
Goodness of Fit

Goodness of fit - 2 classes

A B

78 22

−→ Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing pA = 0.75!

• Exact p-value

• Exact confidence interval

• Normal approximation



Goodness of fit - 3 classes

AA AB BB

35 43 22

−→ Do these data correspond reasonably to the proportions 1:2:1?

Multinomial distribution

• Imagine an urn with k types of balls.

• Let pi denote the proportion of type i.

• Draw n balls with replacement.

• Outcome: (n1, n2, . . . , nk), with
∑

i ni = n, where ni is the no.

balls drawn that were of type i.

−→ P(X 1=n1, . . . ,X k=nk) =
n!

n1! × · · ·× nk!
pn1

1 × · · ·× pnk

k

if 0 ≤ ni ≤ n,
∑

i ni = n

Otherwise P(X 1=n1, . . . ,X k=nk) = 0.



Example

Let (p1, p2, p3) = (0.25, 0.50, 0.25) and n = 100.

P(X 1=35,X 2=43,X 3=22) =
100!

35! 43! 22!
0.2535 0.5043 0.2522

≈ 7.3 × 10-4

Rather brutal, numerically speaking.

−→ Take logs (and use a computer).

Goodness of fit test

We observe (n1, n2, n3) ∼ Multinomial(n,p={p1, p2, p3}).

We seek to test H0 : p1 = 0.25, p2 = 0.5, p3 = 0.25.

versus Ha : H0 is false.

We need two things:

−→ A test statistic.

−→ The null distribution of the test statistic.



The likelihood-ratio test (LRT)

Back to the first example:
A B

nA nB

Test H0 : (pA, pB) = (πA,πB) versus Ha : (pA, pB) '= (πA,πB).

−→ MLE under Ha: p̂A = nA/n where n = nA + nB.

Likelihood under Ha: La = Pr(nA|pA = p̂A) =
(

n
nA

)

× p̂
nA

A × (1 − p̂A)n−nA

Likelihood under H0: L0 = Pr(nA|pA = πA) =
(

n
nA

)

× πnA

A × (1 − πA)n−nA

−→ Likelihood ratio test statistic: LRT = 2 × ln (La/L0)

−→ Some clever people have shown that if H0 is true, then LRT

follows a χ2(df=1) distribution (approximately).

Likelihood-ratio test for the example

We observed nA = 78 and nB = 22.

H0 : (pA, pB) = (0.75,0.25)

Ha : (pA, pB) '= (0.75,0.25)

La = Pr(nA=78 | pA=0.78) =
(

100
78

)

× 0.7878 × 0.2222 = 0.096.

L0 = Pr(nA=78 | pA=0.75) =
(

100
78

)

× 0.7578 × 0.2522 = 0.075.

−→ LRT = 2 × ln (La/L0) = 0.49.

Using a χ2(df=1) distribution, we get a p-value of 0.48.

We therefore have no evidence against the null hypothesis.



Null distribution
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Obs LRT

A little math . . .

n = nA + nB, n0
A = E[nA | H0] = n × πA, n0

B = E[nB | H0] = n × πB.

Then La/L0 =
(

nA

n0
A

)nA

×
(

nB

n0
B

)nB

Or equivalently LRT = 2×nA×ln
(

nA

n0
A

)

+ 2×nB×ln
(

nB

n0
B

)

.

−→ Why do this?



Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

LRT = 2×
∑k

i=1 ni× ln
(

ni

n0
i

)

If H0 is true, LRT ∼ χ2(df=k-1)

The chi-square test

There is an alternative technique. The test is called the chi-square

test, and has the greater tradition in the literature. For two groups,

calculate the following:

X
2 = (nA−n0

A)
2

n0
A

+ (nB−n0
B)

2

n0
B

−→ If H0 is true, then X
2 is a draw from a χ2(df=1) distribution

(approximately).



Example

In the first example we observed nA = 78 and nB = 22. Under the

null hypothesis we have n0
A = 75 and n0

B = 25. We therefore get

X
2 = (78-75)2

75
+ (22-25)2

25
= 0.12 + 0.36 = 0.48.

This corresponds to a p-value of 0.49. We therefore have no evi-

dence against the hypothesis (pA, pB) = (0.75,0.25).

−→ Note: using the likelihood ratio test we got a p-value of 0.48.

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more

than just two groups.

