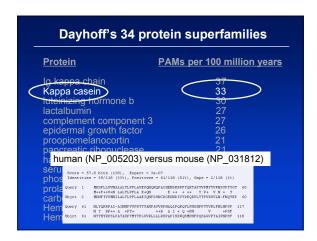
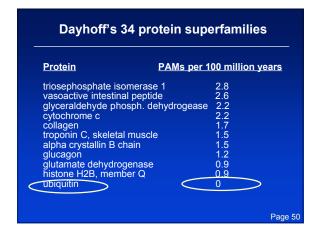
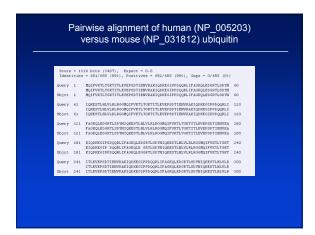


Outline for today


BLAST and BLAT

UCSC: Proteome browser, gene sorter, BLAT


NCBI: RefSeq, Trace


UniProt: knowledgebase, UniRef, UniParc

Dayhoff's 34 protein superfamilies **Protein** PAMs per 100 million years Ig kappa chain Kappa casein Iuteinizing hormone b Iactalbumin complement component 3 epidermal growth factor proopiomelanocortin pancreatic ribonuclease haptoglobin alpha serum albumin phospholipase A2, group IB prolactin carbonic anhydrase C Hemoglobin α Hemoglobin β 37 33 30 27 26 21 20 19 17 16 12 12

<u>Protein</u> !	PAMs per 100 million years
apolipoprotein A-II	10
lysozyme	9.8
gastrin	9.8
myoglobin	8.9
nerve growth factor	8.5
myelin basic protein	7.4
thyroid stimulating hormone	b 7.4
parathyroid hormone	7.3
parvalbumin	7.0
trypsin	5.9
insulin	4.4
calcitonin	4.3
arginine vasopressin	3.6
adenylate kinase 1	3.2

Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?

		A	R	N	D	C	Q	E	G			
		Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly			
F	4											
F	3	30										
1	V	109	17									
Ι)	154	0	532								
(7	33	10	0	0							
(Q	93	120	50	76	0						
I	(1)	266	0	94	831	0	422					
	Ĵ	579	10	156	162	10	30	112				
I	Η	21	103	226	43	10	243	23	10			
Da	Dayhoff (1978) p.346. Page 52											

The relative mutability of amino acids

Asn	134	His	66
Ser	120	Arg	65
Asp	106	Lys	56
Glu	102	Pro	56
Ala	100	Gly	49
Thr	97	Tyr	41
lle	96	Phe	41
Met	94	Leu	40
Gln	93	Cys	20
Val	74	Trn	18

Note that alanine is normalized to a value of 100. Trp and cys are least mutable.

Asn and ser are most mutable.

Normalized frequencies of amino acids

Gly	8.9%	Arg	4.1%
Ala	8.7%	Asn	4.0%
Leu	8.5%	Phe	4.0%
Lys	8.1%	Gln	3.8%
Ser	7.0%	lle	3.7%
Val	6.5%	His	3.4%
Thr	5.8%	Cys	3.3%
Pro	5.1%	Tyr	3.0%
Glu	5.0%	Met	1.5%
Asp	4.7%	Trn	1.0%

- blue=6 codons; red=1 codon
- These frequencies f, sum to 1

Page 53

Dayhoff's mutation probability matrix for the evolutionary distance of 1 PAM

- We have considered three kinds of information:
 a table of number of accepted point mutations (PAMs)
 relative mutabilities of the amino acids
 normalized frequencies of the amino acids in PAM data

This information can be combined into a "mutation probability matrix" in which each element M_{ij} gives the probability that the amino acid in column j will be replaced by the amino acid in row i after a given evolutionary interval (e.g. 1 PAM).

