Correlation and Regression

Fathers' and daughters' heights

Daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462

Fathers' and daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462

1376 pairs

Covariance and correlation

Let X and Y be random variables with

$$\mu_X = E(X), \ \mu_Y = E(Y), \ \sigma_X = SD(X), \ \sigma_Y = SD(Y)$$

For example, sample a father/daughter pair and let X =the father's height and Y =the daughter's height.

Covariance

Correlation

$$cov(X,Y) = E\{(X - \mu_X) (Y - \mu_Y)\}$$

$$cov(X,Y) = E\{(X - \mu_X) (Y - \mu_Y)\}$$
 $cor(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$

 \rightarrow cov(X,Y) can be any real number

$$\longrightarrow$$
 $-1 \le cor(X,Y) \le 1$

Examples

Estimated correlation

Consider n pairs of data: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$

We consider these as independent draws from some bivariate distribution.

We estimate the correlation in the underlying distribution by:

$$r = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \, \sum_i (y_i - \bar{y})^2}}$$

This is sometimes called the correlation coefficient.

Correlation measures linear association

 \longrightarrow All three plots have correlation \approx 0.7!

Correlation versus regression

- Covariance / correlation:
 - Quantifies how two random variables X and Y co-vary.
 - There is typically no particular order between the two random variables (e. g., fathers' versus daughters' height).
- --- Regression
 - Assesses the relationship between predictor X and response Y: we model E[Y|X].
 - The values for the predictor are often deliberately chosen, and are therefore not random quantities.
 - We typically assume that we observe the values for the predictor(s) without error.

Example

Measurements of degradation of heme with different concentrations of hydrogen peroxide (H_2O_2) , for different types of heme.

Linear regression

Linear regression

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $(x_1, y_1), \ldots, (x_n, y_n)$ from X and Y.

The simple linear regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, $\epsilon_i \sim \text{iid N}(0, \sigma^2)$.

This implies:

$$\mathsf{E}[\mathsf{Y}|\mathsf{X}] = \beta_0 + \beta_1 \mathsf{X}.$$

Interpretation:

For two subjects that differ by one unit in X, we expect the responses to differ by β_1 .

 \longrightarrow How do we estimate β_0 , β_1 , σ^2 ?

Fitted values and residuals

We can write

$$\epsilon_{\rm i} = \mathbf{y}_{\rm i} - \beta_{\rm 0} - \beta_{\rm 1} \mathbf{x}_{\rm i}$$

For a pair of estimates $(\hat{\beta}_0, \hat{\beta}_1)$ for the pair of parameters (β_0, β_1) we define the fitted values as

$$\hat{\mathbf{y}}_{\mathbf{i}} = \hat{\beta}_{\mathbf{0}} + \hat{\beta}_{\mathbf{1}} \mathbf{x}_{\mathbf{i}}$$

The residuals are

$$\hat{\epsilon}_{i} = y_{i} - \hat{y}_{i} = y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}$$

Residuals

Residual sum of squares

For every pair of values for β_0 and β_1 we get a different value for the residual sum of squares.

RSS(
$$\beta_0, \beta_1$$
)= $\sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$

We can look at RSS as a function of β_0 and β_1 . We try to minimize this function, i. e. we try to find

$$(\hat{\beta}_0, \hat{\beta}_1) = \min_{\beta_0, \beta_1} \mathsf{RSS}(\beta_0, \beta_1)$$

Hardly surprising, this method is called least squares estimation.

