Goodness of Fit

Goodness of fit - 2 classes

A B
78 22

— Do these data correspond reasonably to the proportions 3:17?

We previously discussed options for testing pa = 0.75!

e Exact p-value
e Exact confidence interval

e Normal approximation



Goodness of fit - 3 classes

AA  AB BB
35 43 22

— Do these data correspond reasonably to the proportions 1:2:17?

Multinomial distribution

e Imagine an urn with k types of balls.
e Let p; denote the proportion of type i.
e Draw n balls with replacement.

e Outcome: (nq,ng,...,Nny), with > .n; = n, where n; is the no.
balls drawn that were of type i.

Otherwise P(Xi=n1,..., Xx=ng) =0.



Example

Let (p4,P5,P3) = (0.25, 0.50, 0.25) and n = 100.

100!
P(X1=35, X2=43, X3=22) = % 0.25% 0.50*% 0.25%

~7.3x10"

Rather brutal, numerically speaking.

— Take logs (and use a computer).

Goodness of fit test

We observe (ny, nz, n3) ~ Multinomial(n,p={p+, P2, P3})-

We seek to test Hp : p; = 0.25,p, = 0.5, p3 = 0.25.

versus H, : Hp is false.

We need two things:

— A test statistic.

—— The null distribution of the test statistic.



The likelihood-ratio test (LRT)

Back to the first example:

Test Ho: (Pa,Pg) = (ma,m8) Versus  Ha: (Pa, Pg) # (Ta, TB).

— MLE under Hy:  pp=na/n  where n =n,+ ng.
Likelihood under Hy: Ly = Pr(nalpa = pa) = (an) X Pt x (1 — pa)""a

Likelihood under Ho: Lo = Pr(nalpa = 7a) = () X 73" x (1 — )" ™

—— Likelihood ratio test statistic: LRT =2 x In (La/Lo)

— Some clever people have shown that if Hg is true, then LRT
follows a y?(df=1) distribution (approximately).

Likelihood-ratio test for the example

We observed n, = 78 and ng = 22.

Ho : (pPa, Pg) = (0.75,0.25)

Ha : (pa, Pg) # (0.75,0.25)

La = Pr(na=78 | p,=0.78) = (1%?) x 0.78"® x 0.22°* = 0.096.
Lo = Pr(na=78 | p,=0.75) = (Y) x 0.75"® x 0.25°* = 0.075.

— . LRT =2 x In (La/Lo) = 0.49.

Using a x?(df=1) distribution, we get a p-value of 0.48.

We therefore have no evidence against the null hypothesis.



Null distribution
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A little math . ..

Nn=ns+nNg, NY=E[ny|Hol=nxm, n%=E[ng|Ho=n x ms.

Then Lalo= (%)™ x (%)

A

Or equivalently  LRT = 2xn,xin (%) +2xngxIn(1%).
B

NaA

— Why do this?



Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

LRT =2x 2 nix In (%)

If Ho is true, LRT ~ y?(df=k-1)

The chi-square test

There is an alternative technique. The test is called the chi-square
test, and has the greater tradition in the literature. For two groups,
calculate the following:

2 na—n0)? ng—n@)?
X< = ( An2A> + ( BngB)

— If Ho is true, then X2 is a draw from a y2(df=1) distribution
(approximately).



Example

In the first example we observed n, = 78 and ng = 22. Under the
null hypothesis we have n? = 75 and nQ = 25. We therefore get

2 78-75 22-25
X2 = U878 4 (22257 - 12 4 0.36 = 0.48.

This corresponds to a p-value of 0.49. We therefore have no evi-
dence against the hypothesis (p,, pg) = (0.75,0.25).

—— Note: using the likelihood ratio test we got a p-value of 0.48.

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more
than just two groups.

If we have k groups, the chi-square test statistic we use is

=y, (o o(d=ke)



Test statistics

Let n® denote the expected count in group i if Hy is true.

