
Quantitative Analysis of Clinical Data

Ingo Ruczinski

Associate Professor, Department of Biostatistics, Johns Hopkins University

Office: E3618 SPH Email: ingo@jhu.edu

http://www.biostat.jhsph.edu/∼iruczins

Logistics

Lectures: M 5:30pm-8:30pm, W2030 SPH

Office hours: By appointment.

Textbooks: [required]

Dawson and Trapp (2002): Basic and clinical biostatistics.

McGraw-Hill 4th edition.

[recommended]

Gonick & Smith (1993): The cartoon guide to statistics.

Collins Reference 1st edition.

Webpage: www.biostat.jhsph.edu/ iruczins/teaching/390.672/



Course learning objectives

−→ Read, understand, and critically discuss quantitative meth-

ods used in the scientific literature on clinical investigation.

−→ Analyze and interpret basic quantitative data.

Topics covered:

Basic statistical display of data, probabilities and distributions, confidence inter-

vals, tests of hypotheses, likelihood and statistical evidence, tests for goodness

of fit, contingency tables, analysis of variance, multiple comparisons, regression

and correlation, basic experimental design, observational studies, survival analy-

sis, prediction, methods of evidence-based medicine and decision analysis.

Grading

• This course is not offered for credit, it’s a certificate course.

• The course is pass or fail.

• There are weekly assignments.

• There is a final project (written critique and presentation).



Example 1

Does higher survival rate mean longer life?

−→ No.

Gigerenzer et. al. (2008)

Example 2

A test with 99% sensitivity and 99% specificity returns a positive

result. What is the probability that the person has the disease?

!

+

!+

TEST

DISEASE

FN TN

TP FP

−→ It depends.

(On the prevalence of the disease: for example, it is < 10% if the prevalence is 0.1%,

50% if the prevalence is 1%, and > 90% if the prevalence is 10%.)



Example 3

A diagnostic test returns a positive result. A physician might con-

clude that:

1. The subject probably has the disease.

2. The test result is evidence that the subject has the disease.

3. The subject should be treated for the disease.

Isn’t that all the same?

−→ Not even close.

Example 4



Summarizing and Presenting Data

Summary statistics

Location / Center • mean (average)

• median

• mode

• geometric mean

• harmonic mean

Scale • standard deviation (SD)

• inter-quartile range (IQR)

• range

Other • quantile

• quartile

• quintile



Summary statistics

mean =
1

n

n
∑

i=1

xi = (x1 + x2 + . . . + xn)/n

geometric mean = n

√

√

√

√

n
∏

i=1

xi = exp

{

1

n

n
∑

i=1

log xi

}

harmonic mean = 1/

{

1

n

n
∑

i=1

(1/xi)

}

−→ Note: these are all sample means.

Measures of location / center

• Forget about the mode.

• The mean is sensitive to outliers.

• The median is resistant to outliers.

• The geometric mean is used when a logarithmic transformation

is appropriate (for example, when the distribution has a long

right tail).

• The harmonic mean may be used when a reciprocal transfor-

mation is appropriate (very seldom).



Measures of location / center
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A key point

The different possible measures of the ”center” of the distribution

are all allowable.

You should consider the following though:

−→ Which is the best measure of the ”typical” value in your

particular setting?

−→ Be sure to make clear which ”average” you use.

Standard deviation (SD)

Sample variance =
1

n − 1

n
∑

i=1

(xi − x̄)2 = s2

Sample SD =
√

s2 = s

= RMS (distance from average)

= “typical” distance from the average

= sort of like ave{|xi − x̄|}

−→ Remember: x̄ =
1

n

n
∑

i=1

xi



Standard deviation (SD)
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Dotplots

15

20

25

Group

A B

◦ Few data points per group.

◦ Possibly many groups.

Histograms

Symmetric distribution
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◦ Many data points per group.
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◦ Area of the rectangle is proportional

to the number of data points in the

interval.

◦ Typically 2
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n bins is a good choice.



