Correlation and Regression
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corr =0.52
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Covariance and correlation

Let X and Y be random variables with

E(Y), ox = SD(X), oy = SD(Y)

wx = E(X)! ny

For example, sample a father/daughter pair and let

the father’s height and Y = the daughter’s height.

X =

Correlation

Covariance

cor(X.Y) cov(X,Y)

E{(X = pux) (Y = pv)}

cov(X,Y)

oxoy

<A1

(X,Y)

— —1 < cor

— cov(X,Y) can be any real number



Examples
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Estimated correlation

Consider n pairs of data: (x4, Y1), (X2, Y2), (X3, ¥a), - -, (Xn, Yn)

We consider these as independent draws from some
bivariate distribution.

We estimate the correlation in the underlying distribution by:

2k =x)yi—y)
Vi = X)2 Yy — )2

r

This is sometimes called the correlation coefficient.



Correlation measures linear association

° o
8 °3>a° °

© %o 00

&oggcg&o

° g9
0 0 oo

)
oo

]

0%%0%’£O°°
s
e #4
&

o
o

Ed

°
o o
o o
8 o %o o°

— All three plots have correlation ~ 0.7!

Correlation versus regression

—— Covariance / correlation:

o Quantifies how two random variables X and Y co-vary.

o There is typically no particular order between the two ran-
dom variables (e. g. , fathers’ versus daughters’ height).

— Regression

o Assesses the relationship between predictor X and response
Y: we model E[Y|X].

o The values for the predictor are often deliberately chosen,
and are therefore not random quantities.

o We typically assume that we observe the values for the
predictor(s) without error.



Example

Measurements of degradation of heme with different concentra-
tions of hydrogen peroxide (H20,), for different types of heme.
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Linear regression

The regression model

Let X be the predictor and Y be the response. Assume we have n
observations (x1,y4), ..., (Xn,Y,) from X and Y.

The simple linear regression model is
Yi=0o + [1Xi + €, ¢ ~ iid N(0,02).

This implies:
ELY|X] = fo + B1X.

Interpretation:
For two subjects that differ by one unit in X, we expect the responses to differ by ;.

— How do we estimate 3y, (1, 02 ?



Fitted values and residuals

We can write

6 =Y; — Bo — [1X

For a pair of estimates (3, 31) for the pair of parameters (3, 31)
we define the fitted values as

%=%+@M

The residuals are

G=Yi— Y=Y — fo— BiX

Residuals




Residual sum of squares

For every pair of values for 5y and (31 we get a different value for
the residual sum of squares.

RSS(6o, 81)=>_ (¥ — o — B1xi)?

We can look at RSS as a function of 5y and ;. We try to minimize
this function, i. e. we try to find

(Bo. B1)=min, 5,RSS(So, 51)

Hardly surprising, this method is called least squares estimation.

Residual sum of squares

L 777777777777777777772 72222
L7777
7

7 7
077
,;;I/,;/III////////,/,///////

0
,,//////, 0

Ssd




Notation

Assume we have n observations: (X1,Y1), ..., (Xn, ¥y)-
5 = 2iXi
n
y _ Ziyi

SXX = Z i — X)? Zx — n(x)?

SYY = Z _Zyi — n(y)?
SXY = Z — X)(y; — Zx,yl — nXy
RSS = Z Z 2

Parameter estimates

The function

RSS(6o, 81)=>_ (¥ — o — B1x)?

is minimized by

A SXY
B = xx
Bo =y — X



Useful to know

Using the parameter estimates, our best guess for any y given x is
y=0o + 1X
Hence

Bo+ X = Y—(iX+0ix =y

That means every regression line goes through the point (x,y).

Variance estimates

As variance estimate we use
52 RSS
n-2
This quantity is called the residual mean square. It has the follow-
ing property:
~2

o
(n—2)><?wxﬁ_2

In particular, this implies

E(52)=02



Example

H>O, concentration
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Comparing models

We want to test whether 5; = 0:

Hoiyi=ﬁo—|—€i

versus  Ha @Y= Fo+ B1Xi + €
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Sum of squares

Under Hy
~ o (SXY)® _ -
RSS = i(yi——yi)._SYY—— SXX = SYY — 55 x SXX
Under Hp :

