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Course learning objectives

— Read, understand, and critically discuss quantitative meth-
ods used in the scientific literature on clinical investigation.

— Analyze and interpret basic quantitative data.

Topics covered:

Basic statistical display of data, probabilities and distributions, confidence inter-
vals, tests of hypotheses, likelihood and statistical evidence, tests for goodness
of fit, contingency tables, analysis of variance, multiple comparisons, regression
and correlation, basic experimental design, observational studies, survival analy-
sis, prediction, methods of evidence-based medicine and decision analysis.

Grading

e This course is not offered for credit, it’s a certificate course.

e The course is pass or fail.

e There are weekly assignments.

e There is a final project (written critique and presentation).



Example 1

Does higher survival rate mean longer life?

Without screening
Cancer diagnosed because
of symptoms at age 67
o P D= at age 70
scI:rn:sM S-year survival = 0%
With screening

Cancer dlagnosed because
of screening at age 60

[ 2 P Dead at age 70
Etaa?g r S-year survival = 100%

Gigerenzer et. al. (2008)

Example 2

A test with 99% sensitivity and 99% specificity returns a positive
result. What is the probability that the person has the disease?

DISEASE

+ —
+ P FP

TEST
- FN ™

— |t depends.

(On the prevalence of the disease: for example, it is < 10% if the prevalence is 0.1%,
50% if the prevalence is 1%, and > 90% if the prevalence is 10%.)



Example 3

A diagnostic test returns a positive result. A physician might con-
clude that:

1. The subject probably has the disease.
2. The test result is evidence that the subject has the disease.

3. The subject should be treated for the disease.

Isn’t that all the same?

—— Not even close.

Example 4
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I Members’ Discoveries: Fatal flaws in cancer research

Jeffrey Morris, Associate Professor at The
University of Texas MD Anderson Cancer
Center, reports on the substantial impact

of a paper in the Annals of Applied Statistics:
A recent article published in 7he Anrals

of Applied Statisties (AOAS) by two MD
Anderson researchers—Keith Baggerly and
Kevin Coombes—dissects results from a
highly-influential seties of medical papers
involving genomics-driven personalized can-
cer therapy, and outlines a series of simple
yet fatal flaws that raises serious questions
about the veracity of the original results.
Having immediate and strong impact, this
paper, along with related work, is providing
the impetus for new standards of reproduc-
ibility in scientific research,

In late 2006, investigators at Duke
University led by Anil Potti and Joseph
Nevins developed genomic signatures to
predict sensitivicy/resistance to particular
chemotherapeutic agents. They built

inclusion of genes of unknown origin, and
figure duplication. One common error is
the swapping of sensitive/resistant labels

in the training data, leading to signatures
suggesting a therapy to the patients least
likely to benefit from it. There are also
persistent irregularities in test sample
labeling, with fome samples mislabeled and
others used multiple times in validarion,
which leads to inaccurate reports of the
methods’ performance. One study includes
four key signature genes whose origins are
unknown; they were not produced by their
software, and two of them were not even on

the microarrays used in the training data.
bli

reproduce their results with the informa-
don given (7he Cancer Letter, October 23,
2009). As Baggerly notes in an accompany-
ing letter, there has still not been any
documented independent validation of the
Duke researchers’ results.

The warning in Baggerly and Coombes’
paper is that clinical trials being conducted
were based on questionable scientific
results, and thar these trials could be pur-
ting patients at risk by exposing them to
potentially ineffective trearments. Shortly
after publication of the Annals of Applied
Statistics paper, three Duke University clini-
cal wials based on the questionable results

One figure discussed in a recent p

were ded, a fourth trial conducted at

duplicates a figure from an earlier publica-
tion dealing with a completely different
trearment. Baggerly and Coombes report
that when they followed the Duke research-
ers’ approach with these errors corrected,
they obrtained results no berter than chance.

P
Moffit Cancer Cenrer was terminated (Zhe
Cancer Letter, October 9 and 23, 2009),
and a panel of outside experts has been
assembled by Duke University to investigate
this research and the original results.