Page 50

Dayhoff's PAM1 mutation probability matrix

	A Ala	R Arg	N Asn	D Asp	C Cys	Q Gln	E Glu	G Gly	H His
Α	9867	2	9	10	3	8	17	21	2
R	1	9913	1	0	1	10	0	0	10
N	4	1	9822	36	0	4	6	6	21
D	6	0	42	9859	0	6	53	6	4
С	1	1	0	0	9973	0	0	0	1
Q	3	9	4	5	0	9876	27	1	23
Е	10	0	7	56	0	35	9865	4	2
G	21	1	12	11	1	3	7	9935	1
Н	1	8	18	3	1	20	1	0	9912
Ι	2	2	3	1	2	1	2	0	0

Each element of the matrix shows the probability that an original amino acid (top) will be replaced by another amino acid (side)

Dayhoff's PAM0 mutation probability matrix: the rules for extremely slowly evolving proteins

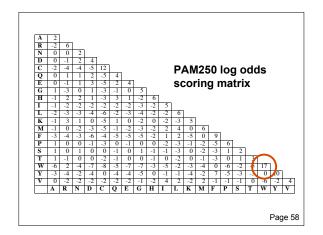
PAM0	A	R	N	D	C	Q	E
	Ala	Arg	Asn	Asp	Cys	Gln	Glu
A	100%	0%	0%	0%	0%	0%	0%
R	0%	100%	0%	0%	0%	0%	0%
N	0%	0%	100%	0%	0%	0%	0%
D	0%	0%	0%	100%	0%	0%	0%
C	0%	0%	0%	0%	100%	0%	0%
Q	0%	0%	0%	0%	0%	100%	0%
E	0%	0%	0%	0%	0%	0%	100%
G	0%	0%	0%	0%	0%	0%	0%

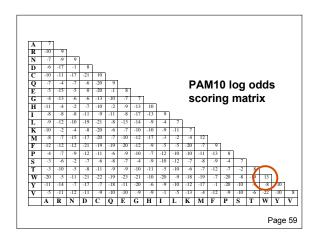
Top: original amino acid Side: replacement amino acid

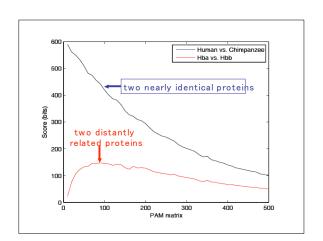
Page 56

Dayhoff's PAM2000 mutation probability matrix: the rules for very distantly related proteins

PAM∞	A	R	N	D	C	Q	E	G
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly
A	8.7%	8.78	8.7%	8.7%	8.7%	8.7%	8.7%	8.7
R	4.1%	4.18	4.18	4.1%	4.18	4.1%	4.1%	4.1
N	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0
D	4.7%	4.78	4.7%	4.7%	4.7%	4.78	4.7%	4.7
С	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3%	3.3
Q	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8
E	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0
G	8.9%	8.98	8.98	8.9%	8.98	8.98	8.9%	8.9