Residual sum of squares

Notation

Assume we have n observations: $(x_1, y_1), \dots, (x_n, y_n)$.

$$\begin{split} \bar{x} &= \frac{\sum_{i} x_{i}}{n} \\ \bar{y} &= \frac{\sum_{i} y_{i}}{n} \\ SXX &= \sum_{i} (x_{i} - \bar{x})^{2} = \sum_{i} x_{i}^{2} - n(\bar{x})^{2} \\ SYY &= \sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} y_{i}^{2} - n(\bar{y})^{2} \\ SXY &= \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y}) = \sum_{i} x_{i}y_{i} - n\bar{x}\bar{y} \\ RSS &= \sum_{i} (y_{i} - \hat{y}_{i})^{2} = \sum_{i} \hat{\epsilon}_{i}^{2} \end{split}$$

Parameter estimates

The function

RSS(
$$\beta_0, \beta_1$$
)= $\sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$

is minimized by

$$\hat{\beta}_1 = \frac{SXY}{SXX}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Useful to know

Using the parameter estimates, our best guess for any y given x is

$$y=\hat{\beta}_0+\hat{\beta}_1x$$

Hence

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{\mathbf{x}} = \bar{\mathbf{y}} - \hat{\beta}_1 \bar{\mathbf{x}} + \hat{\beta}_1 \bar{\mathbf{x}} = \bar{\mathbf{y}}$$

That means every regression line goes through the point (\bar{x}, \bar{y}) .

Variance estimates

As variance estimate we use

$$\hat{\sigma}^2 = \frac{RSS}{n-2}$$

This quantity is called the residual mean square. It has the following property:

$$(n-2) imes rac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-2}$$

In particular, this implies

$$E(\hat{\sigma}^2) = \sigma^2$$

Example

H_2O_2 concentration				
0	10	25	50	
0.3399	0.3168	0.2460	0.1535	
0.3563	0.3054	0.2618	0.1613	
0.3538	0.3174	0.2848	0.1525	

We get

$$\bar{x}$$
=21.25, \bar{y} =0.27, SXX=4256.25, SXY=- 16.48, RSS=0.0013.

Therefore

$$\hat{\beta}_1 = \frac{-\ 16.48}{4256.25} = -\ 0.0039, \quad \hat{\beta}_0 = 0.27 - (-\ 0.0039) \times 21.25 = 0.353,$$

$$\hat{\sigma} = \sqrt{\frac{0.0013}{12 - 2}} = 0.0115.$$

Example

Comparing models

We want to test whether $\beta_1 = 0$:

$$H_0: y_i = \beta_0 + \epsilon_i$$
 versus $H_a: y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Example

Sum of squares

Under Ha:

RSS =
$$\sum_{i} (y_i - \hat{y}_i)^2 = SYY - \frac{(SXY)^2}{SXX} = SYY - \hat{\beta}_1^2 \times SXX$$

Under H₀:

$$\sum_{i} (y_{i} - \hat{\beta}_{0})^{2} = \sum_{i} (y_{i} - \bar{y})^{2} = SYY$$

Hence

$$SS_{reg} = SYY - RSS = \frac{(SXY)^2}{SXX}$$

ANOVA

Source	df	SS	MS	F
regression on X	1	SS _{reg}	$MS_{reg} = \frac{SS_{reg}}{1}$	$\frac{MS_{reg}}{MSE}$
residuals for full model	n – 2	RSS	$MSE = \frac{RSS}{n-2}$	
total	n – 1	SYY		

Example

Source	df	SS	MS	F
regression on X	1	0.06378	0.06378	484.1
residuals for full model	10	0.00131	0.00013	
total	11	0.06509		

Parameter estimates

One can show that

$$\begin{split} &\mathsf{E}(\hat{\beta}_0) = \beta_0 \\ &\mathsf{Var}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{\mathsf{n}} + \frac{\bar{\mathsf{x}}^2}{\mathsf{SXX}}\right) \\ &\mathsf{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\mathsf{SXX}} \\ &\mathsf{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \frac{\bar{\mathsf{x}}}{\mathsf{SXX}} \\ &\mathsf{Cor}(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\bar{\mathsf{x}}}{\sqrt{\bar{\mathsf{x}}^2 + \mathsf{SXX}/n}} \end{split}$$

Parameter estimates

One can even show that the distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ is a bivariate normal distribution!

