
Analysis of Variance

Blood coagulation time

T avg

A 62 60 63 59 61

B 63 67 71 64 65 66 66

C 68 66 71 67 68 68 68

D 56 62 60 61 63 64 63 59 61

64



Blood coagulation time

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Coagulation Time

A

B

C

D

Combined

Notation

Assume we have k treatment groups.

nt number of subjects in treatment group t

N number of subjects (overall)

Yti response i in treatment group t

Ȳt· average response in treatment group t

Ȳ average response (overall)



Variance contributions

∑

t

∑

i

(Yti − Ȳ)2 =
∑

t

nt(Ȳt· − Ȳ)2 +
∑

t

∑

i

(Yti − Ȳt·)
2

ST = SB + SW

N – 1 = k – 1 + N – k

Estimating the variability

We assume that the data are random samples from four normal

distributions having the same variance σ2, differing only (if at all)

in their means.

We can estimate the variance σ2 for each treatment t, using the

sum of squared differences from the averages within each group.

Define, for treatment group t,

St=

nt
∑

i = 1

(Yti − Ȳt·)
2.

Then

E(St)=(nt – 1) × σ2.



Within group variability

The within-group sum of squares is the sum of all treatment sum

of squares:

SW=S1 + · · · + Sk=
∑

t

∑

i

(Yti − Ȳt·)
2

The within-group mean square is defined as

MW=
S1 + · · · + Sk

(n1 – 1) + · · · + (nk – 1)
=

SW

N − k
=

∑

t

∑

i (Yti − Ȳt·)
2

N − k

It is our first estimate of σ2.

Between group variability

The between-group sum of squares is

SB=

k
∑

t = 1

nt(Ȳt· − Ȳ)2

The between-group mean square is defined as

MB=
SB

k − 1
=

∑

t nt(Ȳt· − Ȳ)2

k − 1

It is our second estimate of σ2.

That is, if there is no treatment effect!



Important facts

The following are facts that we will exploit later for some formal

hypothesis testing:

• The distribution of SW/σ2 is χ2(df=N-k)

• The distribution of SB/σ2 is χ2(df=k-1) if there is no treatment effect!

• SW and SB are independent

The F distribution

Let Z1 ∼ χ2
m, and Z2 ∼ χ2

n. Assume Z1 and Z2 are independent.

−→ Then
Z1/m

Z2/n
∼ Fm,n

F distributions

0 0.5 1 1.5 2 2.5 3

df=20,10

df=20,20

df=20,50



ANOVA table

source sum of squares df mean square

between treatments SB=
∑

t

nt(Ȳt· − Ȳ)2 k – 1 MB=SB/(k – 1)

within treatments SW=
∑

t

∑

i

(Yti − Ȳt·)
2 N – k MW=SW/(N – k)

total ST=
∑

t

∑

i

(Yti − Ȳ)2 N – 1

Example

source sum of squares df mean square

between treatments 228 3 76.0

within treatments 112 20 5.6

total 340 23



The ANOVA model

We write Yti = µt + εti with εti ∼ iid N(0,σ2).

Using τt = µt − µ we can also write

Yti = µ + τt + εti.

The corresponding analysis of the data is

yti = ȳ·· + (ȳt· − ȳ··) + (yti − ȳt·)

The ANOVA model

Three different ways to describe the model:

A. Yti independent with Yti ∼ N(µt,σ2)

B. Yti = µt + εti where εti ∼ iid N(0,σ2)

C. Yti = µ + τt + εti where εti ∼ iid N(0,σ2) and
∑

t τt = 0



Now what did we do...?
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observations grand average treatment deviations residuals

yti = ȳ·· + ȳt· − ȳ·· + yti − ȳt·
Vector Y = A + T + R

Sum of Squares 98,644 = 98,304 + 228 + 112

D’s of Freedom 24 = 1 + 3 + 20

Hypothesis testing

We assume

Yti = µ + τt + εti with εti ∼ iid N(0,σ2).

Equivalently, Yti ∼ independent N(µt, σ2)

We want to test

H0 : τ1= · · ·=τk=0 versus Ha : H0 is false.