LRT statistic

_ Pr(data |[p=MLE)| = _
LRT=21n { Pr(data | Ho) } =...=25..n/In(n;/n?)

v’ test statistic

o _ < (observed — expected)® <— (n;—nP)
= Z expected - Z

Null distribution of test statistic

What values of LRT (or X?) should we expect, if Hy were true?

The null distributions of these statistics may be obtained by:
¢ Brute-force analytic calculations
e Computer simulations

e Asymptotic approximations
— If the sample size n is large, we have

LRT ~ x2(k — 1) and X2~ y2(k — 1)



Recommendation

For either the LRT or the \? test:

—— The null distribution is approximately x?(k — 1) if the sample
size is large.

— The null distribution can be approximated by simulating data
under the null hypothesis.

If the sample size is sufficiently large that the expected count in
each cell is > 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not  paa = 0.25, pag = 0.5, pgg = 0.25

But rather something like:

Paa = 2, Pag = 2f(1 — 1), pgg = (1 — )2  for some f.

For example: Consider the genotypes, of a random sample of in-
dividuals, at a diallelic locus.

— Is the locus in Hardy-Weinberg equilibrium (as expected
in the case of random mating)?

Example data:

AA  AB BB




Another example

ABO blood groups — 3 alleles A, B, O.

Phenotype A  genotype AA or AO
B  genotype BB or BO
AB  genotype AB
O genotype O

Allele frequencies: fa, fg, fo (Note that fp + fg +fog = 1)
Under Hardy-Weinberg equilibrium, we expect

pa—fa+2fafo Py =12 +2fsfo pPag=2fafs Po="13

O A B AB
104 91 36 19

Example data:

LRT for example 1

Data: (naa, Nas, Ngs) ~ Multinomial(n,{paa, Pag; Pes})
We seek to test whether the data conform reasonably to

HO: pAA — f2, pAB — 2f(1 - f), pBB — (1 - f>2 for some f.

General MLEs:

Paa = Naa/N, Pag = Nag/N, Prg = Nea/N

MLE under Hp:
2 . 2 . L .
f=(naa+nas/2)/n — Paa="T,Pag =2f(1 —1f),pgg = (1 — f)?

LRT statistic: LRT=2 x In {Pr(nAA’ NaB; N8B | Paa: Pas: ?BB>}
Pr(naa, Nas, Nes | Paa, Pag; Pes)



LRT for example 2

Data: (nO7 Na, Ng, nAB) ~ MUItinomial(n’{pO7 Pa; Pg; pAB})

We seek to test whether the data conform reasonably to

Ho: p, = fa + 2fafo, Ps = 15 + 2fafo, Pag = 2fafs, Po = 15

for some fq, fa, fg, where fg + o + fg = 1.
General MLEs:  pg,Pa, Pgs; Pags  like before.

MLE under Hy: Requires numerical optimization
Call them (fo. fa,fa) — (Po. Pa, P Pag)

LRT statistic: LRT =2 x In {Pr(no, Na, Ne, NAB | Po, Pa, Ps; pAB)}

Pr(”Oa Na, N, NAB ‘ FN)Oa ﬁA) E)BJ FN)AB)

2 test for these examples

e Obtain the MLE(s) under Ho.
e Calculate the corresponding cell probabilities.
e Turn these into (estimated) expected counts under Ho.

(observed — expected)?
expected

e Calculate X? = Z



Null distribution for these cases

e Computer simulation (with one wrinkle)
o Simulate data under Ho (plug in the MLEs for the observed data)
o Calculate the MLE with the simulated data
o Calculate the test statistic with the simulated data
o Repeat many times

e Asymptotic approximation

o Under Hy, if the sample size, n, is large, both the LRT statis-
tic and the y? statistic follow, approximately, a 2 distribution
with k — s — 1 degrees of freedom, where s is the number of
parameters estimated under Hp.

o Note that s = 1 for example 1, and s = 2 for example 2, and
so df = 1 for both examples.