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} \sim \mathsf{N}(\beta, \Sigma)$$

where

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \quad \text{and} \quad \Sigma = \sigma^2 \begin{pmatrix} \frac{1}{n} + \frac{\bar{x}^2}{SXX} & \frac{-\bar{x}}{SXX} \\ \frac{-\bar{x}}{SXX} & \frac{1}{SXX} \end{pmatrix}$$

Simulation: coefficients

Possible outcomes

Confidence intervals

We know that

$$\hat{eta}_0 \sim N \left(eta_0, \ \sigma^2 \left(rac{1}{n} + rac{ar{x}^2}{SXX}
ight)
ight)$$

$$\hat{eta}_1 \sim N\left(eta_1, \ rac{\sigma^2}{SXX}
ight)$$

We can use those distributions for hypothesis testing and to construct confidence intervals!

Statistical inference

We want to test: $H_0: \beta_1 = \beta_1^*$ versus $H_a: \beta_1 \neq \beta_1^*$ (generally, β_1^* is 0.)

We use

$$t = \frac{\hat{\beta}_1 - \beta_1^*}{se(\hat{\beta}_1)} \sim t_{n-2} \qquad \text{where} \qquad se(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{SXX}}$$

Also,

$$\left[\hat{\beta}_1-\mathsf{t}_{(1-\frac{\alpha}{2}),\mathsf{n-2}}\times\mathsf{se}(\hat{\beta}_1)\;,\,\hat{\beta}_1+\mathsf{t}_{(1-\frac{\alpha}{2}),\mathsf{n-2}}\times\mathsf{se}(\hat{\beta}_1)\right]$$

is a $(1 - \alpha) \times 100\%$ confidence interval for β_1 .

Results

The calculations in the test $H_0: \beta_0 = \beta_0^*$ versus $H_a: \beta_0 \neq \beta_0^*$ are analogous, except that we have to use

$$\operatorname{se}(\hat{\beta}_0) = \sqrt{\hat{\sigma}^2 \times \left(\frac{1}{\mathsf{n}} + \frac{\bar{\mathsf{x}}^2}{\mathsf{SXX}}\right)}$$

For the example we get the 95% confidence intervals

$$(0.342, 0.364)$$
 for the intercept $(-0.0043, -0.0035)$ for the slope

Testing whether the intercept (slope) is equal to zero, we obtain 70.7 (-22.0) as test statistic.

This corresponds to a p-value of 7.8×10^{-15} (8.4×10^{-10}).

Now how about that

Testing for the slope being equal to zero, we use

$$t = \frac{\hat{\beta}_1}{\text{se}(\hat{\beta}_1)}$$

For the squared test statistic we get

$$t^2 = \left(\frac{\hat{\beta}_1}{\text{se}(\hat{\beta}_1)}\right)^2 = \frac{\hat{\beta}_1^2}{\hat{\sigma}^2/\text{SXX}} = \frac{\hat{\beta}_1^2 \times \text{SXX}}{\hat{\sigma}^2} = \frac{(\text{SYY} - \text{RSS})/1}{\text{RSS}/\text{n} - 2} = \frac{\text{MS}_{\text{reg}}}{\text{MSE}} = \text{F}$$

The squared t statistic is the same as the F statistic from the ANOVA!

Joint confidence region

A 95% joint confidence region for the two parameters is the set of all values (β_0, β_1) that fulfill

$$\frac{\begin{pmatrix} \Delta \beta_0 \\ \Delta \beta_1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{n} & \sum_{i} \mathbf{x}_i \\ \sum_{i} \mathbf{x}_i & \sum_{i} \mathbf{x}_i^2 \end{pmatrix} \begin{pmatrix} \Delta \beta_0 \\ \Delta \beta_1 \end{pmatrix}}{2\hat{\sigma}^2} \leq \mathsf{F}_{(0.95),2,n-2}$$

where $\Delta \beta_0 = \beta_0 - \hat{\beta}_0$ and $\Delta \beta_1 = \beta_1 - \hat{\beta}_1$.

