Why Proteins Fold

Proteins are the action superheroes of the body. As enzymes, they
make reactions go a million times faster. As versatile transport
vehicles, they carry oxygen and antibodies to fight disease. They
do a thousand different jobs, and with no complaint. But before a
protein can go to work, it must fold into the right shape.

http://www.psc.edu/science/kollman98.html
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Water is key

www.cs.vt.edu/~onufriev




Protein Folding, Nonbonding Forces, and Free
Energy

AG Gibbs Free Energy

e' AG/kT Boltzman Probability Distribution

Describes the likelihood that a state with a certain free energy will be found




Entropy

» Entropy — a measure of disorder

ASy = DS, eem + AS

system surroundings

AS,, = AS
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H = enthalpy

T = temperature (Kelvins)




Entropy

« Entropy — a measure of disorder
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Free Energy

-T AStotal = AHsystem -T ASsystem = AG

« 2" | aw of Thermodynamics — the total entropy
of a system and its surroundings always
increases for a spontaneous process.

Since we have already seen that:

AStotal = ASsystem - AHsystem/T

Total entropy will only increase if:

ASqyqem > AH /T (TAS e > AH

system system system )

Therefore, AG <0 for a spontaneous process




Free Energy and Protein Folding

AG = AH -TAS <0

system system

Water and the hydrophobic ‘effect’

Bonding Energies

Disulfides, bound ions, etc.
Nonbonding Energies

Electrostatic

Hydrogen Bonds

Van der Waals




Non-Bonding Interactions

Amino acids of a protein are joined by covalent bonding
interactions. The polypeptide is folded in three dimension by
non-bonding interactions. These interactions, which can easily

be disrupted by extreme pH, temperature, pressure, and
denaturants, are:

» Electrostatic Interactions (5 kcal/mol)
« Hydrogen-bond Interactions (3-7 kcal/mol)
* Van Der Waals Interactions (1 kcal/mol)

» Hydrophobic Interactions (< 10 kcal/mol)

The total inter-atomic force acting between two atoms is the
sum of all the forces they exert on each other.




Electrostatic Interactions

Charged groups attract or repel each other. The force F of
such an electrostatic interaction is given by Coulomb’s law:

q d g, are the charges
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Coulomb’s law is also used to determine interactions between
uncharged, but polar atoms.




Hydrogen bonds

In a hydrogen bond, a hydrogen atom
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Van der Waals Interactions

The distribution of electronic charges around an atom changes
with time, and a transient asymmetry in the charges around one
atom induces a similar asymmetry in the electron distribution
around its neighboring atoms.

This is essentially an electrostatic interaction and results in a
small distant-dependent (R%) attractive force.

I
Io Distance
between atoms

Potential Energy

Attraction
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Van der Waals Interactions

As atoms get too close, their electron clouds will clash, resulting i

a distant-dependent (R-2) repulsive potential energy.

Repulsion

Potential Energy

>l

Distance
between atoms
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Lennard-Jones Potential

The attractive and repulsive terms can be summed together to
describe a distance-dependent interatomic potential energy.
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Hydrophobic Interactions in Proteins

Hydrophobic interactions minimize interactions of non-
polar residues with solvent.

Non-polar regions of proteins are usually buried in the
molecules interior.

However, non-polar residues can also be found on the
surface of a protein. They may participate in protein-
protein interactions.

This type of interaction is entropy driven.
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Water
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Hydrogen bond
0.177 nm

Covalent bond
0.0965 nm

(c)
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Water as a Solvent
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Water Clathrate Cages

Water clathrate surrounding
nonpolar methane molecule

Water molecules have less degrees of freedom in the
clathrate cage arrangements because some H-bonds
cannot point inside toward the hydrophobic sphere
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Enzyme-Substrate Binding

Ordered water
interacting with
substrate and enzyme

Both enzyme and E f
substrate force :
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Enzyme-Substrate Binding
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The Hydrophobic Effect
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Hydrophobic Interactions Recap

Hydrophobic interactions minimize interactions of non-
polar residues with solvent.

