a direction which is not orthogonal to v,
and the obvious way of doing this is to choose the new set in the direction of v. This
choice is not unique, of course.

If rank X = k—j and j>1, then there are j orthogonal vectors, vy, ¥, ...,V;, say
such that Xv; = 0, and correspondingly j independent linear relationships among the
observed values of the explanatory variables. Then multicollinearity may be eradicated
by taking a new observation at each of j new sets of values of the explanatory variables,
one set in each of the directions vy, v, ..., v;. Again this choice is not unique. However
it is clear that the multicollinearity cannot be eradicated by taking less than j new
observations.

A similar analysis applies when multicollinearity is present, but is not extreme.
By this we now mean that X'X has no zero latent roots, but has some small ones.
Suppose first that X'X has k—1 large roots and one small one, A say. Estimation is
then relatively imprecise in the direction of a unit latent vector corresponding to A.
Let this vector be v and suppose that we take an additional observation y,_, at the
values X, .1 = (X3 41> Xg,n115 ---» Xx,n11) Of the explanatory variables, where x/,,; = IV



544 SILVEY — Multicollinearity and Imprecise Estimation [No. 3,

The model for the complete set of observations, including the new one is

(J’:ﬂ) N (x;):q)p - (€:+1)

or Vi = X, B+e,, say.
Now XX, = X'X+x,,1X, 4
= X'X+ 2w
Further X, X, v=X'Xv+2w'y
= Av+[%v
=(A+D2)v.

Thus v is a latent vector of X}, X,, corresponding to the root A+ /2.

A similar argument shows that any other latent vector of X'X, orthogonal to v,
is also a latent vector of X}, X, and that the corresponding roots of the two matrices
are equal. Hence by choosing x,,,, in the direction of v, we improve the precision of
estimation in the direction for which previously it was most imprecise.

The generalization is obvious. If X'X has more than one small latent root, then
there are several orthogonal directions in which estimation is relatively imprecise.
Just as in the extreme case, several new observations have then to be taken in order to
achieve the somewhat vague aim of improving the precision of estimation all round.
The choice of new sets of values of the explanatory variables is governed by the
directions of latent vectors corresponding to the small roots.

There is an interesting connection here with a particular result of Kiefer and
Wolfowitz (1960), extended by Karlin and Studden (1966), concerning optimum
experimental design. Suppose that we pose the following problem. We have already
made observations on a dependent variable at certain values of explanatory variables
and these conform to the linear model y = XB+e€, which we have been discussing.
We wish to choose a new set of values of the explanatory variables, x,,,;, subject to
X/, 11 X1 <72 at which to take an additional observation on the dependent variable,
and this choice has to be optimum in some sense. Two criteria of optimality have been
considered in work on experimental design, and these, when applied to this particular
problem, are:

(i) choose x,,,, in order to maximize the minimum latent root of the new infor-

mation matrix X} X, = X'X+x, ;X .13

(ii) choose x, ., in order to maximize the determinant of X{ X,.

(For a general discussion of these criteria, and further references, see Kiefer, 1958).

The result of Kiefer and Wolfowitz (1960), referred to above, is that these two
criteria, applied to a class of problems which apparently does not contain that under
discussion, are equivalent in the sense that any design optimum relative to one is also
optimum relative to the other.

It is interesting that this equivalence applies in the present instance also, and a
constructive proof can be given of the fact that the choice of x,, ,, in the direction of a
latent vector of X'X corresponding to its minimum latent root, and subject to
X),11Xp4q = [%, is optimum relative to both criteria. We shall not go into details of
this result here, since it is somewhat apart from our main line of discussion, and we



1969] SILVEY — Multicollinearity and Imprecise Estimation 545

shall content ourselves with the remark that the choice of x,,,; suggested above on an
intuitive basis, can be justified on this more formal basis also.