Equivalently, H0 : µ1= . . . =µk

For this, we use a one-sided F test.



Another fact

It can be shown that

E(MB)=σ2 +

∑

t ntτ2
t

k – 1

Therefore

E(MB)=σ2 if H0 is true

E(MB) > σ2 if H0 is false

Recipe for the hypothesis test

Under H0 we have

MB

MW

∼ Fk – 1, N – k.

Therefore

• Calculate MB and MW.

• Calculate MB/MW.

• Calculate a p-value using MB/MW as test statistic, using the

right tail of an F distribution with k – 1 and N – k degrees of

freedom.



Example (cont)

H0 : τ1=τ2=τ3=τ4=0 versus Ha : H0 is false.

MB = 76, MW =5.6, therefore MB/MW = 13.57.

Using an F distribution with 3 and 20 degrees of freedom, we get

a pretty darn low p-value. Therefore, we reject the null hypothesis.

0 2 4 6 8 10 12 14

MB MW

F(3,20)

Another example

treatment response

200 400 600 800 1000 1200 1400 1600 1800 2000

B

A

Are the population means the same?

By now, we know two ways of testing that:

Two-sample t-test, and ANOVA with two treatments.

−→ But do they give similar results?



ANOVA table

source sum of squares df mean square

between treatments SB=
∑

t

nt(Ȳt· − Ȳ)2 k – 1 MB=SB/(k – 1)

within treatments SW=
∑

t

∑

i

(Yti − Ȳt·)
2 N – k MW=SW/(N – k)

total ST=
∑

t

∑

i

(Yti − Ȳ)2 (N – 1)

ANOVA for two groups

The ANOVA test statistic is MB/MW, with

MB=n1(Ȳ1 − Ȳ)2 + n2(Ȳ2 − Ȳ)2

and

MW=

∑n1

i = 1 (Y1i − Ȳ1)2 +
∑n2

i = 1 (Y2i − Ȳ2)2

n1 + n2 − 2



Two-sample t-test

The test statistic for the two sample t-test is

t=
Ȳ1 − Ȳ2

s
√

1/n1 + 1/n2

with

s2=

∑n1

i = 1 (Y1i − Ȳ1)2 +
∑n2

i = 1 (Y2i − Ȳ2)2

n1 + n2 − 2

This also assumes equal variance within the groups!

Reference distributions

−→ Result:
MB

MW

=t2

If there was no difference in means, then

MB

MW

∼ F1,n1+n2−2

t ∼ tn1+n2−2

Now does this mean F1,n1+n2−2=(tn1+n2−2)2 ?



A few facts

F1,k = t2k

Fk,∞ =
χ2

k

k

N(0,1)2 = χ2
1 = F1,∞ = t2∞

Fixed effects

Underlying group dist’ns

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

Standard ANOVA model

Data



Random effects

Underlying group dist’ns

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

Random effects

model

Dataµ

Dist’n of group means

Observed underlying
group means

The random effects model

Two different ways to describe the model:

A. µt ∼ iid N(µ,σ2
A)

Yti = µt + εti where εti ∼ iid N(0,σ2)

B. τt ∼ iid N(0,σ2
A)

Yti = µ + τt + εti where εti ∼ iid N(0,σ2)

−→ We add another layer of sampling.



Hypothesis testing

→ In the standard ANOVA model, we considered the µt as fixed

but unknown quantities.

We test the hypothesis H0 : µ1 = · · · = µk (versus H0 is

false) using the statistic MB/MW from the ANOVA table and

the comparing this to an F(k – 1, N – k) distribution.

→ In the random effects model, we consider the µt as random

draws from a normal distribution with mean µ and variance σ2
A.

We seek to test the hypothesis H0 : σ2
A = 0 versus Ha : σ2

A > 0.

As it turns out, we end up with the same test statistic and same

null distribution. For one-way ANOVA, that is!

Estimation

For the random effects model it can be shown that

E(MB)=σ2 + n0 × σ2
A

where

n0=
1

k – 1

(

N −
∑

t n
2
t

∑

t nt

)

Recall also that E(MW) = σ2.