Example 1

AA  AB BB
5 20 75

Example data:

MLE: f=(5+20/2)/100 = 15%

Expected counts: 225 255 72.25

Test statistics:  LRT statistic =3.87 X2=4.65

Asymptotic y?(df = 1) approx’n: P ~4.9% P=x31%

10,000 computer simulations: P~x~82% P ~x24%



Example 1

Est’d null dist’'n of LRT statistic

95th %ile = 4.58
Observed

o_
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Est’d null dist’n of chi-square statistic

95th %ile = 3.36
Observed

o_
-
~ -
>
©

Example 2

O A B AB
104 9 36 19

Example data:

MLE: fo~ 62.8%, fo ~ 25.0%, fg~ 12.2%.

Expected counts: 985 942 420 153

Test statistics:  LRT statistic=1.99 X2=2.10

Asymptotic y?(df = 1) approx’n: P~16% P~ 15%

10,000 computer simulations: P~17% P~ 15%



Example 2

Est’d null dist’'n of LRT statistic

95th %ile = 3.91
Observed

o_
.-
& -
o -
©

Est’d null dist’n of chi-square statistic

95th %ile = 3.86

Observed
Example 3

Data on number of sperm bound to an egg:

1 2 3 4 5
count 26 4 4 2 1 1

—— Do these follow a Poisson distribution?

MLE:

~

A=sample average=(0x26+1 x4 +...+45x1)/38~0.71

Expected counts — n®=nx e\ /|l



Example 3

observed 26 4 4 2 1 1
expected 18.7 133 47 11 0.2 0.0

2 bs—exp)>
X2 =yl oPl = =428
LRT =2 obs log(obs/exp) =...=18.8

Compare to y2(df =6 —1—1 = 4)
P-value =1 x 1078 (x2) and 9 x 10~* (LRT).

By simulation: p-value = 16/10,000 (x*) and 7/10,000 (LRT)

Null simulation results

0 20 40 60 80 100 120

Observed

|

0 5 10 15 20

Simulated LRT statistic



A final note

With these sorts of goodness-of-fit tests, we are often happy when
our model does fit.

In other words, we often prefer to fail to reject Hy.

Such a conclusion, that the data fit the model reasonably well,
should be phrased and considered with caution.

We should think: how much power do | have to detect, with these
limited data, a reasonable deviation from Hy?

Contingency Tables



2 x 2 tables

Apply a treatment A or B to 20
subjects each, and observe

the reponse.

N Y
A | 18 2 20
B | 11 9 20
29 11 40

Question:

— Are the response rates
for the two treatments

the same?

Sample 100 subjects and de-
termine whether they are in-
fected with viruses A and B.

I-B NI-B
I-A 9 9 18
NI-A | 20 62 @ 82
29 71 100

Question:

— Is infection with virus A
independent of infection
with virus B?

Underlying probabilities

—— Observed data

B

0 1
A 0 ngo Noi| Nos
1 nio Ny | Nyy
Nyo Ny n

— Underlying probabilities

B

o 1
A 0 Py Pot| Pos
1 P10 P11 P1+
Pio Pyt 1

Model:

(n007 No1, N10, n11) ~ MUltinomial(n,{poo, p01 ) p107 p11})

or

Not1 ~ Binomial(no+, Pg1/Po.) @and nqq ~ Binomial(ni4, p11/P1.)



Conditional probabilities

Underlying probabilities Conditional probabilities
5 Pr(B =1 A=0) = py/po,
o 1
PriB=1|A=1)=
A 0 Poo Poi| Pos ( | ) =P11/P1+
T 'P1o P11 P1s Pr(A=1[B=0)=p1o/P.0
Pio Pu 1 Pr(A=1[B=1)=py/p.;

— The questions in the two examples are the same!

They both concern:  pgy/Pos = P11/P1+

Equivalently: Pij = Pix X Py foralli,j — think Pr(a and B) = Pr(a) x Pr(8).