4. OptiMUM CHOICE OF NEW VALUES OF THE EXPLANATORY VARIABLES

As we have seen, choosing a new set of values of the explanatory variables in the
direction of a latent vector of X'X keeps everything tidy, since the augmented matrix
X, then has the property mentioned above: the latent vectors of X, X,, coincide with
those of X’X and the latent roots of these matrices are simply related. However, in
practice, complete freedom of choice of new values of the explanatory variable may
not be available. Moreover, we might well have a more specific object than that of
“improving estimation where it is most imprecise.” Our discussion would not be
complete therefore, without answers to the following related questions.

(i) How is precision of estimation affected by taking another observation on the
depondent variable at the values (X;,11,%g 5415 > Xint1) = Xp4q Of the
explanatory variables, when x,, ., is not necessarily in the direction of a latent
vector of X'X?

(ii) How should x,,,, be chosen to improve as much as possible the estimation of
a specific linear function ¢’@? This question arises when, for instance, we wish
to improve the estimation of a particular regression coefficient or when we
wish to predict y at the specific values (cy, ¢y, ..., ¢) = ¢’ of the explanatory
variables. :

Although it is not strictly necessary we shall split the discussion of these questions

into two parts:

(@) the case where X has full rank and every linear parametric function can be
estimated before the new observation is taken;

(b) the case where X does not have full rank.

(@) Rank (X) =k.
Let {3, be the least-squares estimate of 8 from the original observations. Then
var 3, = o2(X'’X)~L.

Let f,., be the least-squares estimate of B obtained from the original set of
observations augmented by a new observation on the dependent variable at the new
values x,,,; of the explanatory variables. Then

var 8,1 = ¥ (X'X+X,,1 %, )7

if, as we shall assume, the error in the new observation is uncorrelated with previous
errors and has the same variance as each of them.
The improvement in the estimation of ¢’ given by the new observation at x,, ,, is

var (clén) —var (clén+l) =2 [(X'X) 1= (X'X+X,, 1 X, 11 M €. 4.1

This expression becomes much more manageable if we change the basis in R* to an
orthonormal set v, Vs, ...,v;, of latent vectors of X'X, corresponding to its roots
A Ags ---s Ay, say. Let V be the orthogonal matrix whose columns are v;, Vs, ..., Vy
and let

c¢=Va and x,,,=Vz
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Then we have
V'X'XV = diag{\;, Ap, ..., N3} =D, say;

gi var(c'B,) = ¢(X'X)1c

=a'D1a

= Xai/A;
and

1 VA
—gvar ('B,4) =2’ [D+zz']a
D1zz’D!
= / D_1 — e
o
by a standard, easily verified, result on matrix inversion.
So the improvement (4.1) in the estimation of ¢’ brought about by a new observa-
tion at x,,,; is
,aD1zz’D1a
1+z’D 'z

(s o)

The simplicity of this expression evidences again how well adapted to our present
purposes is the orthogonal version of the original model obtained by writing

XB = XV)(V'B).

Having calculated the latent roots and vectors of X'X we can very quickly calculate
from (4.2) the improvement in the precision of estimation of any function ¢'@,
achieved by taking a new observation at the values x,,,; of the explanatory variables.

We turn now to the question of how x,,,, should be chosen in order to improve
the precision of estimation of a particular ¢'B. Naturally this choice depends on any
restrictions which practical considerations impose. We shall consider the restriction
that x;, ., X, <b? noting that, from a practical point of view, it will seldom be the
case that the choice is restricted in such a mathematically convenient way. For
instance, in practice, one of the “explanatory’ variables is nearly always the constant
variable which takes the value 1, so that x,,,, is subject to the condition that a parti-
cular component takes the value 1 in addition to any other restrictions which may be
imposed. Nevertheless some insight to the general problem is gained by considering
the tractable condition that x), ; X, ,; <5

