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Preface

This book may be downloaded as a free PDF at openintro.org.

We hope readers will take away three ideas from this book in addition to forming a foun-
dation of statistical thinking and methods.

(1) Statistics is an applied field with a wide range of practical applications.
(2) You don’t have to be a math guru to learn from real, interesting data.

(3) Data is messy, and statistical tools are imperfect. But, when you understand the
strengths and weaknesses of these tools, you can use them to learn about the real world.

Textbook overview

The chapters of this book are as follows:

1. Introduction to data. Data structures, variables, summaries, graphics, and basic
data collection techniques.

2. Probability (special topic). The basic principles of probability. An understanding
of this chapter is not required for the main content in Chapters 3-8.

3. Distributions of random variables. Introduction to the normal model and other
key distributions.

4. Foundations for inference. General ideas for statistical inference in the context of
estimating the population mean.

5. Inference for numerical data. Inference for one or two sample means using the nor-
mal model and ¢ distribution, and also comparisons of many means using ANOVA.

6. Inference for categorical data. Inference for proportions using the normal and chi-
square distributions, as well as simulation and randomization techniques.

7. Introduction to linear regression. An introduction to regression with two variables.
Most of this chapter could be covered after Chapter 1.

8. Multiple and logistic regression. An introduction to multiple regression and logis-
tic regression for an accelerated course.

Openlintro Statistics was written to allow flexibility in choosing and ordering course
topics. The material is divided into two pieces: main text and special topics. The main
text has been structured to bring statistical inference and modeling closer to the front of a
course. Special topics, labeled in the table of contents and in section titles, may be added
to a course as they arise naturally in the curriculum.
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Examples, exercises, and appendices

Examples and within-chapter exercises throughout the textbook may be identified by their
distinctive bullets:

@® Example 0.1 Large filled bullets signal the start of an example.

Full solutions to examples are provided and often include an accompanying table or
figure.

() Exercise 0.2 Large empty bullets signal to readers that an exercise has been
inserted into the text for additional practice and guidance. Students may find it
useful to fill in the bullet after understanding or successfully completing the exercise.
Solutions are provided for all within-chapter exercises in footnotes.!

There are exercises at the end of each chapter that are useful for practice or homework
assignments. Many of these questions have multiple parts, and odd-numbered questions
include solutions in Appendix A.

Probability tables for the normal, ¢, and chi-square distributions are in Appendix B,
and PDF copies of these tables are also available from openintro.org for anyone to down-
load, print, share, or modify.

Openlntro, online resources, and getting involved

Openlntro is an organization focused on developing free and affordable education materials.
Openlntro Statistics, our first project, is intended for introductory statistics courses at the
high school through university levels.

We encourage anyone learning or teaching statistics to visit openintro.org and get
involved. We also provide many free online resources, including free course software. Data
sets for this textbook are available on the website and through a companion R package.”
All of these resources are free, and we want to be clear that anyone is welcome to use these
online tools and resources with or without this textbook as a companion.

We value your feedback. If there is a particular component of the project you especially
like or think needs improvement, we want to hear from you. You may find our contact
information on the title page of this book or on the About section of openintro.org.
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you will join us in extending a thank you to all those volunteers below.

The authors would like to thank Andrew Bray, Meenal Patel, Yongtao Guan, Filipp
Brunshteyn, Rob Gould, and Chris Pope for their involvement and contributions. We are
also very grateful to Dalene Stangl, Dave Harrington, Jan de Leeuw, Kevin Rader, and
Philippe Rigollet for providing us with valuable feedback.

LFull solutions are located down here in the footnote!
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Chapter 1

Introduction to data

Scientists seek to answer questions using rigorous methods and careful observations. These
observations — collected from the likes of field notes, surveys, and experiments — form the
backbone of a statistical investigation and are called data. Statistics is the study of how
best to collect, analyze, and draw conclusions from data. It is helpful to put statistics in
the context of a general process of investigation:

1. Identify a question or problem.
2. Collect relevant data on the topic.
3. Analyze the data.

4. Form a conclusion.

Statistics as a subject focuses on making stages 2-4 objective, rigorous, and efficient.
That is, statistics has three primary components: How best can we collect data? How
should it be analyzed? And what can we infer from the analysis?