Boxplots
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3D graphics

Bad graphs



Displaying data well

• Let the data speak.

Show as much information as possible, taking care not to obscure the message.

• Science not sales.

Avoid unnecessary frills, especially gratuitous colors and 3D.

• In tables, every digit should be meaningful.

Don’t drop ending 0’s!

• Be accurate and clear.

Statistics and Probability



What is statistics?

We may at once admit that any inference from the par-

ticular to the general must be attended with some degree of

uncertainty, but this is not the same as to admit that such

inference cannot be absolutely rigorous, for the nature and

degree of the uncertainty may itself be capable of rigorous

expression.

— Sir R. A. Fisher

What is statistics?

−→ Data exploration and analysis.

−→ Inductive inference with probability.

−→ Quantification of evidence and uncertainty.



What is probability?

−→ A branch of mathematics concerning the study of random

processes.

Note: Random does not mean haphazard!

What do I mean when I say the following?

The probability that he is a carrier . . .

The chance of rain tomorrow . . .

−→ Degree of belief.

−→ Long term frequency.

The set-up

Experiment

→ A well-defined process with an uncertain outcome.

Draw 2 balls with replacement from an urn containing 4 red and 6 blue balls.

Sample space S
→ The set of possible outcomes.

{ RR, RB, BR, BB }

Event

→ A set of outcomes from the sample space (a subset of S).

{the first ball is red} = {RR, RB}

Events are said to occur if one of the outcomes they contain oc-

curs. Probabilities are assigned to events.



Probability rules

0 ≤ Pr(A) ≤ 1 for any event A

Pr(S) = 1 where S is the sample space

Pr(A or B) = Pr(A) + Pr(B) if A and B are mutually exclusive

Pr(not A) = 1 - Pr(A) complement rule

Example

Study with 10 subjects:

• 2 infected with virus X (only)

• 1 infected with virus Y (only)

• 5 infected with both X and Y

• 2 infected with neither

Experiment: Randomly select one subject (each equally likely).

Events: A = {subject is infected with X} Pr(A) = 7/10

B = {subject is infected with Y} Pr(B) = 6/10

C = {subject is infected with only X} Pr(C) = 2/10



Sets

Conditional probability

Pr(A | B) = Probability of A given B = Pr(A and B) / Pr(B)

Example: [2 w/ X only; 1 w/ Y only; 5 w/ both; 2 w/ neither]

A = {infected with X}
B = {infected with Y}
Pr(A | B) = (5/10) / (6/10) = 5/6

Pr(B | A) = (5/10) / (7/10) = 5/7



More rules and a definition

Multiplication rule:

−→ Pr(A and B) = Pr(A) × Pr(B | A)

A and B are independent if Pr(A and B) = Pr(A) × Pr(B)

If A and B are independent:

−→ Pr(A | B) = Pr(A)

−→ Pr(B | A) = Pr(B)

Diagnostics

!

+
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TEST

DISEASE

FN TN

TP FP



Diagnostics

!

+

!+

TEST

DISEASE

FN TN

TP FP

Sensitivity → Pr ( positive test | disease )

Specificity → Pr ( negative test | no disease )

Positive Predictive Value → Pr ( disease | positive test )

Negative Predictive Value → Pr ( no disease | negative test )

Accuracy → Pr ( correct outcome )

Diagnostics

!

+

!+

TEST

DISEASE

FN TN

TP FP

Sensitivity → TP / (TP+FN)

Specificity → TN / (FP+TN)

Positive Predictive Value → TP / (TP+FP)

Negative Predictive Value → TN / (FN+TN)

Accuracy → (TP+TN) / (TP+FP+FN+TN)



Diagnostics

Assume that some disease has a 0.1% prevalence in the popula-

tion. Assume we have a test kit for that disease that works with

99% sensitivity and 99% specificity. What is the probability of a

person having the disease given the test result is positive, if we

randomly select a subject from

−→ the general population?