Thus, we may estimate σ2 by σ̂2 = MW.

And we may estimate σ2
A by σ̂2

A = (MB − MW)/n0

(provided that this is ≥ 0).



Random effects example

25 30 35 40 45 50 55 60
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Random effects example

The samples sizes for the 8 subjects were (14, 12, 11, 10, 10, 11,

15, 9), for a total sample size of 92. Thus, n0 ≈ 11.45.

source SS df MS F P-value

between subjects 1485 7 212 4.60 0.0002

within subjects 3873 84 46

total 5358 91

We have MB = 212 and MW = 46. Thus

σ̂ =
√

46 = 6.8 −→ overall sample mean = 40.3

σ̂A =
√

(212 − 46)/11.45 = 3.81.



ANOVA assumptions

• Data in each group are a random sample from some population.

• Observations within groups are independent.

• Samples are independent.

• Underlying populations normally distributed.

• Underlying populations have the same variance.

−→ The Kruskal-Wallis test is a non-parametric rank-based approach to as-

sess differences in means.

−→ In the case of two groups, the Kruskal-Wallis test reduces exactly to the

Wilcoxon rank-sum test.

−→ This is just like how ANOVA with two groups is equivalent to the two-sample

t test.

Multiple comparisons

When we carry out an ANOVA on k treatments, we test

H0 : µ1= · · · =µk versus Ha : H0 is false

Assume we reject the null hypothesis, i.e. we have some evidence

that not all treatment means are equal. Then we could for example

be interested in which ones are the same, and which ones differ.

For this, we might have to carry out some more hypothesis tests.

−→ This procedure is referred to as multiple comparisons.



Key issue

We will be conducting, say, T different tests, and we become con-

cerned about the overall error rate (sometimes called the family-

wise error rate).

Overall error rate=Pr( reject at least one H0 | all H0 are true )







=1 − {1 − Pr( reject first | first H0 is true )}T if independent

≤ T × Pr( reject first | first H0 is true ) generally

Types of multiple comparisons

There are two different types of multiple comparisons procedures:

Sometimes we already know in advance what questions we want

to answer. Those comparisons are called planned (or a priori)

comparisons.

Sometimes we do not know in advance what questions we want

to answer, and the judgement about which group means will be

studied the same depends on the ANOVA outcome. Those com-

parisons are called unplanned (or a posteriori) comparisons.



Former example

We previously investigated whether the mean blood coagulation

times for subjects receiving different treatments (A, B, C or D) were

the same.

Imagine A is the standard treatment, and we wish to compare each

of treatments B, C, D to treatment A.

−→ planned comparisons!

After inspecting the treatment means, we find that A and D look

similar, and B and C look similar, but A and D are quite differ-

ent from B and C. We might want to formally test the hypothesis

µA=µD *= µB=µC.

−→ unplanned comparisons!

Adjusting the significance level

Assume the investigator plans to make T independent significance

tests, all at the significance level α′. If all the null hypothesis are

true, the probability of making no Type I error is (1 – α′)T. Hence

the overall significance level is

α=1 – (1 – α′)T

Solving the above equation for α′ yields

α′=1 – (1 – α)
1
T

The above adjustment is called the Dunn – Sidak method.



An alternative method

In the literature, investigators often use

α′′=
α

T

where T is the number of planned comparisons.

This adjustment is called the Bonferroni method.

“Unplanned” comparisons

Suppose we are comparing k treatment groups.

Suppose ANOVA indicates that you reject H0 : µ1 = · · · = µk

What next?

Which of the µ’s are different from which others?

Consider testing H0 : µi = µj for all pairs i,j.

There are
(

k
2

)

= k (k−1)
2

such pairs.

k = 5 −→
(

k
2

)

= 10.

k = 10 −→
(

k
2

)

= 45.



Bonferroni correction

Suppose we have 10 treatment groups, and so 45 pairs.

If we perform 45 t-tests at the significance level α = 0.05, we would

expect to reject 5% × 45 ≈ 2 of them, even if all of the means were

the same.