If we have k groups, the chi-square test statistic we use is

X
2 =

∑k
i=1

(ni−n0
i )

2

n0
i

∼ χ2(df=k-1)



Test statistics

Let n0
i denote the expected count in group i if H0 is true.

LRT statistic

LRT = 2 ln

{

Pr(data | p = MLE)

Pr(data | H0)

}

= . . . = 2
∑

i ni ln(ni/n0
i )

χ2 test statistic

X2 =
∑ (observed − expected)2

expected
=

∑

i

(ni − n0
i )

2

n0
i

Null distribution of test statistic

What values of LRT (or X2) should we expect, if H0 were true?

The null distributions of these statistics may be obtained by:

• Brute-force analytic calculations

• Computer simulations

• Asymptotic approximations

−→ If the sample size n is large, we have

LRT ∼ χ2(k − 1) and X2 ∼ χ2(k − 1)



Recommendation

For either the LRT or the χ2 test:

−→ The null distribution is approximately χ2(k − 1) if the sample

size is large.

−→ The null distribution can be approximated by simulating data

under the null hypothesis.

If the sample size is sufficiently large that the expected count in

each cell is ≥ 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not pAA = 0.25, pAB = 0.5, pBB = 0.25

But rather something like:

pAA = f2, pAB = 2f(1 − f), pBB = (1 − f)2 for some f.

For example: Consider the genotypes, of a random sample of in-

dividuals, at a diallelic locus.

−→ Is the locus in Hardy-Weinberg equilibrium (as expected

in the case of random mating)?

Example data:

AA AB BB

5 20 75



Another example

ABO blood groups −→ 3 alleles A, B, O.

Phenotype A genotype AA or AO

B genotype BB or BO

AB genotype AB

O genotype O

Allele frequencies: fA, fB, fO (Note that fA + fB + fO = 1)

Under Hardy-Weinberg equilibrium, we expect

pA = f2A + 2fAfO pB = f2B + 2fBfO pAB = 2fAfB pO = f2O

Example data:
O A B AB

104 91 36 19

LRT for example 1

Data: (nAA, nAB, nBB) ∼ Multinomial(n,{pAA, pAB, pBB})

We seek to test whether the data conform reasonably to

H0: pAA = f2, pAB = 2f(1 − f), pBB = (1 − f)2
for some f.

General MLEs:

p̂AA = nAA/n, p̂AB = nAB/n, p̂BB = nBB/n

MLE under H0:

f̂ = (nAA + nAB/2)/n −→ p̃AA = f̂
2
, p̃AB = 2 f̂ (1 − f̂), p̃BB = (1 − f̂)2

LRT statistic: LRT = 2 × ln

{

Pr(nAA, nAB, nBB | p̂AA, p̂AB, p̂BB)

Pr(nAA, nAB, nBB | p̃AA, p̃AB, p̃BB)

}



LRT for example 2

Data: (nO, nA, nB, nAB) ∼ Multinomial(n,{pO, pA, pB, pAB})

We seek to test whether the data conform reasonably to

H0: pA = f2A + 2fAfO, pB = f2B + 2fBfO, pAB = 2fAfB, pO = f2O
for some fO, fA, fB, where fO + fA + fB = 1.

General MLEs: p̂O, p̂A, p̂B, p̂AB, like before.

MLE under H0: Requires numerical optimization

Call them (̂fO, f̂A, f̂B) −→ (p̃O, p̃A, p̃B, p̃AB)

LRT statistic: LRT = 2 × ln

{

Pr(nO, nA, nB, nAB | p̂O, p̂A, p̂B, p̂AB)

Pr(nO, nA, nB, nAB | p̃O, p̃A, p̃B, p̃AB)

}

χ2 test for these examples

• Obtain the MLE(s) under H0.

• Calculate the corresponding cell probabilities.

• Turn these into (estimated) expected counts under H0.

• Calculate X2 =
∑ (observed − expected)2

expected



Null distribution for these cases

• Computer simulation (with one wrinkle)

◦ Simulate data under H0 (plug in the MLEs for the observed data)

◦ Calculate the MLE with the simulated data

◦ Calculate the test statistic with the simulated data

◦ Repeat many times

• Asymptotic approximation

◦ Under H0, if the sample size, n, is large, both the LRT statis-

tic and the χ2 statistic follow, approximately, a χ2 distribution

with k – s – 1 degrees of freedom, where s is the number of

parameters estimated under H0.