−→ a high risk sub-population with 10% disease prevalence?

Diagnostics
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DISEASE

1 98901

99 999



Diagnostics

!

+

!+

TEST

DISEASE

1 98901

99 999

Sensitivity → 99 / (99+1) = 99%

Specificity → 98901 / (999+98901) = 99%

Positive Predictive Value → 99 / (99+999) ≈ 9%

Negative Predictive Value → 98901 / (1+98901) > 99.9%

Accuracy → (99+98901) / 100000 = 99%

Diagnostics
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100 89100

9900 900



Diagnostics

!

+

!+

TEST

DISEASE

100 89100

9900 900

Sensitivity → 9900 / (9900+100) = 99%

Specificity → 89100 / (900+89100) = 99%

Positive Predictive Value → 9900 / (9900+900) ≈ 92%

Negative Predictive Value → 89100 / (100+89100) ≈ 99.9%

Accuracy → (9900+89100) / 100000 = 99%

Bayes rule

−→ Pr(A and B) = Pr(A) × Pr(B | A) = Pr(B) × Pr(A | B)

−→ Pr(A) = Pr(A and B) + Pr(A and not B)

= Pr(B) × Pr(A | B) + Pr(not B) × Pr(A | not B)

−→ Pr(B) = Pr(B and A) + Pr(B and not A)

= Pr(A) × Pr(B | A) + Pr(not A) × Pr(B | not A)

−→ Pr(A | B) = Pr(A and B) / Pr(B)

= Pr(A) × Pr(B | A) / Pr(B)



Bayes rule

Pr(A | B) =

Pr(A) × Pr(B | A) / Pr(B) =

Pr(A) × Pr(B | A) / {Pr(A) × Pr(B | A) + Pr(not A) × Pr(B | not A) }

Let A denote disease, and B a positive test result!

−→ Pr(A | B) is the probability of disease given a positive test result.

−→ Pr(A) is the prevalence of the disease.

−→ Pr(not A) is 1 minus the prevalence of the disease.

−→ Pr(B | A) is the sensitivity of the test.

−→ Pr(not B | not A) is the specificity of the test.

−→ Pr(B | not A) is 1 minus the specificity of the test.

Random Variables and Distributions



Random variables

Random variable: A number assigned to each outcome of a

random experiment.

Example 1: I toss a brick at my neighbor’s house.

D = distance the brick travels

X = 1 if I break a window; 0 otherwise

Y = cost of repair

T = time until the police arrive

N = number of people injured

Example 2: Apply a treatment to 10 subjects.

X = number of people that respond

P = proportion of people that respond

Further examples

Example 3: Pick a random student in the School.

S = 1 if female; 0 otherwise

H = his/her height

W = his/her weight

Z = 1 if Canadian citizen; 0 otherwise

T = number of teeth he/she has

Example 4: Sample 20 students from the School

Hi = height of student i

H = mean of the 20 student heights

SH = sample SD of heights

Ti = number of teeth of student i

T = average number of teeth



Random variables are . . .

Discrete: Take values in a countable set

(e.g., the positive integers).

Example: the number of teeth, number of gall

stones, number of birds, number of cells re-

sponding to a particular antigen, number of

heads in 20 tosses of a coin.

Continuous: Take values in an interval

(e.g., [0,1] or the real line).

Example: height, weight, mass, some measure

of gene expression, blood pressure.

Random variables may also be partly discrete and partly contin-

uous (for example, mass of gall stones, concentration of infecting

bacteria).

Probability function

Consider a discrete random variable, X .

The probability function (or probability distribution, or probability

mass function) of X is

p(x) = Pr(X = x)

Note that p(x) ≥ 0 for all x and
∑

p(x) = 1.
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Cumulative distribution function (cdf)

The cdf of X is F(x) = Pr(X ≤ x)

Probability function
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Binomial random variable

Prototype: The number of heads in n independent tosses of a coin, where

Pr(heads) = p for each toss.

→ n and p are called parameters.