This is a composite hypothesis!

2 X 2 table A different view
B
o 1
A0 Poo Por| Po. Poo Po1 P1o P11
1 P10 P11] P14
Pio P41 1
Ho:  pj =Py % py; for allij Ho:  pj=pi, x p,; for all i,

Degrees of freedom=4-2-1=1



Expected counts

Observed data Expected counts

B B

0 1 0 1
A 0 ngo Noi| Nos A 0 ey €1 Nos
1 nio Nyq| Nyy 1 |eqg 11| N1y
Ny Nyr N Ny Ny N

To get the expected counts under the null hypothesis we:

— Estimate p,, and p, by n1./n and n,4/n, respectively.
These are the MLEs under Hy!

— Turn these into estimates of the p;;.
— Multiply these by the total sample size, n.

The expected counts

The expected count (assuming Hp) for the “11” cell is the following:

€11 = N X Py
= nXx FS1+ X f)+1
= N x (N14/N) X (Nyg/N)

= (N14 X Nyy)/N

The other cells are similar.

—— We can then calculate a y? or LRT statistic as before!



Example 1

Observed data Expected counts
N Y N Y
A 18 2 20 A 145 55
B 11 9 20 B 145 55
29 11 40 29 11

Xe st | (st st 05 g4

LRT =2 x [18 log(:%) + ... + 9 log(:%)] = 6.52

20
20
40

P-values (based on the asymptotic y2(df = 1) approximation):

1.3% and 1.1%, respectively.

Example 2
Observed data Expected counts
I-B  NI-B I-B NI-B
I-A 9 9 18 I-A | 5.2 128 18
NI-A | 20 62 82 NI-A | 23.8 58.2 82
29 71 100 29 71 100

o _(9-5.2)2 | (20-23.8)2 |, (9-12.8)2 , (62-58.2)2 _
Xo="%"+ "3 +t 128 T 882 =470

LRT =2 x [9log(z%) + ... + 62 log(25)] = 4.37

P-values (based on the asymptotic y2(df = 1) approximation):

3.0% and 3.7%, respectively.



Fisher’s exact test

Observed data

N Y
A | 18 2 20
B | 11 9 20
29 11 40

e Assume the null hypothesis (inde-
pendence) is true.

e Constrain the marginal counts to be
as observed.

e What’s the chance of getting this
exact table?

e What'’s the chance of getting a table
at least as “extreme”?

Hypergeometric distribution

e Imagine an urn with K white balls and N — K black balls.

e Draw n balls without replacement.

e Let x be the number of white balls in the sample.

¢ x follows a hypergeometric distribution (w/ parameters K, N, n).

sampled
not sampled

In urn
white black




Hypergeometric probabilities

Suppose X ~ Hypergeometric (N, K, n).

No. of white balls in a sample of size n, drawn without replacement from an urn with K white and N — K black.

K\ (N—-K
R [

(v)

Example:
In urn N =40,K=29,n=20
0 1
(29) (40729)
sampled 18 20 Pr(X = 18) = % ~ 1.4%
29 11 40

Back to Fisher’s exact test

e Assume the null hypothesis (inde-

Observed data .
pendence) is true.

N Y e Constrain the marginal counts to be
A 18 2 20 as observed.
B | 11 9 20
e Pr(observed table | Hp) = Pr(X=18)
29 11 40

X ~ Hypergeometric (N=40, K=29, n=20)



Fisher’s exact test

1. For all possible tables (with the observed marginal counts), cal-
culate the relevant hypergeometric probability.

2. Use that probability as a statistic.

3. P-value (for Fisher’s exact test of independence):

— The sum of the probabilities for all tables having a proba-
bility equal to or smaller than that observed.