Joint confidence region

Notation

Assume we have n observations: $(x_1, y_1), \dots, (x_n, y_n)$.

We previously defined

$$\begin{split} SXX &= \sum_{i} (x_{i} - \bar{x})^{2} = \sum_{i} x_{i}^{2} - n(\bar{x})^{2} \\ SYY &= \sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} y_{i}^{2} - n(\bar{y})^{2} \\ SXY &= \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y}) = \sum_{i} x_{i}y_{i} - n\bar{x}\bar{y} \end{split}$$

We also define

$$r_{XY} = \frac{SXY}{\sqrt{SXX}\sqrt{SYY}}$$
 (called the sample correlation)

Coefficient of determination

We previously wrote

$$SS_{reg} = SYY - RSS = \frac{(SXY)^2}{SXX}$$

Define

$$R^2 = \frac{SS_{reg}}{SYY} = 1 - \frac{RSS}{SYY}$$

R² is often called the coefficient of determination. Notice that

$$\mathsf{R}^2 = \frac{\mathsf{SS}_{\mathsf{reg}}}{\mathsf{SYY}} = \frac{(\mathsf{SXY})^2}{\mathsf{SXX} \times \mathsf{SYY}} = \mathsf{r}_{\mathsf{XY}}^2$$

The Anscombe Data

Fathers' and daughters' heights

Linear regression

Linear regression

Regression line

SD line

 \longrightarrow Slope = SD(Y) / SD(X)

SD line vs regression line

 \longrightarrow Both lines go through the point (\bar{X}, \bar{Y}) .

Predicting father's ht from daughter's ht

Predicting father's ht from daughter's ht

Predicting father's ht from daughter's ht

There are two regression lines!

The equations

Regression of y on x (for predicting y from x)

Slope =
$$r \frac{SD(y)}{SD(x)}$$
 Goes through the point (\bar{x}, \bar{y})

$$\hat{\mathbf{y}} - \bar{\mathbf{y}} = \mathbf{r} \, \frac{\mathrm{SD}(\mathbf{y})}{\mathrm{SD}(\mathbf{x})} \, (\mathbf{x} - \bar{\mathbf{x}})$$

$$\longrightarrow$$
 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ where $\hat{\beta}_1 = r \frac{SD(y)}{SD(x)}$ and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Regression of x on y (for predicting x from y)

Slope =
$$r \frac{SD(x)}{SD(y)}$$
 Goes through the point (\bar{y}, \bar{x})

$$\hat{\mathbf{x}} - \bar{\mathbf{x}} = \mathbf{r} \frac{\mathrm{SD}(\mathbf{x})}{\mathrm{SD}(\mathbf{y})} (\mathbf{y} - \bar{\mathbf{y}})$$

$$\longrightarrow \quad \hat{\mathbf{x}} = \hat{\beta}_0^\star + \hat{\beta}_1^\star \, \mathbf{y} \qquad \qquad \text{where } \hat{\beta}_1^\star = \mathbf{r} \, \frac{\mathrm{SD}(\mathbf{x})}{\mathrm{SD}(\mathbf{y})} \, \mathrm{and} \, \hat{\beta}_0^\star = \bar{\mathbf{x}} - \hat{\beta}_1^\star \, \bar{\mathbf{y}}$$

Estimating the mean response

We can use the regression results to predict the expected response for a new concentration of hydrogen peroxide. But what is its variability?

Variability of the mean response

Let ŷ be the predicted mean for some x, i. e.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Then

$$\mathsf{E}(\hat{\mathsf{y}}) = \beta_0 + \beta_1 \, \mathsf{x}$$

$$var(\hat{y}) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)$$

where $y = \beta_0 + \beta_1 x$ is the true mean response.