Let α = Pr(reject at least one pairwise test | all µ’s the same)

≤ (no. tests) × Pr(reject test #1 | µ’s the same)

The Bonferroni correction:

Use α′ = α/(no. tests) as the significance level for each test.

For example, with 10 groups and so 45 pairwise tests,

we would use α′ = 0.05 / 45 ≈ 0.0011 for each test.

Blood coagulation time

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Coagulation Time

A

B

C

D

Combined



Pairwise comparisons

Comparison p-value α′′=
α

k
=

0.05

6
=0.0083

A vs B 0.004

A vs C < 0.001

A vs D 1.000

B vs C 0.159

B vs D < 0.001

C vs D < 0.001

Another example
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ANOVA table

Source SS Df MS F-value p-value

Between treatment 1077.3 4 269.3 49.4 < 0.001

Within treatment 245.5 45 5.5

(

5
2

)

= 10 pairwise comparisons −→ α′ = 0.05/10 = 0.005

For each pair, consider Ti,j =
(

Ȳi· − Ȳj·
)

/
(

σ̂
√

1
ni

+ 1
nj

)

Use σ̂ =
√

MW (MW = within-group mean square)

and refer to a t distribution with df = 45.

A comparison

Uncorrected:

Each interval, individually, had

(in advance) a 95% chance of

covering the true mean differ-

ence.

Corrected:

(In advance) there was a greater

than 95% chance that all of the

intervals would cover their re-

spective parameters. !10 !5 0 5 10 15

Difference in response

C : F

C : G

C : A

C : S

F : G

F : A

F : S

G : A

G : S

A : S Uncorrected

Bonferroni

Tukey



Newman-Keuls procedure

Goal: Identify sets of treatments whose mean re-

sponses are not significantly different.

(Assuming equal sample sizes for the treatment groups.)

Procedure: 1. Calculate the group sample means.

2. Order the sample means from smallest to largest.

3. Calculate a triangular table of all pairwise sample means.

4. Calculate qi = Qα(i, df) for i = 2, 3, . . . , k.

The Q is called the studentized range distribution!

5. Calculate Ri = qi ×
√

MW/n.

Newman-Keuls procedure (continued)

Procedure: 6. If the difference between the biggest and the smallest

means is less than Rk, draw a line under all of the means

and stop.

7. Compare the second biggest and the smallest (and the

second-smallest and the biggest) to Rk−1. If observed dif-

ference is smaller than the critical value, draw a line be-

tween these means.

8. Continue to look at means for which a line connecting them

has not yet been drawn, comparing the difference to Ri with

progressively smaller i’s.



Example

Sorted sample means:

A F G S C

58.0 58.2 59.3 64.1 70.1

Table of differences:

F G S C

A 0.2 1.3 6.1 12.1

F 1.1 5.9 11.9

G 4.8 10.0

S 6.0

Example (continued)

From the ANOVA table:

MW = 5.46 n = 10 for each group
√

MW/10 = 0.739 df = 45

The qi (using df=45 and α = 0.05):

q2 q3 q4 q5

2.85 3.43 3.77 4.02

Ri = qi ×
√

MW/10:

R2 R3 R4 R5

2.10 2.53 2.79 2.97



Example (continued)

Table of differences:

F G S C

A 0.2 1.3 6.1 12.1

F 1.1 5.9 11.9

G 4.8 10.0

S 6.0

Ri = qi ×
√

MW/10:

R2 R3 R4 R5

2.10 2.53 2.79 2.97

Results

Sorted sample means:

A F G S C

58.0 58.2 59.3 64.1 70.1

Interpretation:

A ≈ F ≈ G < S < C



Another example

Sorted sample means:

D C A B E

29.6 32.9 40.0 40.7 48.8

Interpretation:

{D, C, A, B} < E and D < {A, B}

Nested ANOVA: Example

We have:

−→ 3 hospitals

−→ 4 subjects within each hospital

−→ 2 independent measurements per subject

Hospital I Hospital II Hospital III

1 2 3 4 1 2 3 4 1 2 3 4

58.5 77.8 84.0 70.1 69.8 56.0 50.7 63.8 56.6 77.8 69.9 62.1

59.5 80.9 83.6 68.3 69.8 54.5 49.3 65.8 57.5 79.2 69.2 64.5



The model

Hospitals

40 50 60 70 80 90

Individuals

!30 !20 !10 0 10 20 30

Residuals

!30 !20 !10 0 10 20 30

40 50 60 70 80 90 100

Hospitals

!30 !20 !10 0 10 20 30

Individuals

!30 !20 !10 0 10 20 30

Residuals

Nested ANOVA: models

Yijk = µ + αi + βij + εijk

µ = overall mean

αi = “effect” for ith hospital

βij = “effect” for jth subject within ith hospital

εijk = random error

Random effects model

αi ∼ Normal(0,σ2
A)

βij ∼ Normal(0,σ2
B|A)

εijk ∼ Normal(0,σ2)

Mixed effects model

αi fixed;
∑

αi = 0

βij ∼ Normal(0,σ2
B|A)

εijk ∼ Normal(0,σ2)



Example: sample means

Hospital I Hospital II Hospital III

1 2 3 4 1 2 3 4 1 2 3 4

58.5 77.8 84.0 70.1 69.8 56.0 50.7 63.8 56.6 77.8 69.9 62.1

59.5 80.9 83.6 68.3 69.8 54.5 49.3 65.8 57.5 79.2 69.2 64.5

Ȳij· 59.00 79.35 83.80 69.20 69.80 55.25 50.00 64.80 57.05 78.50 69.55 63.30

Ȳi·· 72.84 59.96 67.10

Ȳ··· 66.63

Calculations (equal sample sizes)

Source Sum of squares df

among groups SSamong=bn
∑

i (Ȳi·· − Ȳ···)
2 a – 1

subgroups within groups SSsubgr=n
∑

i

∑

j (Ȳij· − Ȳi··)
2 a (b – 1)

within subgroups SSwithin=
∑

i

∑

j

∑

k (Yijk − Ȳij·)
2 a b (n – 1)

TOTAL
∑

i

∑

j

∑

k (Yijk − Ȳ···)
2 a b n – 1



ANOVA table

SS df MS F expected MS

SSamong a – 1
SSamong

a – 1

MSamong

MSsubgr

σ2 + n σ2
B|A + n b σ2

A

SSsubgr a (b – 1)
SSsubgr

a(b – 1)

MSsubgr

MSwithin

σ2 + n σ2
B|A

SSwithin a b (n – 1)
SSwithin

ab(n – 1)
σ2

SStotal a b n – 1

Example

source df SS MS F P-value

among groups 2 665.68 332.84 1.74 0.23

among subgroups within groups 9 1720.68 191.19 146.88 < 0.001

within subgroups 12 15.62 1.30

TOTAL 23 2401.97



Variance components

Within subgroups (error; between measurements on each subject)

s2=MSwithin=1.30 s =
√

1.30 = 1.14

Among subgroups within groups (among subjects within hospitals)

s2
B|A=

MSsubgr − MSwithin

n
=

191.19 – 1.30

2
=94.94 sB|A =

√
94.94 = 9.74

Among groups (among hospitals)

s2
A=

MSamong − MSsubgr

nb
=

332.84 – 191.19

8
=17.71 sA =

√
17.71 = 4.21

Variance components (2)

s2 + s2
B|A + s2

A = 1.30 + 94.94 + 17.71 = 113.95.

s2 represents
1.30

113.95
= 1.1%

s2
B|A represents

94.94

113.95
= 83.3%

s2
A represents

17.71

113.95
= 15.6%

Note:

−→ var(Y) = σ2 + σ2
B|A + σ2

A

−→ var(Y | A) = σ2 + σ2
B|A

−→ var(Y | A, B) = σ2



Subject averages

I-1 I-2 I-3 I-4 II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4

58.5 77.8 84.0 70.1 69.8 56.0 50.7 63.8 56.6 77.8 69.9 62.1

59.5 80.9 83.6 68.3 69.8 54.5 49.3 65.8 57.5 79.2 69.2 64.5

ave 59.0 79.4 83.8 69.2 69.8 55.2 50.0 64.8 57.0 78.5 69.6 63.3

ANOVA table

source df SS MS F P-value

between 2 332.8 166.4 1.74 0.23

within 9 860.3 95.6

Higher-level nested ANOVA models

You can have as many levels as you like. For example, here is a

three-level nested mixed ANOVA model:

Yijkl=µ + αi + Bij + Cijk + εijkl

Assumptions: Bij ∼ N(0,σ2
B|A), Cijk ∼ N(0,σ2

C|B), εijkl ∼ N(0,σ2).



Calculations

Source Sum of squares df

among groups SSamong=b c n
∑

i (Ȳi··· − Ȳ····)
2 a – 1

among subgroups SSsubgr=c n
∑

i

∑

j (Ȳij·· − Ȳi···)
2 a (b – 1)

among subsubgroups SSsubsubgr=n
∑

i

∑

j

∑

k (Ȳijk· − Ȳij··)
2 a b (c – 1)

within subsubgroups SSsubsubgr=
∑

i

∑

j

∑

k

∑

l (Yijkl − Ȳijk·)
2 a b c (n – 1)

ANOVA table

SS MS F expected MS

SSamong
bcn

∑

a (ȲA − Ȳ)2

a – 1

MSamong

MSsubgr
σ2 + nσ2

C⊂B + ncσ2
B⊂A + ncb

∑

α2

a – 1

SSsubgr
cn

∑

a

∑

b (ȲB − ȲA)2

a(b – 1)

MSsubgr

MSsubsubgr
σ2 + nσ2

C⊂B + ncσ2
B⊂A

SSsubsubgr
n

∑

a

∑

b

∑

c (ȲC − ȲB)2

ab(c – 1)

MSsubsubgr

MSwithin
σ2 + nσ2

C⊂B

SSwithin

∑

a

∑

b

∑

c

∑

n (Y − ȲC)2

abc(n – 1)
σ2



Unequal sample size

It is best to design your studies such that you have equal sample

sizes in each cell. However, once in a while this is not possible.

In the case of unequal sample sizes, the calculations become re-

ally painful (though a computer can do all of the calculations for

you).

Even worse, the F tests for the upper levels in the ANOVA table no

longer have a clear null distribution.

−→ Maximum likelihood methods are more complicated, but can

solve this problem.

Two-way ANOVA

Treatment

Gender 1 2

709 592

Male 679 538

699 476

657 508

Female 594 505

677 539

Let

r be the number of rows in the two-way ANOVA,

c be the number of columns in the two-way ANOVA,

n be the number of observations within each of those r×c groups.
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All sorts of means

Treatment

Gender 1 2

Male 695.67 535.33 615.50

Female 642.67 517.33 580.00

669.17 526.33 597.75

−→ This table shows the cell, row, and column means, plus the

overall mean.



Two-way ANOVA table

source sum of squares df

between rows SSrows=c n
∑

i (Ȳi·· − Ȳ···)
2 r – 1

between columns SScolumns=r n
∑

j (Ȳ·j· − Ȳ···)
2 c – 1

interaction SSinteraction (r – 1)(c – 1)

error SSwithin=
∑

i

∑

j

∑

k (Yijk − Ȳij·)
2 rc(n – 1)

total SStotal=
∑

i

∑

j

∑

k (Yijk − Ȳ···)
2 rcn – 1

Example

source sum of squares df mean squares

sex 3781 1 3781

treatment 61204 1 61204

interaction 919 1 919

error 11667 8 1458



The ANOVA model

Let Yijk be the kth item in the subgroup representing the ith group

of factor A (r levels) and the jth group of factor B (c levels). We

write

Yijk=µ + αi + βj + γij + εijk

The corresponding analysis of the data is

yijk = ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) + (ȳij· − ȳi·· − ȳ·j· + ȳ···) + (yijk − ȳij·)