◦ Note that s = 1 for example 1, and s = 2 for example 2, and

so df = 1 for both examples.

Example 1

Example data:
AA AB BB

5 20 75

MLE: f̂ = (5 + 20/2) / 100 = 15%

Expected counts: 2.25 25.5 72.25

Test statistics: LRT statistic = 3.87 X2 = 4.65

Asymptotic χ2(df = 1) approx’n: P ≈ 4.9% P ≈ 3.1%

10,000 computer simulations: P ≈ 8.2% P ≈ 2.4%



Example 1

Est’d null dist’n of LRT statistic

LRT

0 2 4 6 8

Observed

95th %ile = 4.58

Est’d null dist’n of chi!square statistic

X
2

0 2 4 6 8

Observed

95th %ile = 3.36

Example 2

Example data:
O A B AB

104 91 36 19

MLE: f̂O ≈ 62.8%, f̂A ≈ 25.0%, f̂B ≈ 12.2%.

Expected counts: 98.5 94.2 42.0 15.3

Test statistics: LRT statistic = 1.99 X2 = 2.10

Asymptotic χ2(df = 1) approx’n: P ≈ 16% P ≈ 15%

10,000 computer simulations: P ≈ 17% P ≈ 15%



Example 2

Est’d null dist’n of LRT statistic

LRT

0 2 4 6 8

Observed

95th %ile = 3.91

Est’d null dist’n of chi!square statistic

X
2

0 2 4 6 8

Observed

95th %ile = 3.86

Example 3

Data on number of sperm bound to an egg:

0 1 2 3 4 5

count 26 4 4 2 1 1

−→ Do these follow a Poisson distribution?

MLE:

λ̂ = sample average = ( 0 × 26 + 1 × 4 + . . . + 5 × 1 ) / 38 ≈ 0.71

Expected counts −→ n0
i = n × e−λ̂ λ̂i / i!



Example 3

0 1 2 3 4 5

observed 26 4 4 2 1 1

expected 18.7 13.3 4.7 1.1 0.2 0.0

X2 =
∑ (obs−exp)2

exp
= . . . = 42.8

LRT = 2
∑

obs log(obs/exp) = . . . = 18.8

Compare to χ2(df = 6 – 1 – 1 = 4)

P-value = 1 × 10−8 (χ2) and 9 × 10−4 (LRT).

By simulation: p-value = 16/10,000 (χ2) and 7/10,000 (LRT)

Null simulation results

Simulated !
2
 statistic

0 20 40 60 80 100 120

Observed

Simulated LRT statistic

0 5 10 15 20

Observed



A final note

With these sorts of goodness-of-fit tests, we are often happy when

our model does fit.

In other words, we often prefer to fail to reject H0.

Such a conclusion, that the data fit the model reasonably well,

should be phrased and considered with caution.

We should think: how much power do I have to detect, with these

limited data, a reasonable deviation from H0?

Contingency Tables



2 x 2 tables

Apply a treatment A or B to 20

subjects each, and observe

the reponse.

N Y

A 18 2 20

B 11 9 20

29 11 40

Question:

−→ Are the response rates

for the two treatments

the same?

Sample 100 subjects and de-

termine whether they are in-

fected with viruses A and B.

I-B NI-B

I-A 9 9 18

NI-A 20 62 82

29 71 100

Question:

−→ Is infection with virus A

independent of infection

with virus B?

Underlying probabilities

−→ Observed data

B

0 1

A 0 n00 n01 n0+

1 n10 n11 n1+

n+0 n+1 n

−→ Underlying probabilities

B

0 1

A 0 p00 p01 p0+

1 p10 p11 p1+

p+0 p+1 1

Model:

(n00, n01, n10, n11) ∼ Multinomial(n,{p00, p01, p10, p11})

or

n01 ∼ Binomial(n0+, p01/p0+) and n11 ∼ Binomial(n1+, p11/p1+)



Conditional probabilities

Underlying probabilities

B

0 1

A 0 p00 p01 p0+

1 p10 p11 p1+

p+0 p+1 1

Conditional probabilities

Pr(B = 1 | A = 0) = p01/p0+

Pr(B = 1 | A = 1) = p11/p1+

Pr(A = 1 | B = 0) = p10/p+0

Pr(A = 1 | B = 1) = p11/p+1

−→ The questions in the two examples are the same!