It is clear on intuitive grounds and easily proved from the expression (4.2), that
for a given direction of x,,,; which gives some improvement in the precision of estima-
tion of ¢'B, the greater the length of x,,,,, the greater the improvement. So we might
as well replace the condition x,, X, ,; <b% by X/ ,, X, ., = b? and we shall now show
that, subject to the latter condition, the optimum direction for x,, ., is that of the vector

I+52X'X) e

or, in non-matrix notation,
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Writing ¢ = Va and x,,,; = Vz, as above, the problem is to choose z,, z,, ..., z;, to
maximize (4.2) subject to the condition z'z = b2, since z'z = x/,,, X, ;. This is a
straightforward maximization problem. We introduce a Lagrange multiplier & and
differentiate, giving,

UG WGZ 2 (92
R =)

z2 z2\ 2
1+3= (1+Z—i)

tpz;=0, i=1,2,.,k

or
ad_z L o -
B )\iB2+,uzi-—O, i=12,..,k, “4.3)
where
_v%z
A= X
and

z2
B=1+Y
A

For each i multiply the ith equation in (4.3) by z, and add, giving

2 2
%—(B—- 1)%5+,ub2 =0,
that is,
A2
bR
Therefore
L (l+l) _Aa
"B2\p? A B A
and so
a;
AT
or

zoc (I+52D)a.
This is equivalent to
X, ¢ A+5672X'X) ¢,
as is easily verified.

We shall discuss this result in Section 5, after considering the case where rank X <k.

(b) Rank X<k.
There are two cases to be considered when rank X<k:
(i) the new set of values x,,,, of the explanatory variables is such that x,,_, is a
linear combination of latent vectors of X'X corresponding to non-zero roots;
(ii) x,,,, does not satisfy this condition.
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The first of these cases does not raise any new problems. Linear parametric
functions estimable before the new observation has been taken of course remain
estimable and no non-estimable function becomes estimable. Formula (4.2) remains
valid for estimable ¢’'B’s provided summation is restricted to positive A;’s. And it
remains true that, subject to x;, ,; X, ,; = 4%, the optimum direction for x,, ,, to improve
the estimation of an originally estimable ¢'B is that of (I+52X'X) ¢,

We shall not substantiate these remarks in detail. They follow fairly directly from
a study of the orthogonal version of the model which is really the key to our present
analysis. When we write X in the form

EV)(V'B) = Zy

(see the remarks following the proof of Theorem 1) and rank X = j< k, then Z may be
partitioned into

(ZW 0)

w
where Z™ has order n xj and rank j: if vy is conformably partitioned into Y(z) and if

we are interested only in originally estimable ¢’®’s, then y®, which is annihilated by
Z, may be ignored completely and our model is essentially

y= Z(l) Y(l) + €.

All the parameters in this version of the model are estimable and it is not difficult to
use the arguments of the previous section to substantiate the remarks made at the
beginning of this one.

However it is certainly not immediately obvious that if we are interested in choos-
ing a new set, x,,,, of values of the explanatory variables in order to estimate, as well
as possible, a previously inestimable ¢'8, the optimum direction of x,,,, is that of
(I+562X'X)1c. But this result is true, as we shall now demonstrate. We shall carry
through the discussion entirely in terms of an orthogonal version of the model and
then revert to the original version.

Suppose that rank X =j. Then X'X has j non-zero latent roots, A;, Ay, ..., A;.
Let v;,Vy, ..., ¥; be an orthonormal set of vectors corresponding to these.

X’X has the latent root zero of multiplicity k—j. There is considerable freedom of
choice of k—j orthonormal vectors corresponding to the root zero, when k—j>1. It
suits our present purposes to choose v;,; in the subspace spanned by vy, v, ..., v; and c.
(Note that, since ¢’ is inestimable ¢ is linearly independent of v;, v, ..., V;.)