Top: original amino acid Side: replacement amino acid


Page 56


PAM250 mutation probability matrix

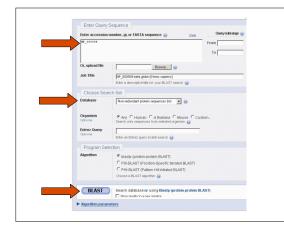
	Α	R	N	D	С	Q	Е	G	Н	I	L	K	M	F	P	S	T	W	Y	V
Α	13	6	9	9	5	8	9	12	6	8	6	7	7	4	11	11	11	2	4	9
R	3	17	4	3	2	5	3	2	6	3	2	9	4	1	4	4	3	7	2	2
N	4	4	6	7	2	5	6	4	6	3	2	5	3	2	4	5	4	2	3	3
D	5	4	8	11	1	7	10	5	6	3	2	5	3	1	4	5	5	1	2	3
C	2	1	1	1	52	1	1	2	2	2	1	1	1	1	2	3	2	1	4	2
Q	3	5	5	6	1	10	7	3	7	2	3	5	3	1	4	3	3	1	2	3
Е	5	4	7	11	1	9	12	5	6	3	2	5	3	1	4	5	5	1	2	3
G	12	5	10	10	4	7	9	27	5	5	4	6	5	3	8	11	9	2	3	7
Н	2	5	5	4	2	7	4	2	15	2	2	3	2	2	3	3	2	2	3	2
I	3	2	2	2	2	2	2	2	2	10	6	2	6	5	2	3	4	1	3	9
L	6	4	4	3	2	6	4	3	5	15	34	4	20	13	5	4	6	6	7	13
K	6	18	10	8	2	10	8	5	8	5	4	24	9	2	6	8	8	4	3	5
M	1	1	1	1	0	1	1	1	1	2	3	2	6	2	1	1	1	1	1	2
F	2	1	2	1	1	1	1	1	3	5	6	1	4	32	1	2	2	4	20	3
P	7	5	5	4	3	5	4	5	5	3	3	4	3	2	20	6	5	1	2	4
S	9	6	8	7	7	6	7	9	6	5	4	7	5	3	9	10	9	4	4	6
T	8	5	6	6	4	5	5	6	4	6	4	6	5	3	6	8	11	2	3	6
W	0	2	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	55	1	0
Y	1	1	2	1	3	1	1	1	3	2	2	1	2	15	1	2	2	3	31	2
V	7	4	4	4	4	4	4	5	4	15	10	4	10	5	5	5	7	2	4	17

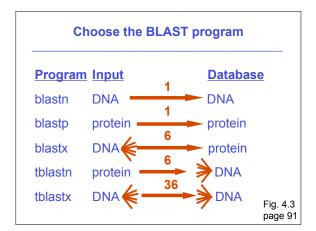
Top: original amino acid Side: replacement amino acid

BLAST

BLAST (Basic Local Alignment Search Tool) allows rapid sequence comparison of a query sequence against a database.

The BLAST algorithm is <u>fast</u>, <u>accurate</u>, and web-<u>accessible</u>.


page 87


Four components to a BLAST search

- (1) Choose the sequence (query)
- (2) Select the BLAST program
- (3) Choose the database to search
- (4) Choose optional parameters

Then click "BLAST"

page 88

How a BLAST search works

"The central idea of the BLAST algorithm is to confine attention to segment pairs that contain a word pair of length w with a score of at least T."

Altschul et al. (1990)

(page 101, 102)

How the original BLAST algorithm works: three phases

Phase 1: compile a list of word pairs (w=3) above threshold T

Example: for a human RBP queryFSGTWYA... (query word is in yellow)

A list of words (w=3) is:

FSG SGT GTW TWY WYA YSG TGT ATW SWY WFA FTG SVT GSW TWF WYS

Fig. 4.13 page 101

Phase 1: compile a list of words (w=3) GTW 6,5,11 22 GSW 6,1,11 18 ATW 0,5,11 16 NTW 0,5,11 16 GTY 6,5,2 13 GNW 10 neighborhood GAW 9 word hits < below threshold Fig. 4.13 page 101

A R N D	R -1 5 Scoring matrix such as Scoring matrix such as D -2 0 1 6 Blosum62 Scoring matrix such as Blosum62 Scoring matrix such as Scoring matrix such											į									
Q	-1	1	0	0	-3	5	l														
E	-1	0	0	2	-4	2	5	1													
G	0	-2	0	-1	-3	-2	-2	6	1												
H	-2	0	1	-1	-3	0	0	-2	8												
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	1										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	1									
K	-1	2	0	-1	-1	1	1	-2	-1	-3	-2	5	1								
M	-1	-2	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	1							
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	1						
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	1					
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1				
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	- 5				
W	-3	-3	4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	1		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	1	
v	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4	
	A	R	N	D	С	Q	E	G	Н	I	L	K	M	F	P	S	T	w	Y	v	
																			Pa	age	61

How a BLAST search works: 3 phases

Phase 2:

Scan the database for entries that match the compiled list.