The topics scientists investigate are as diverse as the questions they ask. However,
many of these investigations can be addressed with a small number of data collection
techniques, analytic tools, and fundamental concepts in statistical inference. This chapter
provides a glimpse into these and other themes we will encounter throughout the rest of
the book. We introduce the basic principles of each branch and learn some tools along
the way. We will encounter applications from other fields, some of which are not typically
associated with science but nonetheless can benefit from statistical study.

1.1 Case study: using stents to prevent strokes

Section 1.1 introduces a classic challenge in statistics: evaluating the efficacy of a medical
treatment. Terms in this section, and indeed much of this chapter, will all be revisited
later in the text. The plan for now is simply to get a sense of the role statistics can play in
practice.

In this section we will consider an experiment that studies effectiveness of stents in
treating patients at risk of stroke.! Stents are devices put inside blood vessels that assist

LChimowitz MI, Lynn MJ, Derdeyn CP, et al. 2011. Stenting versus Aggressive Medical Therapy for
Intracranial Arterial Stenosis. New England Journal of Medicine 365:993-1003. http://www.nejm.org/doi/
full/10.1056 /NEJMoal105335. NY Times article reporting on the study: http://www.nytimes.com/2011/
09/08/health /research/08stent.html.


http://www.nejm.org/doi/full/10.1056/NEJMoa1105335
http://www.nejm.org/doi/full/10.1056/NEJMoa1105335
http://www.nytimes.com/2011/09/08/health/research/08stent.html
http://www.nytimes.com/2011/09/08/health/research/08stent.html
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in patient recovery after cardiac events and reduce the risk of an additional heart attack or
death. Many doctors have hoped that there would be similar benefits for patients at risk
of stroke. We start by writing the principle question the researchers hope to answer:

Does the use of stents reduce the risk of stroke?

The researchers who asked this question collected data on 451 at-risk patients. Each
volunteer patient was randomly assigned to one of two groups:

Treatment group. Patients in the treatment group received a stent and medical
management. The medical management included medications, management of risk
factors, and help in lifestyle modification.

Control group. Patients in the control group received the same medical manage-
ment as the treatment group, but they did not receive stents.

Researchers randomly assigned 224 patients to the treatment group and 227 to the control
group. In this study, the control group provides a reference point against which we can
measure the medical impact of stents in the treatment group.

Researchers studied the effect of stents at two time points: 30 days after enrollment
and 365 days after enrollment. The results of 5 patients are summarized in Table 1.1.
Patient outcomes are recorded as “stroke” or “no event”, representing whether or not the
patient had a stroke at the end of a time period.

Patient group 0-30 days 0-365 days

1 treatment no event no event
2 treatment stroke stroke

3 treatment no event no event
450 control no event no event
451 control no event no event

Table 1.1: Results for five patients from the stent study.

Considering data from each patient individually would be a long, cumbersome path
towards answering the original research question. Instead, performing a statistical data
analysis allows us to consider all of the data at once. Table 1.2 summarizes the raw data in
a more helpful way. In this table, we can quickly see what happened over the entire study.
For instance, to identify the number of patients in the treatment group who had a stroke
within 30 days, we look on the left-side of the table at the intersection of the treatment
and stroke: 33.

0-30 days 0-365 days

stroke no event stroke no event
treatment 33 191 45 179
control 13 214 28 199
Total 46 405 73 378

Table 1.2: Descriptive statistics for the stent study.
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() Exercise 1.1  Of the 224 patients in the treatment group, 45 had a stroke by the
end of the first year. Using these two numbers, compute the proportion of patients
in the treatment group who had a stroke by the end of their first year. (Please note:
answers to all in-text exercises are provided using footnotes.)?