Specifically we take

Vit € €= (V1 €) Vi —(V2€) Vp—... = (V; ©) ¥},

the choice of the coefficients of v;, vy, ..., v; ensuring that v,, is orthogonal to each of
vy, ¥y, ...,V; and therefore that X'Xv;,;, =0. Now let v, 5,V;3,...,V; complete an
orthonormal set of latent vectors of X'X, so that each v;, is a vector corresponding
to the root zero. Then when we write

XB=XV)(VB) =Zy,
as before
Z=(mo),
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where Z® has order nxj and rank j: ;,%s,...,; are initially estimable, but
Yj+1s Vitas -++> Y5 ar€ not. Our choice of v;, ensures that

CB=ayytadyst. .. +8GuY0
that is, that
c'V = (ay,a...,8,,0,0,...,0).
To make ¢/P estimable we must choose x,,,, so that z’ = x/,, V, has the form
z' = Uz,2,,...,2;, 1,0,0,...,0),

because we must make v;,, estimable, and the only way of doing so is to have the
(j+ Dth component of z’ non-zero and the subsequent components zero.

For the canonical version of the problem, therefore, we may ignore y;. g, ¥j.43s --+> Vi
completely and suppose that we are given initially a matrix (Z* 0) of explanatory
variables, where Z® is an 7 xj matrix of rank j and 0 is the zero column vector. We
have to choose a new set of values

Uzy, 29y .y 25 1) = (2, 1)

of the explanatory variables in order to minimize

Zw o\ [/ z® o\t
a’ a,
which is the variance of the least-squares estimator of a’y = ¢'B.
Write U = ZM'ZW, Then

YA/ 7 ZzvY 0 U412z 2z
o I 7 1] \ rz B
and the inverse of this matrix is
Ut —-U 1z
—ZUt (/42U 1z )
Hence

, , U —-U-z
var(c¢'B,.) =a

—zZU (/42U 1z

(o a.) U Uz o
= (0l 4,
U\ —2Ut (B+2U0z )\ gy

where ‘a' = (a"ajﬂ), ie., o =(ay,a,...,q).
This simplifies to

dc YT~ a2.
var (¢ pn+l) = (aj+1 z—a)'U l(aj+1 z—o)+ 1[‘2"1
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Now the condition X/, ,,X,,4; = b? is equivalent to /%(z'z+ 1) = 5% and so
'A _ (1 + Z,Z)
var(¢'B,11) = (441 2— W)'U g, 2— ) +4af 44 T

The problem is to choose z to minimize this expression.
Differentiation yields

a2
or

1
. [ﬁ I+ U“l] z=a;,Ula
or
2= (1+20) [ o (4.4)
- b2 aj+1 . .

(Note that ;. is non-zero since we assumed ¢’ to be inestimable initially.)
Equation (4.4) is equivalent to

(z) _._1_( I+5620 0 )*1( a )
1) a4 0’ 1 441

or to
z o
1 a
1 (I+b2U 0 \] %
o |=a e )| o @)
0/ 0

where each vector is of order kx 1.
Reverting now to the original model, (4.5) says that

—2 -1
V'xn+loc(1+';, v (1)) Ve

-2 -1
anOC[V(H_b v 0) V’]c.

that is,

0’ I
As may be easily verified, the matrix in square brackets in this final equation is
I+52X'X]1.

We have now completed a proof of the following.

Theorem 2. Given the model (1.2) and the condition x, ,, X,,,; = b? satisfied by a
new set, X,,,,, of values of the explanatory variables, the optimum direction of x,, 4
for improving the precision of estimation of ¢’B, is that of the vector I+5-2X'X)c.
Here it is assumed that the error associated with the new observation is uncorrelated
with errors in the original model and has the same variance as each of them. No
condition is imposed on rank (X).
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5. REMARKS

5.1. One of the implications of Theorem 2 seems worthy of comment. The larger
is b2, that is, the larger we can take the length of the new vector x,, ., the nearer to the
direction of ¢ should we take its direction. This is intuitively acceptable. If b? is very
large relative to the components of X'X, the potential information about ¢’@ in the
new observations dominates that contained in the original observations, so that we
should act almost as if we were starting with no information at all about ¢’@. If, on
the other hand, 52 is small, it becomes much more important to make optimum use of
the information about ¢’@ in the original observations when choosing the direction
of X,, 1.