Z (i — Bo)? = Z (y; — y)? = SYY

Hence
2
(SXY)
SSieg =SYY —RSS =
e SXX
ANOVA
Source df SS MS F
regression on X 1 SSeq MSreq = SS1reg |\|\/|/|Ssr§
residuals for full model n-2 RSS MSE = —rl?fSZ

total n-—1 sSYyyY




Example

Source df SS MS F

regression on X 1 0.06378 0.06378 484 .1

residuals for full model 10 0.00131 0.00013

total 11 0.06509

Parameter estimates

One can show that

E(5o) = fo E(34) = B4
R 1 v2 R 2
Var(fo) = o° (n + S"XX> Var(h) = g5
Cov(fo, 1) = —0® e Cor(fo, 1) = ——
o SXX o \/22 + SXX/n

— Note: We're thinking of the x’s as fixed.



Parameter estimates

One can even show that the distribution of 3, and /3 is a bivariate
normal distribution!

Bo
5, N(3, )

where

B
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Possible outcomes
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Confidence intervals

We know that

2

. o
B~ N (51, m)

—  We can use those distributions for hypothesis testing and to
construct confidence intervals!



Statistical inference

We want to test: Ho : 31 = 37 versus Ha: 31 # 3]  (generally, 5;is 0.)

We use

B — 04 ; 02
t - = [ad t — h - -
se(i) " 2 where se () SXX

Also,

[31 —t1-gn-2X se(1) , A1 + t1-gn-2 X% Se(@)}

is a (1 — a)x100% confidence interval for (.

Results

The calculations in the test Hy : 5o = 3; versus H,: Gy # 3; are
analogous, except that we have to use

R v2
se(fh) = \l 52 (% + s%)

For the example we get the 95% confidence intervals

(0.342 , 0.364) for the intercept
(—0.0043, —0.0035) for the slope

Testing whether the intercept (slope) is equal to zero, we obtain
70.7 (— 22.0) as test statistic.

This corresponds to a p-value of 7.8 x107'° (8.4 x1079).



Now how about that

Testing for the slope being equal to zero, we use

For the squared test statistic we get

= F

2 ( B )2 _#B [ xSXX _ (SYY—-RSS)/1 _ MSg

se(By))  02/SXX ~ 42 RSS/n-2  MSE

— The squared t statistic is the same as the F statistic from the
ANOVA!

Joint confidence region

A 95% joint confidence region for the two parameters is the set of
all values (3o, 51) that fulfill

(35) (0, 2) (5)

202 -

F(0.95),2,n-2

where Afg=fo— o and Apy=p— b



Joint confidence region

Notation

Assume we have n observations: (X1,Y4), ., (Xn, Yn)-
We previously defined
SXX = 3" (i —%2= > %%~ n(x)?
SYY = i(yi —y)*= ijy? —n(y)*
SXY = i (xi = X)(y; — ;7) = DXy —nxy
i i
We also define

o sxY
X T /BXXVSYY

(called the sample correlation)



Coefficient of determination

We previously wrote

(SXY)?

Define

2
R*= SYY SYY

R? is often called the coefficient of determination. Notice that

_SSrg _ (SXY)? )

R? = = =r
SYY T SXX x SYYy XY

The Anscombe Data

A A A2 2 A A A2 2
Bo=3.0 p4=0.5 ¢ =13.75 R"=0.667 $=3.0 p4,=0.5 ¢ =13.75 R"=0.667

By=3.0 B,=0.5 8°=13.75 R?=0.667




Fathers’ and daughters’ heights

corr = 0.52
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Linear regression
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SD line
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— Slope = SD(Y) / SD(X)

SD line vs regression line
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— Both lines go through the point (X, Y).



Predicting father’s ht from daughter’s ht
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Predicting father’s ht from daughter’s ht
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The equations

Regression of Y ONn X (for predicting y from x)

Slope =r g%  Goes through the point (x, y)

A _ SD _
y—y=rspgd (x—X)
— Y= fo+5x where 3y = r 32 — 31 X
Regression of x on Y (for predicting x from y)
Slope =r SD( % Goes through the point (y, X)
A _ SD _
X_X=rso(y) y—y)
2 D% Dk SD o — Dk o
— +07y where 37 =r SDE;; and 35 = X— 37y
Estimating the mean response
T Y = 0.353 - 0.0039X
0.30 \g\‘\\
8 0.25 \\Z“\\
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H202 concentration

— We can use the regression results to predict the expected response for a new
concentration of hydrogen peroxide. But what is its variability?