We can compute summary statistics from the table. A summary statistic is a single
number summarizing a large amount of data.” For instance, the primary results of the
study after 1 year could be described by two summary statistics: the proportion of people
who had a stroke in the treatment and control groups.

Proportion who had a stroke in the treatment (stent) group: 45/224 = 0.20 = 20%.
Proportion who had a stroke in the control group: 28/227 = 0.12 = 12%.

These two summary statistics are useful in looking for differences in the groups, and we are
in for a surprise: an additional 8% of patients in the treatment group had a stroke! This is
important for two reasons. First, it is contrary to what doctors expected, which was that
stents would reduce the rate of strokes. Second, it leads to a statistical question: do the
data show a “real” difference between the groups?

This second question is subtle. Suppose you flip a coin 100 times. While the chance
a coin lands heads in any given coin flip is 50%, we probably won’t observe exactly 50
heads. This type of fluctuation is part of almost any type of data generating process. It is
possible that the 8% difference in the stent study is due to this natural variation. However,
the larger the difference we observe (for a particular sample size), the less believable it is
that the difference is due to chance. So what we are really asking is the following: is the
difference so large that we should reject the notion that it was due to chance?

While we don’t yet have our statistical tools to fully address this question on our
own, we can comprehend the conclusions of the published analysis: there was compelling
evidence of harm by stents in this study of stroke patients.

Be careful: do not generalize the results of this study to all patients and all stents.
This study looked at patients with very specific characteristics who volunteered to be a
part of this study and who may not be representative of all stroke patients. In addition,
there are many types of stents and this study only considered the self-expanding Wingspan
stent (Boston Scientific). However, this study does leave us with an important lesson: we
should keep our eyes open for surprises.

1.2 Data basics

Effective presentation and description of data is a first step in most analyses. This section
introduces one structure for organizing data as well as some terminology that will be used
throughout this book.

1.2.1 Observations, variables, and data matrices

Table 1.3 displays rows 1, 2, 3, and 50 of a data set concerning 50 emails received during
early 2012. These observations will be referred to as the email50 data set, and they are a
random sample from a larger data set that we will see in Section 1.7.

2The proportion of the 224 patients who had a stroke within 365 days: 45/224 = 0.20.
3Formally, a summary statistic is a value computed from the data. Some summary statistics are more
useful than others.
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spam num_char line_breaks format number

1 no 21,705 551 html small
no 7,011 183 html big

3 yes 631 28 text none

50 no 15,829 242 html small

Table 1.3: Four rows from the email50 data matrix.

variable description

spam Specifies whether the message was spam

num_char The number of characters in the email

line_breaks The number of line breaks in the email (not including text wrapping)

format Indicates if the email contained special formatting, such as bolding, tables,
or links, which would indicate the message is in HTML format

number Indicates whether the email contained no number, a small number (under

1 million), or a large number

Table 1.4: Variables and their descriptions for the email50 data set.

Each row in the table represents a single email or case.” The columns represent char-
acteristics, called variables, for each of the emails. For example, the first row represents
email 1, which is a not spam, contains 21,705 characters, 551 line breaks, is written in
HTML format, and contains only small numbers.

In practice, it is especially important to ask clarifying questions to ensure important
aspects of the data are understood. For instance, it is always important to be sure we
know what each variable means and the units of measurement. Descriptions of all five
email variables are given in Table 1.4.

The data in Table 1.3 represent a data matrix, which is a common way to organize
data. Each row of a data matrix corresponds to a unique case, and each column corresponds
to a variable. A data matrix for the stroke study introduced in Section 1.1 is shown in
Table 1.1 on page 2, where the cases were patients and there were three variables recorded
for each patient.

Data matrices are a convenient way to record and store data. If another individual
or case is added to the data set, an additional row can be easily added. Similarly, another
column can be added for a new variable.