Most of the errors discavered in this

v



Summarizing and Presenting Data

Summary statistics

Location / Center e mean (average)
e median
e mode
e geometric mean
e harmonic mean

Scale e standard deviation (SD)
e inter-quartile range (IQR)
e range

Other e quantile
e quartile

e quintile



Summary statistics

1 n
mean = - ;xiz(xﬁ—xgnt...ntxn)/n

n n
. 1
geometric mean = " H T; = exp {— E log xl}
n
i=1 i=1

Z(l/xz)}

1=1

S|=

harmonic mean = 1/{

— Note: these are all sample means.

Measures of location / center

e Forget about the mode.
e The mean is sensitive to outliers.
e The median is resistant to outliers.

e The geometric mean is used when a logarithmic transformation
is appropriate (for example, when the distribution has a long
right tail).

e The harmonic mean may be used when a reciprocal transfor-
mation is appropriate (very seldom).



Measures of location / center

Symmetric data
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A key point

The different possible measures of the "center” of the distribution
are all allowable.

You should consider the following though:

— Which is the best measure of the "typical” value in your
particular setting?

—— Be sure to make clear which "average” you use.

Standard deviation (SD)

. 1 <
Sample variance = > (wi—z) =5
=1

n—1

Sample SD = V=5
= RMS (distance from average)
= “typical” distance from the average
= sort of like ave{|x; — z|}

—  Remember: z=



Standard deviation (SD)
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Dotplots
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o Few data points per group.

o Possibly many groups.

Histograms

Symmetric distribution

o M.

5 10 15 20 25 30 35

Skewed distribution

o Many data points per group.

o Few groups.

o Area of the rectangle is proportional
to the number of data points in the

interval.
o Typically 24/n bins is a good choice.



Boxplots

60 - | T E o Many data points.
50 - | BN o Possibly many groups.
40 ~ ] o Displays the minimum, lower quar-
" | tile, median, upper quartile, and the
§ maximum.
Skyscraper-with-antenna plots




Skyscraper-with-antenna plots

Skyscraper-with-antenna plots




3D graphics

Bad graphs

Top ten worst graphs.

& [{Qr karl broman

The top ten worst graphs

With apologies to the authors, we provide the following list of the top ten worst graphs in the scientific literature. As these examples
indicate, good scientists can make mistakes.

1. Roeder K (1994) DNA fingerprinting: A review of the controversy (with discussion). Statistical Science
9:222-278, Figure 4
[The article | The figure | Discussion]

2. Wittke-Thompson JK, Pluzhnikov A, Cox NJ] (2005) Rational inferences about departures from Hardy- 2
Weinberg equilibrium. American Journal of Human Genetics 76:967-986, Figure 1 -
[The article | Fig 1AB | Fig 1CD | Discussion]

3. Epstein MP, Satten GA (2003) Inference on haplotype effects in case-control studies using unphased
genotype data. American Journal of Human Genetics 73:1316-1329, Figure 1 }
[The article | The figure | Discussion]

4. Mykland P, Tierney L, Yu B (1995) Regeneration in Markov chain samplers. Journal of the American
Statistical Association 90:233-241, Figure 1
[The article | The figure | Discussion]

5.  Hummer BT, Li XL, Hassel BA (2001) Role for p53 in gene induction by double-stranded RNA. J Viro! s [ o 1
75:7774-7777, Figure 4 f n{ " I
[The article | The figure | Discussion] 1! I




Displaying data well

e Let the data speak.

Show as much information as possible, taking care not to obscure the message.

e Science not sales.

Avoid unnecessary frills, especially gratuitous colors and 3D.

e In tables, every digit should be meaningful.
Don’t drop ending 0’s!

e Be accurate and clear.

Statistics and Probability



What is statistics?

We may at once admit that any inference from the par-
ticular to the general must be attended with some degree of
uncertainty, but this is not the same as to admit that such
inference cannot be absolutely rigorous, for the nature and
degree of the uncertainty may itself be capable of rigorous
expression.

— Sir R. A. Fisher

What is statistics?

—— Data exploration and analysis.

— Inductive inference with probability.