Variability of the mean response

Let y be the predicted mean for some x, i. e.
y=0o + B1x
Then
E(y) = (o + B1x

12
var(y) = o2 (%—f— (XS;(;(() )

where y = Gy + $1x is the true mean response.

Why?

E(y) = E(fo + f1x)
= E(Go) + XE(5)
Bo + X B

var(y) = var
fo) + var(B1 x) + 2 cov(fo, 31 X)
= var(f3o) + x2 var(31) + 2 xcov(fo, 31)

2 (1, X2 L2 x* \  2xx0°
n ' Sxx/) 7 \sxx SXX

I
Q




Confidence intervals

Hence

y £+ t X 0 X 1+(X_X)2
O U et N 0

is a (1 — a)x100% confidence interval for the mean response
given Xx.

Confidence limits

95% confidence limits for the mean response

0.35

0.30

a
O 0.25

0.20 —

0.15

T T T T
0 10 25 50

H202 concentration



Prediction

Now assume that we want to calculate an interval for the predicted
response y* for a value of x.

There are two sources of uncertainty:

(a) the mean response
(b) the natural variation o2

The variance of y* is

o 1 (x—X)? 1 (x—x)?
_ 2 2! _2 !
var(y')=c-+ o (n + SXX ) o (1 + - + SXX

Prediction intervals

Hence

VAR | X O X 1—|—1+(X_X)2
o= M-gn-2x0 N SXX

is a (1 — a)x100% prediction interval for the predicted response
given X.

— When n is very large, we get rwugny

~ ko

Yy £ la-gyn-2x0



Prediction intervals
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With just 100 individuals

Height (inches)

Span (inches)

Regression for calibration

That prediction interval is for the case that the x’s are known with-
out error while

y=0o + 1 X+ ¢ where e= error

—— Another common situation:

o We have a number of pairs (x,y) to get a calibration line/curve.
o X’s basically without error; y’s have measurement error.

o We obtain a new value, y*, and want to estimate the corresponding x*:

y'=0o+ [1 X" + ¢



Example
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Regression for calibration

— Data:  (x,y;) fori=1,...,n
with yi=ﬁo + B Xi + €, € ~ iid NormaI(O, O’)

yi forj=1,....m

with =00 + 01 X" + ¢, ¢ ~ iid Normal(0, o) for some x*

— Goal:
Estimate x* and give a 95% confidence interval.

—— The estimate:

Obtain 5, and /31 by regressing the y; on the x;.
Let X'=(y* — o)/ where y* = >, y"/m

95% CI for x*

Let T denote the 97.5th percentile of the t distr'n with n—2 d.f.
Letg=T/[|61]/(6/VSXX)] = (T&)/ (|6:1]VSXX)

— If g > 1, we would fail to reject Hp : 31=0!

In this case, the 95% ClI for X" is (—o0, o).

— If g < 1, our 95% Cl is the following:

(X =x)g*+(To/ !B1|>\/(>?* = X)2/SXX+ (1 - ¢?) (5 +7)
1-¢g2

A

X+

For very large n, this reduces to spomaey X & (T ) / (|51]+v/M)
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Infinite m
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Multiple linear regression
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Multiple linear regression

general parallel




Multiple linear regression

A and B
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More than one predictor
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0.3399 0
0.3563 0
0.3538 0
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0.1535 50
0.1613 50
0.1525 50
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x
o

Y =G + (1X1 + FoXo + €

In other words (or, equations):

- =4 a4 ddad a4 a4 20 00000000000 O0

The model with two parallel lines can be described as

{ﬁo+ﬁ1X1+6 if Xo=0
(ﬁo+ﬁ2)+ﬂ1X1+€ if Xo =1




Multiple linear regression

A multiple linear regression model has the form

Y =60+ 51 X1+ -+ fXe+e,  €~N(O, 07
The predictors (the X’s) can be categorical or numerical.
Often, all predictors are numerical or all are categorical.

And actually, categorical variables are converted into a group of
numerical ones.

Interpretation

Let X; be the age of a subject (in years).
E[Y] =050+ 61 X

— Comparing two subjects who differ by one year in age, we
expect the responses to differ by 3.

— Comparing two subjects who differ by five years in age, we
expect the responses to differ by 5.