Why?

$$E(\hat{\mathbf{y}}) = E(\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x})$$
$$= E(\hat{\beta}_0) + \mathbf{x} E(\hat{\beta}_1)$$
$$= \beta_0 + \mathbf{x} \beta_1$$

$$\begin{aligned} \text{var}(\hat{\mathbf{y}}) &= \text{var}(\hat{\beta}_0 + \hat{\beta}_1 \, \mathbf{x}) \\ &= \text{var}(\hat{\beta}_0) + \text{var}(\hat{\beta}_1 \, \mathbf{x}) + 2 \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1 \, \mathbf{x}) \\ &= \text{var}(\hat{\beta}_0) + \mathbf{x}^2 \operatorname{var}(\hat{\beta}_1) + 2 \operatorname{x} \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) \\ &= \sigma^2 \left(\frac{1}{\mathsf{n}} + \frac{\bar{\mathbf{x}}^2}{\mathsf{SXX}} \right) + \sigma^2 \left(\frac{\mathbf{x}^2}{\mathsf{SXX}} \right) - \frac{2 \operatorname{x} \bar{\mathbf{x}} \, \sigma^2}{\mathsf{SXX}} \\ &= \sigma^2 \left[\frac{1}{\mathsf{n}} + \frac{(\mathbf{x} - \bar{\mathbf{x}})^2}{\mathsf{SXX}} \right] \end{aligned}$$

Confidence intervals

Hence

$$\hat{y} \pm t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{SXX}}$$

is a $(1 - \alpha) \times 100\%$ confidence interval for the mean response given x.

Confidence limits

Prediction

Now assume that we want to calculate an interval for the predicted response y^* for a value of x.

There are two sources of uncertainty:

- (a) the mean response
- (b) the natural variation σ^2

The variance of \hat{y}^* is

$$\operatorname{var}(\hat{\mathbf{y}}^{\star}) = \sigma^{2} + \sigma^{2} \left(\frac{1}{n} + \frac{(\mathbf{x} - \bar{\mathbf{x}})^{2}}{SXX} \right) = \sigma^{2} \left(1 + \frac{1}{n} + \frac{(\mathbf{x} - \bar{\mathbf{x}})^{2}}{SXX} \right)$$

Prediction intervals

Hence

$$\hat{y}^{\star} \ \pm \ t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{(x-\bar{x})^2}{SXX}}$$

is a $(1 - \alpha) \times 100\%$ prediction interval for the predicted response given x.

→ When n is very large, we get roughly

$$\hat{y}^{\star} \pm t_{(1-\frac{\alpha}{2}),n-2} \times \hat{\sigma}$$

Prediction intervals

Span and height

With just 100 individuals

Regression for calibration

That prediction interval is for the case that the x's are known without error while

$$y=\beta_0+\beta_1 x+\epsilon$$
 where $\epsilon=$ error

- Another common situation:
 - \circ We have a number of pairs (x,y) to get a calibration line/curve.
 - o x's basically without error; y's have measurement error.
 - \circ We obtain a new value, y^* , and want to estimate the corresponding x^* :

$$\mathbf{y}^* = \beta_0 + \beta_1 \mathbf{x}^* + \epsilon$$

Example

Another example

Regression for calibration

- \longrightarrow Goal: Estimate x^* and give a 95% confidence interval.

95% CI for **x***

Let T denote the 97.5th percentile of the t distr'n with n-2 d.f.