— Quantification of evidence and uncertainty.



What is probability?

— A branch of mathematics concerning the study of random
processes.

Note: Random does not mean haphazard!

What do | mean when | say the following?
The probability that he is a carrier . ..
The chance of rain tomorrow . ..

— Degree of belief.
— Long term frequency.

The set-up

Experiment
— A well-defined process with an uncertain outcome.
Draw 2 balls with replacement from an urn containing 4 red and 6 blue balls.

Sample space S
— The set of possible outcomes.
{ RR, RB, BR, BB }

Event
— A set of outcomes from the sample space (a subset of S).
{the first ball is red} = {RR, RB}

Events are said to occur if one of the outcomes they contain oc-
curs. Probabilities are assigned to events.



Probability rules

0<PrA) <1 for any event A
Pr(S) =1 where S is the sample space
Pr(A or B) = Pr(A) + Pr(B) if A and B are mutually exclusive

Pr(not A) =1 - Pr(A) complement rule

Example

Study with 10 subjects:
e 2 infected with virus X (only)
¢ 1 infected with virus Y (only)
¢ 5 infected with both X and Y
¢ 2 infected with neither

Experiment: Randomly select one subject (each equally likely).

Events: A = {subject is infected with X} Pr(A) =7/10
B = {subject is infected with Y} Pr(B) = 6/10
C = {subject is infected with only X}  Pr(C) =2/10



Sets

Aand B not A {not A) and (not B)

B
A

AorB A and (not B) (notA)or B

&

Conditional probability

Pr(A|B) = Probability of AgivenB = Pr(A and B) / Pr(B)

Example: [2w/ X only; 1w/Y only; 5w/both; 2w/ neither]

A = {infected with X}
B B = {infected with Y}
Pr(A | B) = (5/10) / (6/10) = 5/6
A Pr(B | A) = (5/10) / (7/10) = 5/7




More rules and a definition

Multiplication rule:
— Pr(A and B) = Pr(A) x Pr(B | A)

A and B are independent if  Pr(A and B) = Pr(A) x Pr(B)

If A and B are independent:
— Pr(B | A) = Pr(B)

Diagnostics
DISEASE
+ —
+ TP FP

TEST




Diagnostics

DISEASE

TEST

Sensitivity — Pr ( positive test | disease )
Specificity — Pr ( negative test | no disease )
Positive Predictive Value — Pr ( disease | positive test )
Negative Predictive Value — Pr ( no disease | negative test )
Accuracy — Pr ( correct outcome )
Diagnostics
+ —

+ TP FP
Sensitivity — TP/ (TP+FN)
Specificity — TN/ (FP+TN)
Positive Predictive Value — TP/ (TP+FP)
Negative Predictive Value — TN/ (FN+TN)
Accuracy — (TP+TN) / (TP+FP+FN+TN)



Diagnostics

Assume that some disease has a 0.1% prevalence in the popula-
tion. Assume we have a test kit for that disease that works with
99% sensitivity and 99% specificity. What is the probability of a
person having the disease given the test result is positive, if we
randomly select a subject from

— the general population?

— a high risk sub-population with 10% disease prevalence?

Diagnostics

DISEASE

+ 99 999

TEST

_— 1 98901




Diagnostics

DISEASE

TEST

-_ 1 98901

Sensitivity 99/ (99+1) = 99%

98901 / (999+98901) = 99%
99 / (99+999) ~ 9%

98901 / (1+98901) > 99.9%

(99+98901) / 100000 = 99%

Specificity
Positive Predictive Value
Negative Predictive Value

R A

Accuracy

Diagnostics
DISEASE
+ —
+ 9900 900

TEST

_— 100 89100




Diagnostics

DISEASE

=+ 9900 900

TEST

— 100 89100

Sensitivity — 9900 / (9900+100) = 99%

Specificity — 89100/ (900+89100) = 99%

Positive Predictive Value — 9900 / (9900+900) ~ 92%

Negative Predictive Value — 89100/ (100+89100) ~ 99.9%

Accuracy — (9900+89100) / 100000 = 99%
Bayes rule

— Pr(A and B) = Pr(A) x Pr(B | A) = Pr(B) x Pr(A | B)
— Pr(A) = Pr(A and B) + Pr(A and not B)