An illustration

The observed data All possible tables (with these marginals):

N Y 20 0 | 0.00007 14 6 |- 0.25994
9 11 15 5
A | 18 2 20
B | 11 9 20 19 1 |- 0.00160 13 7 |- 0.16246
10 10 16 4
29 11 40
18 2 |- 0.01380 12 8 |- 0.06212
1 9 17 3
17 3 |- 0.06212 11 9 |- 0.01380
12 8 18 2
16 4 |- 0.16246 10 10| — 0.00160
13 7 19 1
15 5 | - 0.25094 9 11]— 0.00007
14 6 20 0




Fisher’s exact test: example 1

Observed data

N Y
A 18 2 20
B 11 9 50 P-value ~ 3.1%
29 11 40
Recall:

— y2test: P-value =1.3%

—— LRT: P-value =1.1%

Fisher’s exact test: example 2

Observed data

I-B NI-B
I-A 9 9 18
NI-A | 20 62 82
29 71 100

P-value ~ 4.4%

Recall:
— y2test: P-value =3.0%

—— LRT: P-value =3.7%



Summary

Testing for independence in a 2 x 2 table:

e A special case of testing a composite hypothesis in a one-
dimensional table.

e You can use either the LRT or \? test, as before.
e You can also use Fisher’s exact test.

e If Fisher’s exact test is computationally feasible, do it!

Paired data

Sample 100 subjects and de-
termine whether they are in- Underlying probabilities
fected with viruses A and B.

B
-B NI-B 0 1

-A | 9 9 | 18 A 0 | P Por | Pos

NI-A | 20 62 | 82 1T 1 Pio P11 | Pis
29 71 100 Pio Py 1

—— Is the rate of infection of virus A the same as that of virus B?

In other words: Is p;, = p,4?  Equivalently, is pyg = pg¢?



McNemar’s test

Ho: Po1 = P10

Under Hy, e.g. if pg; = p1o, the expected counts for cells 01 and
10 are both equal to (npy + N1g)/2.

(No1 — N10)?
No1 + N1o

The 2 test statistic reduces to X? =

For large sample sizes, this statistic has null distribution that is
approximately a x2(df = 1).

For the example: X2 =(20-9)2/29=4.17 — P =4.1%.

An exact test

Condition on ng1 + Nqg.

Under Hp, no1 ‘ No1 + Nqyg ~ Binomial(nm + N1, 1/2).

— For the example, P = 6.1%.



Paired data

Paired data

B NI-B
A 9 9
NI-A | 20 62
29 71

—~P=6.1%

Unpaired data

| NI
18 A 18 82 | 100
82 B 29 71 100
100 47 153 200
— P =9.5%

— Taking appropriate account of the “pairing” is important!

r x k tables
Blood type
Population A B AB O
Florida 122 117 19 244 502
lowa 1781 1351 289 3301 6721
Missouri 353 269 60 713 1395

2256 1737 367 4258 8618

— Same distribution of blood types in each population?



Underlying probabilities

Observed data

1 2 ... k
1In19 Ny -+ Ny
2/N2y N -+ Ny
rng Ne Nrk

Ny Ni2 Nk

HoZ

Pij = Pix X Py

Underlying probabilities

Expected counts

1 2 k
1/p11 P12 - Pk
2 P21 P22 -+ Pak
F'Pri Pr2 -+ Prk

P+1 P+2 -+ Pk
for all i,j.

P1+
P2+

Prs+

Observed data

A B AB O

F 122 117 19 244
1781 1351 289 3301
M 353 269 60 713

502
6721
1395

2256 1737 367 4258 8618

Expected counts under Ho:

F
|

€jj = Niy X Nyj/N

Expected counts

A B

AB O

131 101

21 248

1759 1355 286 3321
M| 365 281

59 689

502
6721
1395

2256 1737 367 4258 8618

for all

ij.



v2 and LRT statistics

Observed data Expected counts
A B AB O A B AB O
F 1122 117 19 244 | 502 F| 131 101 21 248 | 502
| 1781 1351 289 3301|6721 | 1759 1355 286 3321|6721
M| 353 269 60 713 1395 M| 365 281 59 689 1395
2256 1737 367 4258 8618 2256 1737 367 4258 8618
2 ST (obs—exp)? _ _
X© statistic = ) =5~ =--- =5.64
LRT statistic =2 x > obs In(obs/exp) =--- =5.55

Asymptotic approximation

If the sample size is large, the null distribution of the x2 and likeli-
hood ratio test statistics will approximately follow a

x? distribution with (r — 1) x (k—1) d.f.
In the example, df =(3—-1) x (4—-1) =6

X2=564 — P=0.46.