They both concern: p01/p0+ = p11/p1+

Equivalently: pij = pi+ × p+j for all i,j −→ think Pr(A and B) = Pr(A) × Pr(B).

This is a composite hypothesis!

2 x 2 table

B

0 1

A 0 p00 p01 p0+

1 p10 p11 p1+

p+0 p+1 1

H0: pij = pi+ × p+j for all i,j

A different view

p00 p01 p10 p11

H0: pij = pi+ × p+j for all i,j

Degrees of freedom = 4 - 2 - 1 = 1



Expected counts

Observed data

B

0 1

A 0 n00 n01 n0+

1 n10 n11 n1+

n+0 n+1 n

Expected counts

B

0 1

A 0 e00 e01 n0+

1 e10 e11 n1+

n+0 n+1 n

To get the expected counts under the null hypothesis we:

−→ Estimate p1+ and p+1 by n1+/n and n+1/n, respectively.

These are the MLEs under H0!

−→ Turn these into estimates of the pij.

−→ Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H0) for the “11” cell is the following:

e11 = n × p̂11

= n × p̂1+ × p̂+1

= n × (n1+/n) × (n+1/n)

= (n1+ × n+1)/n

The other cells are similar.

−→ We can then calculate a χ2 or LRT statistic as before!



Example 1

Observed data

N Y

A 18 2 20

B 11 9 20

29 11 40

Expected counts

N Y

A 14.5 5.5 20

B 14.5 5.5 20

29 11 40

X2 = (18−14.5)2

14.5
+ (11−14.5)2

14.5
+ (2−5.5)2

5.5
+ (9−5.5)2

5.5
= 6.14

LRT = 2 × [18 log( 18
14.5

) + . . . + 9 log( 9
5.5

)] = 6.52

P-values (based on the asymptotic χ2(df = 1) approximation):

1.3% and 1.1%, respectively.

Example 2

Observed data

I-B NI-B

I-A 9 9 18

NI-A 20 62 82

29 71 100

Expected counts

I-B NI-B

I-A 5.2 12.8 18

NI-A 23.8 58.2 82

29 71 100

X2 = (9−5.2)2

5.2
+ (20−23.8)2

23.8
+ (9−12.8)2

12.8
+ (62−58.2)2

58.2
= 4.70

LRT = 2 × [9 log( 9
5.2

) + . . . + 62 log( 62
58.2

)] = 4.37

P-values (based on the asymptotic χ2(df = 1) approximation):

3.0% and 3.7%, respectively.



Fisher’s exact test

Observed data

N Y

A 18 2 20

B 11 9 20

29 11 40

• Assume the null hypothesis (inde-

pendence) is true.

• Constrain the marginal counts to be

as observed.

• What’s the chance of getting this

exact table?

• What’s the chance of getting a table

at least as “extreme”?

Hypergeometric distribution

• Imagine an urn with K white balls and N – K black balls.

• Draw n balls without replacement.

• Let x be the number of white balls in the sample.

• x follows a hypergeometric distribution (w/ parameters K, N, n).

In urn

white black

sampled x n

not sampled N – n

K N – K N



Hypergeometric probabilities

Suppose X ∼ Hypergeometric (N, K, n).

No. of white balls in a sample of size n, drawn without replacement from an urn with K white and N – K black.

Pr(X = x) =

(

K
x

)(

N−K
n−x

)

(

N
n

)

Example:

In urn

0 1

sampled 18 20

not 20

29 11 40

N = 40, K = 29, n = 20

Pr(X = 18) =

(

29
18

)(

40−29
20−18

)

(

40
20

) ≈ 1.4%

Back to Fisher’s exact test

Observed data

N Y

A 18 2 20

B 11 9 20

29 11 40

• Assume the null hypothesis (inde-

pendence) is true.

• Constrain the marginal counts to be

as observed.

• Pr(observed table | H0) = Pr(X=18)

X ∼ Hypergeometric (N=40, K=29, n=20)



Fisher’s exact test

1. For all possible tables (with the observed marginal counts), cal-

culate the relevant hypergeometric probability.

2. Use that probability as a statistic.

3. P-value (for Fisher’s exact test of independence):

−→ The sum of the probabilities for all tables having a proba-

bility equal to or smaller than that observed.