Alternatively, imagine an urn containing red balls and black

balls, and suppose that p is the proportion of red balls. Con-

sider the number of red balls in n random draws with replace-

ment from the urn.

Example 1: Sample n people at random from a large population, and con-

sider the number of people with some property (e.g., that are

graduate students or that have exactly 32 teeth).

Example 2: Apply a treatment to n subjects and count the number of re-

sponders (or non-responders).

Example 3: Apply a treatment to 30 groups of 10 subjects. Count the num-

ber of groups with at least two responders.



Binomial distribution

Consider the Binomial(n,p) distribution.

That is, the number of red balls in n draws with replacement from

an urn for which the proportion of red balls is p.

−→ What is its probability function?

Example: Let X ∼ Binomial(n=9,p=0.2).

−→ We seek p(x) = Pr(X= x) for x = 0, 1, 2, . . . , 9.

p(0) = Pr(X= 0) = Pr(no red balls) = (1 – p)n = 0.89 ≈ 13%.

p(9) = Pr(X= 9) = Pr(all red balls) = pn = 0.29 ≈ 5 ×10-7

p(1) = Pr(X= 1) = Pr(exactly one red ball) = . . . ?

Binomial distribution

p(1) = Pr(X= 1) = Pr(exactly one red ball)

= Pr(RBBBBBBBB or BRBBBBBBB or . . . or BBBBBBBBR)

= Pr(RBBBBBBBB) + Pr(BRBBBBBBB) + Pr(BBRBBBBBB)

+ Pr(BBBRBBBBB) + Pr(BBBBRBBBB)

+ Pr(BBBBBRBBB) + Pr(BBBBBBRBB)

+ Pr(BBBBBBBRB) + Pr(BBBBBBBBR)

= p(1 – p)8 + p(1 – p)8 + . . . p(1 – p)8 = 9p(1 – p)8 ≈ 30%.

How about p(2) = Pr(X= 2)?

How many outcomes have 2 red balls among the 9 balls drawn?

−→ This is a problem of combinatorics. That is, counting!



Getting at Pr(X= 2)

RRBBBBBBB RBRBBBBBB RBBRBBBBB RBBBRBBBB

RBBBBRBBB RBBBBBRBB RBBBBBBRB RBBBBBBBR

BRRBBBBBB BRBRBBBBB BRBBRBBBB BRBBBRBBB

BRBBBBRBB BRBBBBBRB BRBBBBBBR BBRRBBBBB

BBRBRBBBB BBRBBRBBB BBRBBBRBB BBRBBBBRB

BBRBBBBBR BBBRRBBBB BBBRBRBBB BBBRBBRBB

BBBRBBBRB BBBRBBBBR BBBBRRBBB BBBBRBRBB

BBBBRBBRB BBBBRBBBR BBBBBRRBB BBBBBRBRB

BBBBBRBBR BBBBBBRRB BBBBBBRBR BBBBBBBRR

How many are there?

9 × 8 / 2 = 36.

The binomial coefficient

The number of possible samples of size k selected from a popula-

tion of size n :

(

n

k

)

=
n!

k! × (n – k)!

−→ n! = n × (n – 1) × (n – 2) × . . .× 3 × 2 × 1

−→ 0! = 1

For a Binomial(n,p) random variable:

Pr(X= k) =

(

n

k

)

pk(1 – p)(n – k)



Example

Suppose Pr(subject responds to treatment) = 90%, and we apply

the treatment to 10 random subjects.

Pr( exactly 7 subjects respond ) =

(

10

7

)

× (0.9)7 × (0.1)3

=
10 × 9 × 8

3 × 2
× (0.9)7 × (0.1)3

= 120 × (0.9)7 × (0.1)3

≈ 5%

Pr( fewer than 9 respond ) = 1 – p(9) – p(10)

= 1 – 10 × (0.9)9 × (0.1) – (0.9)10

≈ 26%

The world is entropy driven

Assume we are flipping a fair coin (independently) ten times. Let

X be the random variable that describes the number of heads H

in the experiment.