This is fast and relatively easy.

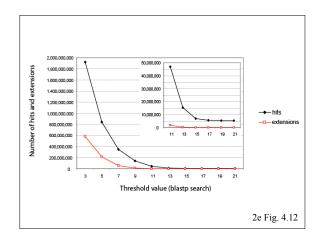
Phase 3: when you manage to find a hit (i.e. a match between a "word" and a database entry), extend the hit in either direction. Keep track of the score (use a scoring matrix) Stop when the score drops below some cutoff. KENFDKARFSGTWYAMAKKDPEG 50 RBP (query) MKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin (hit) extend Hit! page 101

How a BLAST search works: threshold

You can modify the threshold parameter.

The default value for blastp is 11.

To change it, enter "-f 16" or "-f 5" in the advanced options of NetBLAST.


(To find NetBLAST enter it as a query on the NCBI site map.)

page 102

page 101

Phase 1: compile a list of words (w=3)

	GTW	6,5,11	22
neighborhood	ASW	6,1,11	18
word hits	ATW	0,5,11	16
> threshold	NTW	0,5,11	16
/m_11\	GTY	6,5,2	13
(T=11)	GNW		10
neighborhood	GAW		9
word hits			
< below thresh	old		Fig. 4.13

How to interpret a BLAST search: expect value

The expect value \boldsymbol{E} is the number of alignments with scores greater than or equal to score \boldsymbol{S} that are expected to occur by chance in a database search.

An *E* value is related to a probability value *p*.

The key equation describing an $\underline{\textit{E}}$ value is:

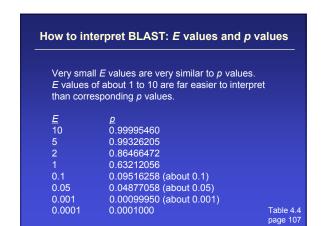
E = Kmn e^{-λ.S}

page 105

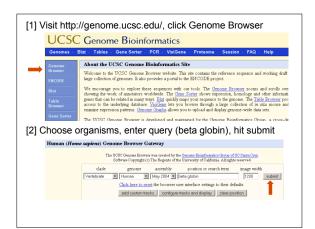
$E = Kmn e^{-\lambda S}$

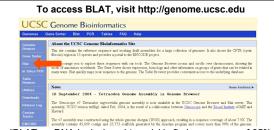
This equation is derived from a description of the extreme value distribution

S = the score

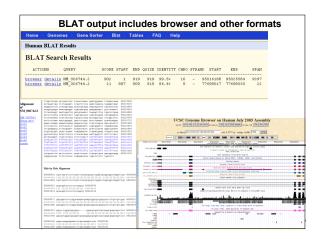

E = the expect value = the number of highscoring segment pairs (HSPs) expected to occur with a score of at least S

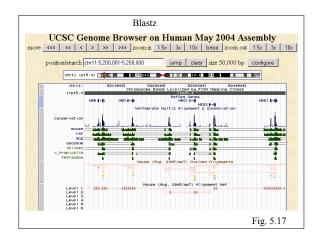
m, n = the length of two sequences


 λ , K = Karlin Altschul statistics

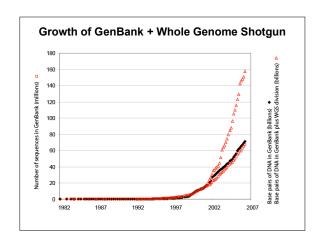

page 105

Outline for today BLAST and BLAT UCSC: Proteome browser, gene sorter, BLAT NCBI: RefSeq, Trace UniProt: knowledgebase, UniRef, UniParc





"BLAT on DNA is designed to quickly find sequences of 95% and greater similarity of length 40 bases or more. It may miss more divergent or shorter sequence alignments. It will find perfect sequence matches of 33 bases, and sometimes find them down to 20 bases. BLAT on proteins finds sequences of 80% and greater similarity of length 20 amino acids or more. In practice DNA BLAT works well on primates, and protein blat on land vertebrates."