= Pr(B) x Pr(A | B) + Pr(not B) x Pr(A | not B)
— Pr(B) =Pr(B and A) + Pr(B and not A)

= Pr(A) x Pr(B | A) + Pr(not A) x Pr(B | not A)

— Pr(A | B) =Pr(A and B) / Pr(B)
= Pr(A) x Pr(B | A) / Pr(B)



Bayes rule

Pr(A | B) =
Pr(A) x Pr(B| A) / Pr(B) =
Pr(A) x Pr(B | A) / { Pr(A) x Pr(B | A) + Pr(not A) x Pr(B | not A) }

Let A denote disease, and B a positive test result!

— Pr(A | B) is the probability of disease given a positive test result.
—— Pr(A) is the prevalence of the disease.

— Pr(not A) is 1 minus the prevalence of the disease.

— Pr(B | A) is the sensitivity of the test.

— Pr(not B | not A) is the specificity of the test.
(B

— Pr(B | not A) is 1 minus the specificity of the test.

Random Variables and Distributions



Random variables

Random variable: A number assigned to each outcome of a
random experiment.

Example 1: | toss a brick at my neighbor’s house.

D = distance the brick travels

X =1 if | break a window; O otherwise
Y = cost of repair

T = time until the police arrive

N = number of people injured

Example 2: Apply a treatment to 10 subjects.

X = number of people that respond
P = proportion of people that respond

Further examples

Example 3: Pick a random student in the School.

S =1 if female; 0 otherwise

H = his/her height

W = his/her weight

Z =1 if Canadian citizen; 0 otherwise
T = number of teeth he/she has

Example 4: Sample 20 students from the School

H; = height of student i

H = mean of the 20 student heights
Sy = sample SD of heights

T; = number of teeth of student i

T = average number of teeth



Random variables are...

Discrete: Take values in a countable set
(e.g., the positive integers).
Example: the number of teeth, number of gall
stones, number of birds, number of cells re-
sponding to a particular antigen, number of
heads in 20 tosses of a coin.

Continuous: Take values in an interval
(e.g., [0,1] or the real line).

Example: height, weight, mass, some measure
of gene expression, blood pressure.

Random variables may also be partly discrete and partly contin-
uous (for example, mass of gall stones, concentration of infecting
bacteria).

Probability function

Consider a discrete random variable, X.

The probability function (or probability distribution, or probability
mass function) of X is

p(x) = Pr(X =Xx)

Note that p(x) > 0 for all x and > p(x) = 1.

o Probability function X p (X)

1 0.5

Lo 3 0.1

"o l 5 0.1

. | - | - | 7 0.3
1 2 3 4 5 6 7



Cumulative distribution function (cdf)

The cdf of X is F(x) = Pr(X < x)

Probability function X p (X)
04 1 0.5
_ 03 3 0.1
S 5 0.1
0.1
0.0 T - T - T / 03
1 2 3 4 5 6 7
Cumulative distribution function (cdf) X F X
10 1 S (x)
08 (—o0,1) 0
2 981 — 1,3) 0.5
" oeq 3,5) 0.6
7 5,7) 0.7
00 = T T T T
0 2 4 6 8 [7,00) 1.0

Binomial random variable

Prototype: The number of heads in nindependent tosses of a coin, where
Pr(heads) = p for each toss.
— n and p are called parameters.

Alternatively, imagine an urn containing red balls and black
balls, and suppose that p is the proportion of red balls. Con-
sider the number of red balls in n random draws with replace-
ment from the urn.

Example 1: Sample n people at random from a large population, and con-
sider the number of people with some property (e.g., that are
graduate students or that have exactly 32 teeth).

Example 2: Apply a treatment to n subjects and count the number of re-
sponders (or non-responders).

Example 3: Apply a treatment to 30 groups of 10 subjects. Count the num-
ber of groups with at least two responders.



Binomial distribution

Consider the Binomial(n,p) distribution.