An illustration

The observed data

N Y

A 18 2 20

B 11 9 20

29 11 40

All possible tables (with these marginals):

20 0 → 0.00007 14 6 → 0.25994

9 11 15 5

19 1 → 0.00160 13 7 → 0.16246

10 10 16 4

18 2 → 0.01380 12 8 → 0.06212

11 9 17 3

17 3 → 0.06212 11 9 → 0.01380

12 8 18 2

16 4 → 0.16246 10 10 → 0.00160

13 7 19 1

15 5 → 0.25994 9 11 → 0.00007

14 6 20 0



Fisher’s exact test: example 1

Observed data

N Y

A 18 2 20

B 11 9 20

29 11 40

P-value ≈ 3.1%

In R: fisher.test()

Recall:

−→ χ2 test: P-value = 1.3%

−→ LRT: P-value = 1.1%

Fisher’s exact test: example 2

Observed data

I-B NI-B

I-A 9 9 18

NI-A 20 62 82

29 71 100

P-value ≈ 4.4%

Recall:

−→ χ2 test: P-value = 3.0%

−→ LRT: P-value = 3.7%



Summary

Testing for independence in a 2 x 2 table:

• A special case of testing a composite hypothesis in a one-

dimensional table.

• You can use either the LRT or χ2 test, as before.

• You can also use Fisher’s exact test.

• If Fisher’s exact test is computationally feasible, do it!

Paired data

Sample 100 subjects and de-

termine whether they are in-

fected with viruses A and B.

I-B NI-B

I-A 9 9 18

NI-A 20 62 82

29 71 100

Underlying probabilities

B

0 1

A 0 p00 p01 p0+

1 p10 p11 p1+

p+0 p+1 1

−→ Is the rate of infection of virus A the same as that of virus B?

In other words: Is p1+ = p+1? Equivalently, is p10 = p01?



McNemar’s test

H0: p01 = p10

Under H0, e.g. if p01 = p10, the expected counts for cells 01 and

10 are both equal to (n01 + n10)/2.

The χ2 test statistic reduces to X2 =
(n01 − n10)2

n01 + n10

For large sample sizes, this statistic has null distribution that is

approximately a χ2(df = 1).

For the example: X2 = (20 – 9)2 / 29 = 4.17 −→ P = 4.1%.

An exact test

Condition on n01 + n10.

Under H0, n01 | n01 + n10 ∼ Binomial(n01 + n10, 1/2).

In R, use the function binom.test.

−→ For the example, P = 6.1%.



Paired data

Paired data

I-B NI-B

I-A 9 9 18

NI-A 20 62 82

29 71 100

→ P = 6.1%

Unpaired data

I NI

A 18 82 100

B 29 71 100

47 153 200

→ P = 9.5%

−→ Taking appropriate account of the “pairing” is important!

r x k tables

Blood type

Population A B AB O

Florida 122 117 19 244 502

Iowa 1781 1351 289 3301 6721

Missouri 353 269 60 713 1395

2256 1737 367 4258 8618

−→ Same distribution of blood types in each population?



Underlying probabilities

Observed data

1 2 · · · k

1 n11 n12 · · · n1k n1+

2 n21 n22 · · · n2k n2+

... ... ... . . . ... ...

r nr1 nr2 · · · nrk nr+

n+1 n+2 · · · n+k n

Underlying probabilities

1 2 · · · k

1 p11 p12 · · · p1k p1+

2 p21 p22 · · · p2k p2+

... ... ... . . . ... ...

r pr1 pr2 · · · prk pr+

p+1 p+2 · · · p+k 1

H0: pij = pi+ × p+j for all i,j.

Expected counts

Observed data

A B AB O

F 122 117 19 244 502

I 1781 1351 289 3301 6721

M 353 269 60 713 1395

2256 1737 367 4258 8618

Expected counts

A B AB O

F 131 101 21 248 502

I 1759 1355 286 3321 6721

M 365 281 59 689 1395

2256 1737 367 4258 8618

Expected counts under H0: eij = ni+ × n+j/n for all i,j.



χ2 and LRT statistics

Observed data

A B AB O

F 122 117 19 244 502

I 1781 1351 289 3301 6721

M 353 269 60 713 1395

2256 1737 367 4258 8618

Expected counts

A B AB O

F 131 101 21 248 502

I 1759 1355 286 3321 6721

M 365 281 59 689 1395

2256 1737 367 4258 8618

X2 statistic =
∑ (obs−exp)2

exp
= · · · = 5.64

LRT statistic = 2 ×
∑

obs ln(obs/exp) = · · · = 5.55

Asymptotic approximation

If the sample size is large, the null distribution of the χ2 and likeli-

hood ratio test statistics will approximately follow a

χ2 distribution with (r – 1) × (k – 1) d.f.