Pr(TTTTTTTTTT) = Pr(HTTHHHTHTH) = (1/2)10

−→ There is only one possible outcome with zero heads.

−→ There are 210 possibilities for outcomes with six heads.

Thus,

−→ Pr(X = 0) = (1/2)10 ≈ 0.1%.

−→ Pr(X = 6) = 210 × (1/2)10 ≈ 20.5%.



The world is entropy driven

Assume that in a lottery, six out of the numbers 1 through 49 are

randomly selected as the winning numbers.

−→ There are 13,983,816 possible combinations for the win-

ning numbers.

Hence Pr({1,2,3,4,5,6}) = Pr({8,23,24,34,42,45}) = 1/13983816

The probability of the having six consecutive numbers as the win-

ning numbers is

Pr({1,2,3,4,5,6}) + · · · + Pr({44,45,46,47,48,49})

= 44 × (1/13983816) ≈ 0.0003%.

Binomial distributions
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Binomial distributions

Binomial(n=10, p=0.5)
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Binomial distributions

Binomial(n=10, p=0.1)
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Expected value and standard deviation

−→ The expected value (or mean) of a discrete random vari-

able X with probability function p(x) is

µ = E(X ) =
∑

x x p(x)

−→ The variance of a discrete random variable X with proba-

bility function p(x) is

σ2 = var(X ) =
∑

x (x – µ)2 p(x)

−→ The standard deviation (SD) of X is

SD(X ) =
√

var(X ).

Mean and SD of binomial RVs

If X∼ Binomial(n,p), then

E(X ) = n p

SD(X ) =
√

n p (1 – p)

−→ Examples:

n p mean SD

10 10% 1 0.9

10 30% 3 1.4

10 50% 5 1.6

10 90% 9 0.9



Binomial random variable

Number of successes in n trials where:

−→ Trials independent

−→ p = Pr(success) is constant

The number of successes in n trials does not necessarily follow a

binomial distribution!

Deviations from the binomial:

−→ Varying p

−→ Clumping or repulsion (non-independence)

Examples

Suppose treatment response differs between genders:

Pr(responds | male) = 10% but Pr(responds | female) = 80%.

−→ Pick 4 male and 6 female subjects.

The number of responders is not binomial.

−→ Pick 10 random subjects (with Pr(subject is male) = 40%).

The number of responders is binomial.

p = 0.4 × 0.1 + 0.6 × 0.8 = 0.52.

Pr(responds) =

Pr(responds and male) + Pr(responds and female) =

Pr(male) × Pr(responds | male) + Pr(female) × Pr(responds | female)
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Poisson distribution

Consider a Binomial(n,p) where

−→ n is really large

−→ p is really small

For example, suppose each well in a microtiter plate contains

50,000 T cells, and that 1/100,000 cells respond to a particular

antigen.

Let X be the number of responding cells in a well.

−→ In this case, X follows a Poisson distribution approximately.

Let λ = n p = E(X ).

−→ p(x) = Pr(X = x) = e−λλx/x!

Note that SD(X) =
√

λ.



Poisson distribution
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Example

Suppose there are 100,000 T cells in each well of a microtiter

plate. Suppose that 1/80,000 T cells respond to a particular anti-

gen.

Let X = number of responding T cells in a well.

−→ X ∼ Poisson(λ = 1.25).

−→ E(X ) = 1.25

−→ SD(X ) =
√

1.25 ≈ 1.12.

Pr(X = 0) = exp(–1.25) ≈ 29%.

Pr(X > 0) = 1 – exp(–1.25) ≈ 71%.

Pr(X = 2) = exp(–1.25) × (1.25)2 / 2 ≈ 22%.



Y = a + b X

Suppose X is a discrete random variable with probability function

p, so that p(x) = Pr(X = x).