That is, the number of red balls in n draws with replacement from
an urn for which the proportion of red balls is p.

— What is its probability function?

Example: Let X ~ Binomial(n=9,p=0.2).
— We seek p(x) =Pr(X=x) forx=0,1,2,...,9.

p(0) = Pr(X=0) = Pr(no red balls) = (1 — p) =0.8° =~ 13%.

(
p(9) = Pr(X=9) = Pr(all red balls) = p" = 0.2° ~ 5 x10”’
p(1) = Pr(X=1) = Pr(exactly one red ball) =

Binomial distribution

p(1) = Pr(X= 1) = Pr(exactly one red ball)
= Pr(RBBBBBBBB or BRBBBBBBB or ... or BBBBBBBBR)

- Pr(RBBBBBBBB) + Pr(BRBBBBBBB) + Pr(BBRBBBBBB)
+ Pr(BBBRBBBBB) + Pr(BBBBRBBBB)
+ Pr(BBBBBRBBB) + Pr(BBBBBBRBB)
+ Pr(BBBBBBBRB) + Pr(BBBBBBBBR)

=p(1-p)®+p(1—-p)°+...p(1-p)®=9p(1 —p)® ~ 30%.
How about p(2) = Pr(X=2)?

How many outcomes have 2 red balls among the 9 balls drawn?
— This is a problem of combinatorics. That is, counting!



Getting at Pr(X= 2)

RRBBBBBBB
RBBBBRBBB
BRRBBBBBB
BRBBBBRBB
BBRBRBBBB
BBRBBBBBR
BBBRBBBRB
BBBBRBBRB
BBBBBRBBR

RBRBBBBBB
RBBBBBRBB
BRBRBBBBB
BRBBBBBRB
BBRBBRBBB
BBBRRBBBB
BBBRBBBBR
BBBBRBBBR
BBBBBBRRB

RBBRBBBBB
RBBBBBBRB
BRBBRBBBB
BRBBBBBBR
BBRBBBRBB
BBBRBRBBB
BBBBRRBBB
BBBBBRRBB
BBBBBBRBR

RBBBRBBBB
RBBBBBBBR
BRBBBRBBB
BBRRBBBBB
BBRBBBBRB
BBBRBBRBB
BBBBRBRBB
BBBBBRBRB
BBBBBBBRR

How many are there?

9 x 8/2=36.

The binomial coefficient

The number of possible samples of size k selected from a popula-
tion of size n :

— nl=nx(N-1)x(Nh-2) x...x3x2x 1

— 0l =1

For a Binomial(n,p) random variable:

n _ (=K
(k>p"(1 p)

Pr(X=Kk) =



Example

Suppose Pr(subject responds to treatment) = 90%, and we apply
the treatment to 10 random subjects.

10
7

10x9x8
3 x2

= 120 x (0.9)" x (0.1)°
~ 5%

Pr( exactly 7 subjects respond ) = ( ) x (0.9)" x (0.1)°

x (0.9)" x (0.1)°

Pr( fewer than 9 respond ) = 1 —p(9) — p(10)
= 1-10 x (0.9)° x (0.1) — (0.9)"
~ 26%

The world is entropy driven

Assume we are flipping a fair coin (independently) ten times. Let
X be the random variable that describes the number of heads H
in the experiment.

Pr(TTTTTTTTTT) = Pr(HTTHHHTHTH) = (1/2)'°

— There is only one possible outcome with zero heads.
— There are 210 possibilities for outcomes with six heads.

Thus,
— Pr(X=0)=(1/2)"° ~ 0.1%.
— Pr(X=6)=210 x (1/2)'° ~ 20.5%.



The world is entropy driven

Assume that in a lottery, six out of the numbers 1 through 49 are
randomly selected as the winning numbers.

— There are 13,983,816 possible combinations for the win-
ning numbers.

Hence Pr({1,2,3,4,5,6}) = Pr({8,23,24,34,42,45}) = 1/13983816

The probability of the having six consecutive numbers as the win-
ning numbers is

Pr({1,2,3,4,56}) + --- + Pr({44,45,46,47,48,49})
= 44 x (1/13983816) ~ 0.0003%.