Let
$$g = T / [|\hat{\beta}_1| / (\hat{\sigma}/\sqrt{SXX})] = (T \hat{\sigma}) / (|\hat{\beta}_1| \sqrt{SXX})$$

- \longrightarrow If $g \ge 1$, we would fail to reject $H_0: \beta_1=0!$ In this case, the 95% CI for \hat{x}^* is $(-\infty, \infty)$.
- \longrightarrow If g < 1, our 95% CI is the following:

$$\hat{x}^{\star} \pm \frac{(\hat{x}^{\star} - \bar{x})\,g^2 + (T\,\hat{\sigma}\,/\,|\hat{\beta}_1|)\sqrt{(\hat{x}^{\star} - \bar{x})^2/SXX + (1-g^2)\,(\frac{1}{m} + \frac{1}{n})}}{1-g^2}$$

For very large n, this reduces to approximately $\hat{\mathbf{x}}^{\star} \pm (\mathsf{T}\,\hat{\sigma})\,/\,(|\hat{\beta}_1|\sqrt{\mathsf{m}})$

Example

Another example

Infinite m

Infinite n

Multiple linear regression

Multiple linear regression

Multiple linear regression

More than one predictor

#	Υ	X_1	X_2
1	0.3399	0	0
2	0.3563	0	0
3	0.3538	0	0
4	0.3168	10	0
5	0.3054	10	0
6	0.3174	10	0
7	0.2460	25	0
8	0.2618	25	0
9	0.2848	25	0
10	0.1535	50	0
11	0.1613	50	0
12	0.1525	50	0
13	0.3332	0	1
14	0.3414	0	1
15	0.3299	0	1
16	0.2940	10	1
17	0.2948	10	1
18	0.2903	10	1
19	0.2089	25	1
20	0.2189	25	1
21	0.2102	25	1
22	0.1006	50	1

23 0.1031 50 1 24 0.1452 50 1 The model with two parallel lines can be described as

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

In other words (or, equations):

$$\mathbf{Y} = \begin{cases} \beta_0 + \beta_1 \mathbf{X}_1 + \epsilon & \text{if } \mathbf{X}_2 = \mathbf{0} \\ (\beta_0 + \beta_2) + \beta_1 \mathbf{X}_1 + \epsilon & \text{if } \mathbf{X}_2 = \mathbf{1} \end{cases}$$

Multiple linear regression

A multiple linear regression model has the form

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \epsilon, \qquad \epsilon \sim N(0, \sigma^2)$$

The predictors (the X's) can be categorical or numerical.

Often, all predictors are numerical or all are categorical.

And actually, categorical variables are converted into a group of numerical ones.

Interpretation

Let X_1 be the age of a subject (in years).

$$E[Y] = \beta_0 + \beta_1 X_1$$

- Comparing two subjects who differ by one year in age, we expect the responses to differ by β_1 .
- Comparing two subjects who differ by five years in age, we expect the responses to differ by $5\beta_1$.

Interpretation

Let X_1 be the age of a subject (in years), and let X_2 be an indicator for the treatment arm (0/1).

$$E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- Omparing two subjects from the same treatment arm who differ by one year in age, we expect the responses to differ by β_1 .
- Omparing two subjects of the same age from the two different treatment arms ($X_2=1$ versus $X_2=0$), we expect the responses to differ by β_2 .

Interpretation

Let X_1 be the age of a subject (in years), and let X_2 be an indicator for the treatment arm (0/1).

$$E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

$$\longrightarrow$$
 E[Y] = β_0 + β_1 X₁ (if X₂=0)

$$\longrightarrow \ \mathsf{E}[\mathsf{Y}] = \beta_0 + \beta_1 \ \mathsf{X}_1 + \beta_2 + \beta_3 \ \mathsf{X}_1 = \beta_0 + \beta_2 + (\beta_1 + \beta_3) \ \mathsf{X}_1 \quad \text{(if $\mathsf{X}_2=1$)}$$

Comparing two subjects who differ by one year in age, we expect the responses to differ by β_1 if they are in the control arm (X₂=0), and expect the responses to differ by $\beta_1 + \beta_3$ if they are in the treatment arm (X₂=1).