In the example, df = (3 – 1) × (4 – 1) = 6

X2 = 5.64 −→ P = 0.46.

LRT = 5.55 −→ P = 0.48.



Fisher’s exact test

Observed data

1 2 · · · k

1 n11 n12 · · · n1k n1+

2 n21 n22 · · · n2k n2+

... ... ... . . . ... ...

r nr1 nr2 · · · nrk nr+

n+1 n+2 · · · n+k n

• Assume H0 is true.

• Condition on the marginal counts

• Then Pr(table) ∝ 1/
∏

ij nij!

• Consider all possible tables with the observed marginal counts

• Calculate Pr(table) for each possible table.

• P-value = the sum of the probabilities for all tables having a

probability equal to or smaller than that observed.

Fisher’s exact test: the example

" log(nij!)

53916 53918 53920 53922 53924 53926 53928

Observed

P!value = 48%

−→ Since the number of possible tables can be very large, we

often must resort to computer simulation.



Another example

Survival in different treatment groups:

Survive

Treatment No Yes

A 15 5

B 17 3

C 10 10

D 17 3

E 16 4

−→ Is the survival rate the same for all treatments?

Results

Observed

Survive

Treatment No Yes

A 15 5

B 17 3

C 10 10

D 17 3

E 16 4

Expected under H0

Survive

Treatment No Yes

A 15 5

B 15 5

C 15 5

D 15 5

E 15 5

X2 = 9.07 −→ P = 5.9% (how many df?)

LRT = 8.41 −→ P = 7.8%

Fisher’s exact test: P = 8.7%



All pairwise comparisons

N Y

A 15 5

B 17 3

−→ P=69%

N Y

A 15 5

C 10 10

−→ P=19%

N Y

A 15 5

D 17 3

−→ P=69%

N Y

A 15 5

E 16 4

−→ P=100%

N Y

B 17 3

C 10 10

−→ P=4.1%

N Y

B 17 3

D 17 3

−→ P=100%

N Y

B 17 3

E 16 4

−→ P=100%

N Y

C 10 10

D 17 3

−→ P=4.1%

N Y

C 10 10

E 16 4

−→ P=9.6%

N Y

D 17 3

E 16 4

−→ P=100%

Is this a good thing to do?

Two-locus linkage in an intercross

BB Bb bb

AA 6 15 3

Aa 9 29 6

aa 3 16 13

Are these two loci linked?



General test of independence

Observed data

BB Bb bb

AA 6 15 3

Aa 9 29 6

aa 3 16 13

Expected counts

BB Bb bb

AA 4.3 14.4 5.3

Aa 7.9 26.4 9.7

aa 5.8 19.2 7.0

χ2 test: X2 = 10.4 −→ P = 3.5% (df = 4)

LRT test: LRT = 9.98 −→ P = 4.1%

Fisher’s exact test: P = 4.6%

A more specific test

Observed data

BB Bb bb

AA 6 15 3

Aa 9 29 6

aa 3 16 13

Underlying probabilities

BB Bb bb

AA 1
4
(1 − θ)2 1

2
θ(1 − θ) 1

4
θ2

Aa 1
2
θ(1 − θ) 1

2
[θ2 + (1 − θ)2] 1

2
θ(1 − θ)

aa 1
4
θ2 1

2
θ(1 − θ) 1

4
(1 − θ)2

H0: θ = 1/2 versus Ha: θ < 1/2

Use a likelihood ratio test!

−→ Obtain the general MLE of θ.

−→ Calculate the LRT statistic = 2 ln
{

Pr(data | θ̂)
Pr(data | θ=1/2)

}

−→ Compare this statistic to a χ2(df = 1).



Results

BB Bb bb

AA 6 15 3

Aa 9 29 6

aa 3 16 13

MLE: θ̂ = 0.359

LRT statistic: LRT = 7.74 −→ P = 0.54% (df = 1)

−→ Here we assume Mendelian segregation, and that deviation

from H0 is “in a particular direction.”

−→ If these assumptions are correct, we’ll have greater power to

detect linkage using this more specific approach.