Binomial distributions

Binomial(n=10, p=0.1) Binomial(n=10, p=0.3)

04 4 0.4

0.3 0.3

Probability

0.2 02 4

Probability

0.1 4 0.1

0.0 - T 0.0 ~

T T T T T
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
X

Binomial(n=10, p=0.5) Binomial(n=10, p=0.9)

04 4 0.4

0.3 0.3

0.2 - 02 -

Probability
Probability

0.1 4 0.1

0.0 - 0.0 ~

I
6 7 8 9 10
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o
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Binomial distributions

Binomial(n=10, p=0.5)

Binomial(n=20, p=0.5)

0.25 0.25
0.20 0.20
Z 015 Z 0.15
Qo Qo
8 8
£ 0.10 & 0.10
0.05 | 0.05
0.00 - 0.00 -
01 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20
X X
Binomial(n=50, p=0.5) Binomial(n=100, p=0.5)
0.25 0.25
0.20 | 0.20
Z 015 £ 0.15
Qo Qo
8 8
£ 0.10 & 0.10
0.05 | 0.05
0.00 - 0.00 -
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X X
Binomial distributions
Binomial(n=10, p=0.5) Binomial(n=20, p=0.5)
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Binomial distributions

Binomial(n=10, p=0.1) Binomial(n=20, p=0.1)

Probability
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Expected value and standard deviation

— The expected value (or mean) of a discrete random vari-
able X with probability function p(x) is

p=E(X) =2 xp(x)

— The variance of a discrete random variable X with proba-
bility function p(x) is

o = var(X) = Y, (x— p)? p(x)

— The standard deviation (SD) of X is

SD(X) = /var(X).

Mean and SD of binomial RVs

If X~ Binomial(n,p), then
E(X)=np

SD(X)=+/np(1-p)

— Examples:

n p mean SD
10 10% 1 0.9
10 30% 3 1.4
10 50% 5 1.6
10 90% 9 0.9




Binomial random variable

Number of successes in n trials where:

—— Trials independent

— p = Pr(success) is constant

The number of successes in n trials does not necessarily follow a
binomial distribution!

Deviations from the binomial:
— Varying p

— Clumping or repulsion (non-independence)

Examples

Suppose treatment response differs between genders:

Pr(responds | male) = 10% but Pr(responds | female) = 80%.

— Pick 4 male and 6 female subjects.

The number of responders is not binomial.

— Pick 10 random subjects (with Pr(subject is male) = 40%).

The number of responders is binomial.
p=0.4x0.1+0.6 x 0.8=0.52.

Pr(responds) =
Pr(responds and male) + Pr(responds and female) =

Pr(male) x Pr(responds | male) + Pr(female) x Pr(responds | female)



Examples

4 males; 6 females Random subjects (40% males)

0.30 0.30

0.25 0.25
0.20 0.20 —
0.15 0.15 —
0.10 0.10

0.05 0.05 —

0.00 — 0.00 -~

0o 1 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10

no. responders no. responders

Poisson distribution

Consider a Binomial(n,p) where
— nisreally large
— pis really small
For example, suppose each well in a microtiter plate contains

50,000 T cells, and that 1/100,000 cells respond to a particular
antigen.

Let X be the number of responding cells in a well.

— In this case, X follows a Poisson distribution ..,
Let A = n p = E(X).

— p(X) = Pr(X =x) = e *\X/x!
Note that SD(X) = v/\.



Poisson distribution

Poisson(A=1/2)

0.6 0.6
0.5 4 0.5
0.4 0.4
0.3 4 0.3
0.2 0.2
0.1 0.1

0.0 ~ 0.0 -
o 1 2 3 4 5 6 7 8 9 10 11 12

Poisson(A=2)

0.6 1 0.6
0.5 0.5
0.4 0.4

0.3 0.3

0.2 0.2
0.1 0.1
0.0 ~ 0.0 ~

o 1 2 3 4 5 6 7 8 9 10 11 12

Poisson(A=1)
0 1t 2 3 4 5 6 7 8 9 10 11 12
Poisson(A=4)

|||

o 1 2 38 4 5 6 7 8 9 10 11 12

Example

Suppose there are 100,000 T cells in each well of a microtiter
plate. Suppose that 1/80,000 T cells respond to a particular anti-

gen.