Non-polar regions of proteins are usually buried in the
molecules interior.

However, non-polar residues can also be found on the
surface of a protein. They may participate in protein-
protein interactions.

This type of interaction is entropy driven.
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Non-Bonding Interactions Recap

Amino acids of a protein are joined by covalent bonding
interactions. The polypeptide is folded in three dimension by
non-bonding interactions. These interactions, which can easily

be disrupted by extreme pH, temperature, pressure, and
denaturants, are:

» Electrostatic Interactions (5 kcal/mol)
« Hydrogen-bond Interactions (3-7 kcal/mol)
* Van Der Waals Interactions (1 kcal/mol)

» Hydrophobic Interactions (< 10 kcal/mol)

The total inter-atomic force acting between two atoms is the
sum of all the forces they exert on each other.

Kcal = 4.18 KJ
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Protein Folding Energy

Dissecting the free energy of protein folding

AG

Unfolded Folded
AG=AH -TAS <0, AG =~ —50 kJ/mol

Hydrophobic effect —TAS <0 —l AG ~ —50 kl/mol

~—200 kJ/mol

H-bonds AH <0

500 Kl/mol chain conformational

entropy —TAS =0
~ 750 kI/mol
VDW AH ~—50 kJ/mol
Electrostatic AH ~—50 kJ/mol

James Chou, Harvard Medical School
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Protein Folding Energy

Denaturation by Heat -- break H-bonds and other enthalpically
favorable interactions

AG=AH -TAS <0

Hydrophobic effect —TAS <0 :l, AG ~ —50 kJ/mol

~—200 kJ/mol
p
H-bonds chain conformational
Heating makes AH entropy —TAS=0
less negative '< ~ 750 kJ/mol
VDW
\, Electrostatic

James Chou, Harvard Medical School
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Protein Folding Energy

Denaturation by Cold -- reduce the contribution from
hydrophobic effect

AG=AH -TAS <0

Hydrophobic effect ‘ :.., AG ~—50 kJ/mol

Near freezing T, entropy
of H,0 around non-polar

residues is less different H-bonds chain conformational
from those around polar entropy —TAS 0
residues ~ 750 kJ/mol
VDW
Electrostatic

James Chou, Harvard Medical School
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The Protein Folding Problem

The problem of protein folding

Amino acid Tertiary
sequence structure

James Chou, Harvard Medical School
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The Protein Folding Problem

Levinthal paradox

Assume each amino acid backbone can be in 3 conformational states,
for 101 residues, there are 300 = 5 x 1047 conformations.

If the protein can sample a new conformation at a rate of 103 s, it will
take 1027 years to try them all. Longer than the age of the universel

Therefore, proteins must fold in “pre-aranged pathways” and in a
cooperative manner.

Levinthal C. Extrait du Journal de Chimie Physique 1968; 65:44
Zwanzig et al_, PNAS 1992; 89:20-22

James Chou, Harvard Medical School

28



The Protein Folding Problem

Cooperativity in protein folding : How a globally optimal state can
be found without a global search?

Qrigin of cooperativity -- The probability of forming contact C,
is much higher if C, is formed than in the absence of C,.

Dill et al., PNAS 1993; 90:1942-6

James Chou, Harvard Medical School
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The Protein Folding Problem

Coil-Helix transition -- the paradigm for cooperativity in biopolymers
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The first H-bond

Nucleation of
alpha helix

James Chou, Harvard Medical School
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Folding Landscapes

Free energy

Native State

Folding coordinate

Simple Energy Landscape Complex Energy Landscape

Finding a global minimum in a multidimensional Realistic landscapes

case is easy only when the landscape is are much more complex,
smooth. No matter where you start (A or B), with multiple local minima —
you quickly end up at the bottom -- the Native folding traps.

(N), functional state of the protein.
Adopted from Ken Dill's web site at UCSF
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Folding Funnels
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Folding Funnels
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