Estimation

We have the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i, \quad \epsilon_i \sim \text{ iid Normal}(0, \sigma^2)$$

 \longrightarrow We estimate the β 's by the values for which

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$

is minimized where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots + \hat{\beta}_k x_{ik}$ (aka "least squares").

$$\longrightarrow \ \ \text{We estimate } \sigma \text{ by } \quad \hat{\sigma} = \sqrt{\frac{\text{RSS}}{\mathsf{n} - (\mathsf{k} + \mathbf{1})}}$$

FYI

Calculation of the $\hat{\beta}$'s (and their SEs and correlations) is not that complicated, but without matrix algebra, the formulas are nasty.

Here is what you need to know:

- \circ The SEs of the $\hat{\beta}$'s involve σ and the x's.
- \circ The $\hat{\beta}$'s are normally distributed.
- o Obtain confidence intervals for the β 's using $\hat{\beta} \pm t \times \widehat{SE}(\hat{\beta})$ where t is a quantile of t dist'n with n–(k+1) d.f.
- Test $H_0: \beta = 0$ using $|\hat{\beta}|/\widehat{SE}(\hat{\beta})$ Compare this to a t distribution with n–(k+1) d.f.

The example: a full model

$$x_1 = [H_2O_2].$$

 $x_2 = 0$ or 1, indicating type of heme.

y = the OD measurement.

The model:
$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

i.e.,

$$y = \left\{ \begin{aligned} \beta_0 + \beta_1 X_1 + \epsilon & \text{if } X_2 = 0 \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1 + \epsilon & \text{if } X_2 = 1 \end{aligned} \right.$$

$$\begin{array}{cccc} \beta_2 = 0 & \longrightarrow & \text{Same intercepts.} \\ \beta_3 = 0 & \longrightarrow & \text{Same slopes.} \\ \beta_2 = \beta_3 = 0 & \longrightarrow & \text{Same lines.} \end{array}$$

$$\beta_3 = 0 \longrightarrow Same slopes$$

$$\beta_2 = \beta_3 = 0 \longrightarrow Same lines.$$

Results

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.35305	0.00544	64.9	< 2e-16
x1	-0.00387	0.00019	-20.2	8.86e-15
x2	-0.01992	0.00769	-2.6	0.0175
x1:x2	-0.00055	0.00027	-2.0	0.0563

Residual standard error: 0.0125 on 20 degrees of freedom Multiple R-Squared: 0.98, Adjusted R-squared: 0.977 F-statistic: 326.4 on 3 and 20 DF, p-value: < 2.2e-16

Testing many parameters

We have the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i, \quad \epsilon_i \sim \text{ iid Normal}(0, \sigma^2)$$

We seek to test $H_0: \beta_{r+1} = \cdots = \beta_k = 0.$

In other words, do we really have just:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_r x_{ir} + \epsilon_i, \quad \epsilon_i \sim \text{ iid Normal}(0, \sigma^2)$$

?

What to do...

- 1. Fit the "full" model (with all k x's).
- 2. Calculate the residual sum of squares, RSS_{full}.
- 3. Fit the "reduced" model (with only r x's).
- 4. Calculate the residual sum of squares, RSS_{red} .
- $\begin{aligned} \text{5. Calculate F} &= \frac{(\text{RSS}_{\text{red}} \text{RSS}_{\text{full}})/(\text{df}_{\text{red}} \text{df}_{\text{full}})}{\text{RSS}_{\text{full}}/\text{df}_{\text{full}}}. \\ &\text{where df}_{\text{red}} = n-r-1 \text{ and df}_{\text{full}} = n-k-1). \end{aligned}$
- 6. Under H_0 , $F \sim F(df_{red} df_{full}, df_{full})$.

In particular...

Assume the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i, \quad \epsilon_i \sim \text{ iid Normal}(0, \sigma^2)$$

We seek to test $H_0: \beta_1 = \cdots = \beta_k = 0$ (i.e., none of the x's are related to y).

- → Full model: All the x's
- \longrightarrow Reduced model: $y = \beta_0 + \epsilon$ RSS_{red} = $\sum_i (y_i \bar{y})^2$

The example

To test $\beta_2 = \beta_3 = 0$

Analysis of Variance Table