LRT =555 — P =0.48.



Fisher’s exact test

Observed data

e Condition on the marginal counts

1/Hlj nl]

1 2 k
1/n11 N2 -+ Ny Nyy e Assume Hp is true.
2Nt Noo - -- Nok | N2+
e Then Pr(table) o
FiNg N oo+ N N
Nig N2 -+ N N

e Consider all possible tables with the observed marginal counts

e Calculate Pr(table) for each possible table.

e P-value = the sum of the probabilities for all tables having a
probability equal to or smaller than that observed.

Fisher’s exact test: the example

Observed

P-value = 48%

I—'—l—ﬂ |

[ I I I I I
53916 53918 53920 53922 53924 53926

E |Og(nij!)

— Since the number of possible tables can be
often must resort to computer simulation.

1
53928

very large, we



Another example

Survival in different treatment groups:

Survive
Treatment No Yes
A 15 5
17 3
10 10
17 3
16 4

m o O W

—— |Is the survival rate the same for all treatments?

Results
Observed Expected under Hy
Survive Survive
Treatment No Yes Treatment No Yes
A 15 5 A 15 5
B 17 3 B 15 5
C 10 10 C 15 5
D 17 3 D 15 5
E 16 4 E 15 5

X2=907 — P=59% (how many df?)
LRT =841 — P=7.8%

Fisher’s exact test: P =8.7%



All pairwise comparisons

N Y
15 5| — P=69%
17 3

N Y
15 5 |— P=19%
10 10

N Y
15 5 — P=69%
17 3

15 5| — P=100%

N Y

B|17 3
C|10 10

— P=4.1%

N Y
B 17 3
D17 3

N Y
B{17 3
E|16 4

N Y
C|10 10
D|17 3

— P=100%

— P=100%

— P=4.1%

C |10 10| — P=9.6%

=2
<

— P=100%

Is this a good thing to do?

Two-locus linkage in an intercross

BB Bb bb

AA| 6
Aal 9
aa| 3

15 3
29 6
16 13

Are these two loci linked?



General test of independence

Observed data Expected counts

BB Bb bb BB Bb bb
AA 6 15 3 AA 4.3 144 53
Aa 9 29 6 Aa|7.9 26.4 9.7
aa 3 16 13 aa 5.8 19.2 7.0

Y2test: X2=104 — P=3.5% (df = 4)
LRTtest: LRT=998 — P=41%

Fisher’s exact test: P=46%

A more specific test

Observed data Underlying probabilities

BB Bb bb BB Bb bb
AA| 6 15 3 AA 11 -02 101 -9 102
Aa| 9 29 6 Aa 30(1 - 0) 6%+ (1~ 0% 3001 -0)
aa| 3 16 13 aa  10° 0(1-0) 1(1-0)72

Ho: 0 =1/2 versus Hj:60<1/2
Use a likelihood ratio test!
— Obtain the general MLE of 6.

—. Calculate the LRT statistic = 2 In {Pr Z;(faat'%' ?/2)}

— Compare this statistic to a y*(df = 1).



Results

BB Bb bb
AA 6 15 3
Aal 9 29 6
aa 3 16 13

MLE: 6 =0.359

LRT statistic: LRT=7.74 — P =0.54% (df=1)
— Here we assume Mendelian segregation, and that deviation
from Hp is “in a particular direction.”

— If these assumptions are correct, we’ll have greater power to
detect linkage using this more specific approach.