() Exercise 1.2 We consider a publicly available data set that summarizes information
about the 3,143 counties in the United States, and we call this the county data set.
This data set includes information about each county: its name, the state where it
resides, its population in 2000 and 2010, per capita federal spending, poverty rate,
and five additional characteristics. How might these data be organized in a data
matrix? Reminder: look in the footnotes for answers to in-text exercises.’

Seven rows of the county data set are shown in Table 1.5, and the variables are summarized
in Table 1.6. These data were collected from the US Census website.’

4A case is also sometimes called a unit of observation or an observational unit.

5Each county may be viewed as a case, and there are eleven pieces of information recorded for each
case. A table with 3,143 rows and 11 columns could hold these data, where each row represents a county
and each column represents a particular piece of information.

Shttp://quickfacts.census.gov/qfd/index.html
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Figure 1.7: Breakdown of variables into their respective types.

1.2.2 Types of variables

Examine the fed_spend, pop2010, state, and smoking_ban variables in the county data
set. Each of these variables is inherently different from the other three yet many of them
share certain characteristics.

First consider fed_spend, which is said to be a numerical variable since it can take
a wide range of numerical values, and it is sensible to add, subtract, or take averages with
those values. On the other hand, we would not classify a variable reporting telephone area
codes as numerical since their average, sum, and difference have no clear meaning.

The pop2010 variable is also numerical, although it seems to be a little different
than fed_spend. This variable of the population count can only take whole non-negative
numbers (0, 1, 2, ...). For this reason, the population variable is said to be discrete since
it can only take numerical values with jumps. On the other hand, the federal spending
variable is said to be continuous.

The variable state can take up to 51 values after accounting for Washington, DC: AL,
..., and WY. Because the responses themselves are categories, state is called a categorical
variable,” and the possible values are called the variable’s levels.

Finally, consider the smoking ban variable, which describes the type of county-wide
smoking ban and takes values none, partial, or comprehensive in each county. This
variable seems to be a hybrid: it is a categorical variable but the levels have a natural
ordering. A variable with these properties is called an ordinal variable. To simplify
analyses, any ordinal variables in this book will be treated as categorical variables.

® Example 1.3 Data were collected about students in a statistics course. Three
variables were recorded for each student: number of siblings, student height, and
whether the student had previously taken a statistics course. Classify each of the
variables as continuous numerical, discrete numerical, or categorical.

The number of siblings and student height represent numerical variables. Because
the number of siblings is a count, it is discrete. Height varies continuously, so it is a
continuous numerical variable. The last variable classifies students into two categories
— those who have and those who have not taken a statistics course — which makes
this variable categorical.

() Exercise 1.4 Consider the variables group and outcome (at 30 days) from the
stent study in Section 1.1. Are these numerical or categorical variables?®

7Sometimes also called a nominal variable.
8There are only two possible values for each variable, and in both cases they describe categories. Thus,
each are categorical variables.
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Figure 1.8: A scatterplot showing fed_spend against poverty. Owsley
County of Kentucky, with a poverty rate of 41.5% and federal spending of
$21.50 per capita, is highlighted.

1.2.3 Relationships between variables

Many analyses are motivated by a researcher looking for a relationship between two or
more variables. A social scientist may like to answer some of the following questions:

(1) Is federal spending, on average, higher or lower in counties with high rates of poverty?

(2) If homeownership is lower than the national average in one county, will the percent
of multi-unit structures in that county likely be above or below the national average?

(3) Which counties have a higher average income: those that enact one or more smoking
bans or those that do not?

To answer these questions, data must be collected, such as the county data set shown
in Table 1.5. Examining summary statistics could provide insights for each of the three
questions about counties. Additionally, graphs can be used to visually summarize data and
are useful for answering such questions as well.