Interpretation

Let X4 be the age of a subject (in years), and let X, be an indicator
for the treatment arm (0/1).

E[Y] =050+ 51 Xi + 52 Xy

— Comparing two subjects from the same treatment arm who
differ by one year in age, we expect the responses to differ

by 3.

— Comparing two subjects of the same age from the two dif-
ferent treatment arms (Xo=1 versus X»>=0), we expect the re-
sponses to differ by /.

Interpretation

Let X4 be the age of a subject (in years), and let X, be an indicator
for the treatment arm (0/1).

E[Y] =5y + 51 Xi + B2 Xo + 35 Xi X,

— E[Y] =0+ 51 Xi (it x=0)
— E[Y]=060+58Xi+ B+ G Xi =00+ B+ (81 + F3) X1 (itxe=1)

— Comparing two subjects who differ by one year in age, we
expect the responses to differ by 3, if they are in the control
arm (X»>=0), and expect the responses to differ by 5, + 35 if
they are in the treatment arm (Xo=1).



Estimation

We have the model

Yi = Bo + B1Xit + - - + OkXik + €0, € ~ iid NormaI(O, 0'2>

— We estimate the 3’s by the values for which
RSS = Yy — vi)?

is minimized where yi = Go+ PiXjt + -+ kaik (aka “least squares”).

RSS

— We eStImate o by o = m

FYI

Calculation of the 3’s (and their SEs and correlations) is not that
complicated, but without matrix algebra, the formulas are nasty.

Here is what you need to know:

o The SEs of the 3’s involve ¢ and the X’s.
o The s are normally distributed.

o Obtain confidence intervals for the 3’s using 5 + t x SAE(B)
where t is a quantile of t dist’n with n—(k+1) d.f.

o Test Ho : 3 = 0 using | 3|/SE()
Compare this to a t distribution with n—(k+1) d.f.



The example: a full model

X1 = [H202].
X2 = 0 or 1, indicating type of heme.
y = the OD measurement.

The model: y = 6o+ 51X1 + foXo + G3X1 X2 + €

l.e.,
Bo+ B1Xq + € if Xo=0
y= _
(Bo+ B2) + (81 + B3)Xq + ¢ if Xo=1
Go=0 ——  Same intercepts.
03=0 —  Same slopes.
Oo=pP3=0 — Same lines.
Results
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.35305 0.00544 64.9 < 2e-16
x1 -0.00387 0.00019 -20.2 8.86e-15
x2 -0.01992 0.00769 -2.6 0.0175
x1:x2 -0.00055 0.00027 -2.0 0.0563

Residual standard error: 0.0125 on 20 degrees of freedom
Multiple R-Squared: 0.98,Adjusted R-squared: 0.977
F-statistic: 326.4 on 3 and 20 DF, p-value: < 2.2e-16



Testing many parameters

We have the model

Yi = Bo + B1Xit + - - + OkXik + €0, € ~ iid NormaI(O, 0'2>

We seektotest Hp: 041 =--- =0c=0.

In other words, do we really have just:

Vi = Bo+ B1Xit + - -+ BXir + 6, & ~ iid Normal(0, 0?)

What to do...

1. Fit the “full” model (with all k x’s).
2. Calculate the residual sum of squares, RSSy.
3. Fit the “reduced” model (with only r x’s).

4. Calculate the residual sum of squares, RSS,q.

_ (RSS6q—RSSy)/ (dfreg—dffun)
5. Calculate F = RSSw /e .

where dfigg =n—r—1and dfyy =n—-k—1).

6. Under Hy, F ~ F(dfred — dffu”, dffu||>.



In particular...

Assume the model
Yi = ﬁo + ﬁ1Xi1 + e 6kxik + €, € ~ iid NormaI(O, 0'2>

We seek to test Ho : 61 = ... = 5k = 0 (i.e., none of the x's are related to y).

—— Full model: All the x’s

— Reduced model: y=p5o+¢ RSSeq= Yy, —Y)?

— F=[Ciyi—y)2 = 2iyi = ¥02) /K iy — ¥)2/(n—k —1)]
Compare this to a F(k, n —k — 1) dist'n.

The example

Totest 5o =(G3=0

Analysis of Variance Table

Model 1: y =~ x1
Model 2: y =~ x1 + x2 + xl:x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 22 0.00975
2 20 0.00312 2 0.00663 21.22 1l.1le-05