−→ Expected value: E(X ) =
∑

x x p(x)

−→ Standard deviation: SD(X ) =
√

∑

x[x - E(X)]2 p(x)

Let Y = a + b X where a and b are numbers. Then Y is a random

variable (like X ), and

−→ E(Y ) = a + b E(X )

−→ SD(Y ) = |b| SD(X )

In particular, if µ = E(X ), σ = SD(X ), and Z = (X – µ) / σ, then

−→ E(Z ) = 0

−→ SD(Z ) = 1

Y = a + b X
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X " µ

Let X be a random variable with mean µ and SD σ.

If Y = X – µ, then

−→ E(Y ) = 0

−→ SD(Y ) = σ



Y = a + b X
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(X " µ) #

Let X be a random variable with mean µ and SD σ.

If Y = (X – µ) / σ, then

−→ E(Y ) = 0

−→ SD(Y ) = 1

Example

Suppose X ∼ Binomial(n,p) → number of successes

−→ E(X ) = n p

−→ SD(X ) =
√

n p (1 – p)

Let P = X / n → proportion of successes

−→ E(P) = E(X / n) = E(X ) / n = p

−→ SD(P) = SD(X / n) = SD(X ) / n =
√

p (1 – p) / n



Continuous random variables

Suppose X is a continuous random variable.

Instead of a probability function, X has a probability density func-

tion (pdf), sometimes called just the density of X.

−→ f(x) ≥ 0

−→
∫ ∞
−∞ f(x) d(x) = 1

−→ Areas under curve =

probabilities

Cumulative distr. function:

−→ F(x) = Pr(X ≤ x) −→

Means and standard deviations

Expected value:

−→ Discrete RV: E(X ) =
∑

x x p(x)

−→ Continuous RV: E(X ) =
∫ ∞
−∞ x f(x) dx

Standard deviation:

−→ Discrete RV: SD(X ) =
√

∑

x[x - E(X)]2 p(x)

−→ Continuous RV: SD(X ) =
√

∫ ∞
−∞[x - E(X)]2 f(x) dx



Uniform distribution

X ∼ Uniform(a, b)

−→ Draw a number at random from the interval (a, b).

a b

height  =  
1

b " a

a b

height  =  1

f(x) =







1
b−a

if a < x < b

0 otherwise

−→ E(X ) = (a + b) / 2

−→ SD(X ) = (b – a) /
√

12

≈ 0.29 × (b – a)

Normal distribution

By far the most important distribution:

The normal distribution (also called the Gaussian distribution).

If X ∼ N(µ, σ), then the pdf of X is

f(x) =
1

σ
√

2π
· e−1

2(
x−µ
σ )

2

Note: E(X ) = µ and SD(X ) = σ.

Of great importance:

−→ If X ∼ N(µ,σ) and Z = (X – µ) / σ, then Z ∼ N(0, 1).

This is the standard normal distribution.



Normal distribution

The normal curve

µ " # µ µ + #µ " 2# µ + 2#

−→ Remember:

Pr(µ − σ ≤ X ≤ µ + σ) ≈ 68% and Pr(µ − 2σ ≤ X ≤ µ + 2σ) ≈ 95%.

The normal CDF

Density

µ " # µ µ + #

CDF

µ " # µ µ + #



Example

Suppose the heights of adult males in the U.S. are approximately

normal distributed, with mean = 69 in and SD = 3 in.

−→ What proportion of men are taller than 5’7”?

67 69

!2/3  0

X ∼ N(µ=69, σ=3)

Z = (X – 69)/3 ∼ N(0,1)

Pr(X ≥ 67) =

Pr(Z ≥ (67 – 69)/3) =

Pr(Z ≥ – 2/3)

Example

Use either of the following three:

67 69

=

!2/3  

=

2/3

The answer: 75%.



Another calculation

−→ What proportion of men are between 5’3” and 6’?

63 69 72

!2 0 1

Pr(63 ≤ X ≤ 72) = Pr(–2 ≤ Z ≤ 1) −→ 82%.