Towards hypothesis testing

source mean squares expected mean squares

between rows
c n

∑

i (Ȳi·· − Ȳ···)
2

r − 1
σ2 +

c n

r − 1

∑

i

α2
i

between columns
r n

∑

j (Ȳ·j· − Ȳ···)
2

c − 1
σ2 +

r n

c − 1

∑

j

β2
j

interaction
n

∑

i

∑

j (Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)
2

(r − 1) (c − 1)
σ2 +

n

(r − 1) (c − 1)

∑

i

∑

j

γ2
ij

error

∑

i

∑

j

∑

k (Yijk − Ȳij·)
2

r c (n − 1)
σ2

This is for fixed effects, and equal number of observations per cell!



Example (continued)

source SS df MS F p-value

sex 3781 1 3781 2.6 0.1460

treatment 61204 1 61204 42.0 0.0002

interaction 919 1 919 0.6 0.4503

error 11667 8 1458

Interaction in a 2-way ANOVA model

Let Yijk be the kth item in the subgroup representing the ith group

of factor A (r levels) and the jth group of factor B (c levels). We

write

Yijk=µ + αi + βj + γij + εijk

N A B A+B

no interaction

N A B A+B

positive interaction

N A B A+B

negative interaction



Expected mean squares

source fixed effects random effects mixed effects

between rows σ2
+

c n

r – 1

∑

i

α2
i σ2

+ n σ2
R×C + c n σ2

R σ2
+ n σ2

R×C +
c n

r – 1

∑

i

α2
i

between columns σ2
+

r n

c – 1

∑

j

β2
j σ2

+ n σ2
R×C + r n σ2

C σ2
+ r n σ2

C

interaction σ2
+

n

(r – 1)(c – 1)

∑

i

∑

j

γ2
ij σ2

+ n σ2
R×C σ2

+ n σ2
R×C

error σ2 σ2 σ2

Two-way ANOVA without replicates

Physician

Concentration A B C

60 9.6 9.3 9.3

80 10.6 9.1 9.2

160 9.8 9.3 9.5

320 10.7 9.1 10.0

640 11.1 11.1 10.4

1280 10.9 11.8 10.8

2560 12.8 10.6 10.7



ANOVA table

source df SS MS

physician 2 2.79 1.39

concentration 6 12.54 2.09

interaction 12 4.11 0.34

total 20

We have 21 observations. That means we have no degrees of

freedom left to estimate an error!

Expected mean squares

In general, we have:

source fixed effects random effects mixed effects

between rows σ2
+

c n

r – 1

∑

i

α2
i σ2

+ n σ2
R×C + c n σ2

R σ2
+ n σ2

R×C +
c n

r – 1

∑

i

α2
i

between columns σ2
+

r n

c – 1

∑

j

β2
j σ2

+ n σ2
R×C + r n σ2

C σ2
+ r n σ2

C

interaction σ2
+

n

(r – 1)(c – 1)

∑

i

∑

j

γ2
ij σ2

+ n σ2
R×C σ2

+ n σ2
R×C

error σ2 σ2 σ2



Expected mean squares

If n=1 and there is no interaction in truth, we have:

source fixed effects random effects mixed effects

between rows σ2
+

c

r – 1

∑

i

α2
i σ2

+ c σ2
R σ2

+
c

r – 1

∑

i

α2
i

between columns σ2
+

r

c – 1

∑

j

β2
j σ2

+ r σ2
C σ2

+ r σ2
C

error σ2 σ2 σ2

Expected mean squares

If n=1 but there is an interaction, we have:

source fixed effects random effects mixed effects

between rows σ2
+

c

r – 1

∑

i

α2
i σ2

+ σ2
R×C + c σ2

R σ2
+ σ2

R×C +
c

r – 1

∑

i

α2
i

between columns σ2
+

r

c – 1

∑

j

β2
j σ2

+ σ2
R×C + r σ2

C σ2
+ r σ2

C

interaction σ2
+

1

(r – 1)(c – 1)

∑

i

∑

j

γ2
ij σ2

+ σ2
R×C σ2

+ σ2
R×C

error σ2 σ2 σ2