--BLAT website

BLAST and BLAT UCSC: Proteome browser, gene sorter, BLAT NCBI: RefSeq, Trace UniProt: knowledgebase, UniRef, UniParc

Accession numbers are labels for sequences

NCBI includes databases (such as GenBank) that contain information on DNA, RNA, or protein sequences. You may want to acquire information beginning with a query such as the name of a protein of interest, or the raw nucle

DNA sequences and other molecular data are tagged with accession numbers that are used to identify a sequence or other record relevant to molecular data.

Page 26

What is an accession number?

An accession number is label that used to identify a sequence. It is a string of letters and/or numbers that corresponds to a molecular sequence.

Examples (all for retinol-binding protein, RBP4):

X02775 NT_030059 Rs7079946 GenBank genomic DNA sequence Genomic contig dbSNP (single nucleotide polymorphism)

DNA

N91759.1 NM_006744 An expressed sequence tag (1 of 170) RefSeq DNA sequence (from a transcript)

RNA

NP_007635 AAC02945 Q28369 RefSeq protein GenBank protein

protein

SwissProt protein
Protein Data Bank structure record

Page 27

NCBI's important RefSeq project: best representative sequences

RefSeq (accessible via the main page of NCBI) provides an expertly curated accession number that corresponds to the most stable, agreed-upon "reference" version of a sequence.

RefSeq identifiers include the following formats:

Complete genome Complete chromosome Genomic contig mRNA (DNA format) Protein NC_##### NC_##### NT_######

NM_###### e.g. NM_006744 NP_###### e.g. NP_006735

Page 29-30

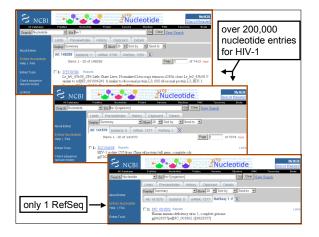
·	

NCBI's RefSeq project: accession for genomic, mRNA, protein sequences

Accession Molecule
AC_123456 Genomic
AP_123456 Protein
NC_123456 Genomic
NG_123456 Genomic
NM_123456 MRNA
NM_123456789 MRNA
NP_123456789 Protein
NR_123456 RNA
NT_123456 Genomic
NW_123456 Genomic
NW_123456 Genomic
NZ_ABCD12345678 Genomic
NZ_ABCD12345678 Genomic
NZ_ABCD123456 Protein
XZ_123456 Protein
XZ_123456 Protein
XZ_123456 Protein
ZP_123456 Protein
ZP_123456 Protein

Method Mixed Mixed Mixed Mixed Mixed Mixed Curation Mixed Automated Automated Automated Automated

Note
Alternate complete genomic
Protein products; alternate
Complete genomic molecules
Incomplete genomic regions
Transcript products; g-digit
Protein products; 9-digit
Protein products; 9-digit
Non-coding transcripts
Genomic assemblies
Genomic assemblies
Whole genome shotgun data
Transcript products
Protein products


Example of how to access sequence data: HIV-1 pol

There are many possible approaches. Begin at the main page of NCBI, and type an Entrez query: hiv-1 pol

Example of how to access sequence data: HIV-1 pol For the Entrez query: hiv-1 pol there are about 80,000 nucleotide or protein records (and >200,000 records for a search for "hiv-1"), but these can easily be reduced in two easy steps: --specify the organism, e.g. hiv-1[organism] --limit the output to RefSeq!

Examples of how to access sequence data: histone

query for "histone"

results

protein records RefSeq entries

21847 7544

RefSeq (limit to human) NOT deacetylase 1108 697

At this point, select a reasonable candidate (e.g. histone 2, H4) and follow its link to Entrez Gene. There, you can confirm you have the right gene/protein.

8-12-06

Outline for today

BLAST and BLAT

UCSC: Proteome browser, gene sorter, BLAT

NCBI: RefSeq, Trace

UniProt: knowledgebase, UniRef, UniParc