Let X = number of responding T cells in a well.

— X ~ Poisson(\ = 1.25).
— E(X)=1.25
— SD(X)=+v1.25 ~1.12.

Pr(X = 0) = exp(—1.25) ~ 29%.
Pr(X > 0)=1—-exp(—1.25) ~ 71%.
Pr(X =2) = exp(-1.25) x (1.25)% /2

~ 22%.



Y=a+b X

Suppose X is a discrete random variable with probability function
p, so that p(x) = Pr(X = x).

— Expected value: E(X) =), x p(x)
— Standard deviation: SD(X) = 1/>_,[x - E(X)]2 p(X)

Let Y =a + b X where a and b are numbers. Then Y is a random
variable (like X), and

s E(Y) —a+b E(X)
— SD(Y) = |b| SD(X

In particular, if u = E(X), 0 = SD(X), and Z = (X — u) / o, then
— E(Z2)=0
— SD(Z) =

Y=a+b X

Let X be a random variable with mean ;. and SD o.
If Y =X-pu,then

— E(Y) =
— SD(Y) =0



Y=a+b X

Let X be a random variable with mean ;. and SD o.
If Y =(X—-pu)/o,then

— E(Y)=0
— SD(Y) =1

Example

Suppose X ~ Binomial(n,p) — number of successes
— EX)=np
— SD(X)=+/np (1 -p)

LetP=X/n — proportion of successes
— E(P)=E(X/n)=E(X)/n=p
— SD(P)=SD(X/n)=SD(X)/n=+/p(1-p)/n




Continuous random variables

Suppose X is a continuous random variable.

Instead of a probability function, X has a probability density func-
tion (pdf), sometimes called just the density of X.

— f(x) >0

— [T 1) d(x) =1

Pr(a<X<b)

f(x)
—— Areas under curve =

probabilities

Cumulative distr. function:
—_— F(X) = PF(X < X) —

Means and standard deviations

Expected value:

— Discrete RV: E(X) =), x p(x)
— Continuous RV: E(X) = [ x f(x) dx

Standard deviation:

— Discrete RV: SD(X) = /S, [x - EX)]2 p(x)

— . Continuous RV: SD(X) = \/ [ [x - E(X)]2 f(x) dx



Uniform distribution

X ~ Uniform(a, b)
—— Draw a number at random from the interval (a, b).

height:ﬁ - 1 f
— ifa<x<b
f(X) _ { b—a

0 otherwise

height = 1 — E(X)=(a+Db)/2

— SD(X)=(b-a)/ V12
~ 0.29 x (b—a)

Normal distribution

By far the most important distribution:
The normal distribution (also called the Gaussian distribution).

If X ~ N(u, o), then the pdf of X is

f(x) = 0\;% et

Note: E(X) = and SD(X) =o.

Of great importance:
— If X ~ N(u,0) and Z = (X — ) / o, then Z ~ N(O, 1).

This is the standard normal distribution.



Normal distribution

The normal curve

W-20 W-0 W w+o  p+20

— Remember:

Pr(u—o<X<pu+o)=~68% and Pr(u—20 < X < p+20) ~ 95%.

The normal CDF

Density

u-o u u+o

CDF

u-o uw w+o



Example

Suppose the heights of adult males in the U.S. are approximately
normal distributed, with mean =69 in and SD =3 in.

— What proportion of men are taller than 57”7

X ~ N(1=69, 0=3)

Z = (X —69)/3 ~ N(0,1)

Pr(X > 67) =
67 69 Pr(Z > (67 - 69)/3) =
3 C Pr(Z > - 2/3)
-2/3 0
Example

Use either of the following three:

N AN - AN

6769 _2/3 23

The answer: 75%.



Another calculation

— What proportion of men are between 5°3” and 6’7

63 69 72

Pr63< X <72 = PH2<Z<1) — 82%.