5.2. It is natural to enquire how the result stated in Theorem 2 is affected if the
error in the new observation taken at x,,,, has a variance different from that in each
of the original data.

Suppose, then, that the variance of the new observation is Ao?, that is, A times the
variance of each of the original errors. To highlight the effect of this we shail take
b? = 1 and suppose that x/,,; X, ,; = 1. The model for the new observation,

—_ ’
VYni1 = Xp11 B+ enpa

is equivalent to

y 1 ! €
- () B
which we may rewrite as
Vi =X Btedi,

where e, ; has variance o? and x3 , is subject to the condition x}; x,, ., = A=%. By
Theorem 2 the optimum direction for x* ., (and so for x,,,; which is proportional to
x},y) is that of the vector (I+AX'X)~¢c. Thus the smaller the variance of the new
observation, the more nearly should we take x,,,, in the direction of ¢. This certainly
conforms with the intuitively obvious result that if the new observation has no error
at all, we must take x,,; in the direction of c!

5.3. Theorem 2 tells us that if we have no information about B at all, then the best
direction for a set of explanatory variables in order to estimate ¢’@ is that of ¢, for we
can apply the theorem simply by taking X = 0. This is a result which could scarcely
be described as surprising. However we can apply the theorem in a slightly less
obvious way, when we have prior information about B in the form of an unbiased
estimator 8 whose variance matrix is known; in other words the summary of our
prior information is

B=B+u, (5.3.1)

where E(u) = 0 and var (u) = 02X, Z being a known positive definite matrix, and ¢* a
known constant [in fact the variance of the new observation (see below)]. We propose
to take an observation on a dependent variable y at a set of values x" = (xy, Xy, ..., Xz)
of explanatory variables in order to increase our information about a particular linear
function ¢’ as, for example, if we wish to know more about a particular coefficient S;.
In what direction should we choose x, when x'x = 1 and theerror in the new observation
is uncorrelated with u and has variance 02? Theorem 2 can be applied as follows.
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Since X is positive definite, it can be expressed in the form
2 =PP,
where P is non-singular. We use the standard trick of writing (5.3.1) in the form
P =P1B+P1u
or Y=P1B+v

where Y = P-1f and v = P—1u so that varv = o2L

Thus our prior knowledge in (5.3.1) is equivalent to that contained in observations
Y;, Ya, ..., Y3, at values of the explanatory variables given by the rows of P~1, those
observations having uncorrelated errors with a common variance. By Theorem 2 the
optimum direction for x is that of

[I+(P)1P1]1c = I+2-1)Lc.
= I+3)1Zc.

5.4. There are various obvious questions which we have left unanswered. How
do we choose x,,,; when one of the explanatory variables is the constant variable 1?
The answer will depend on what restrictions there are on the choice of values of the
other explanatory variables. If we have to choose several sets of explanatory variables
for further observations, how do we choose them? Clearly one possibility is to choose
them sequentially, optimizing at each stage; but this sequential choice may not be
optimum. What happens if the error in the new observation is correlated with the
previous errors? And so on.

5.5. Tt is scarcely necessary to remark that, from the point of view of the econo-
metrician such questions are often of purely academic interest, since values of explana-
tory variables are determined for him by the system and he has no freedom of choice
whatsoever. Our main object has been to illustrate some additional possible advant-
ages of looking at a particular orthogonal version of the linear model, as suggested by
Kendall (1957), namely that derived from consideration of the latent roots and vectors
of X’X. We do not suggest that this version is invariably the most advantageous
either from a theoretical or from a practical viewpoint. However, it may be found
useful for other problems, as it clearly is for those considered here.
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