Scatterplots are one type of graph used to study the relationship between two nu-
merical variables. Figure 1.8 compares the variables fed_spend and poverty. Each point
on the plot represents a single county. For instance, the highlighted dot corresponds to
County 1088 in the county data set: Owsley County, Kentucky, which had a poverty rate
of 41.5% and federal spending of $21.50 per capita. The scatterplot suggests a relationship
between the two variables: counties with a high poverty rate also tend to have slightly more
federal spending. We might brainstorm as to why this relationship exists and investigate
each idea to determine which is the most reasonable explanation.

() Exercise 1.5 Examine the variables in the email50 data set, which are described
in Table 1.4 on page 4. Create two questions about the relationships between these
variables that are of interest to you.’

9Two sample questions: (1) Intuition suggests that if there are many line breaks in an email then there
would tend to also be many characters: does this hold true? (2) Is there a connection between whether an
email format is plain text (versus HTML) and whether it is a spam message?
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Figure 1.9: A scatterplot of homeownership versus the percent of units
that are in multi-unit structures for all 3,143 counties. Interested readers
may find an image of this plot with an additional third variable, county
population, presented at www.openintro.org/stat/down/MHP.png.

The fed_spend and poverty variables are said to be associated because the plot shows
a discernible pattern. When two variables show some connection with one another, they are
called associated variables. Associated variables can also be called dependent variables
and vice-versa.

® Example 1.6 This example examines the relationship between homeownership and
the percent of units in multi-unit structures (e.g. apartments, condos), which is
visualized using a scatterplot in Figure 1.9. Are these variables associated?

It appears that the larger the fraction of units in multi-unit structures, the lower the
homeownership rate. Since there is some relationship between the variables, they are
associated.

Because there is a downward trend in Figure 1.9 — counties with more units in multi-
unit structures are associated with lower homeownership — these variables are said to be
negatively associated. A positive association is shown in the relationship between
the poverty and fed_spend variables represented in Figure 1.8, where counties with higher
poverty rates tend to receive more federal spending per capita.

If two variables are not associated, then they are said to be independent. That is,
two variables are independent if there is no evident relationship between the two.

Associated or independent, not both
A pair of variables are either related in some way (associated) or not (independent).
No pair of variables is both associated and independent.
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1.3 Overview of data collection principles

The first step in conducting research is to identify topics or questions that are to be inves-
tigated. A clearly laid out research question is helpful in identifying what subjects or cases
should be studied and what variables are important. It is also important to consider how
data are collected so that they are reliable and help achieve the research goals.

1.3.1 Populations and samples

Consider the following three research questions:

1. What is the average mercury content in swordfish in the Atlantic Ocean?

2. Over the last 5 years, what is the average time to degree for Duke undergraduate
students?

3. Does a new drug reduce the number of deaths in patients with severe heart disease?

Each research question refers to a target population. In the first question, the target
population is all swordfish in the Atlantic ocean, and each fish represents a case. Often
times, it is too expensive to collect data for every case in a population. Instead, a sample
is taken. A sample represents a subset of the cases and is often a small fraction of the
population. For instance, 60 swordfish (or some other number) in the population might
be selected, and this sample data may be used to provide an estimate of the population
average and answer the research question.

() Exercise 1.7 For the second and third questions above, identify the target popu-
lation and what represents an individual case.'’

1.3.2 Anecdotal evidence

Consider the following possible responses to the three research questions:

1. A man on the news got mercury poisoning from eating swordfish, so the average
mercury concentration in swordfish must be dangerously high.

2. T met two students who took more than 7 years to graduate from Duke, so it must
take longer to graduate at Duke than at many other colleges.

3. My friend’s dad had a heart attack and died after they gave him a new heart disease
drug, so the drug must not work.

Each of the conclusions are based on some data. However, there are two problems. First,
the data only represent one or two cases. Second, and more importantly, it is unclear
whether these cases are actually representative of the population. Data collected in this
haphazard fashion are called anecdotal evidence.

10(2) Notice that the first question is only relevant to students who complete their degree; the average
cannot be computed using a student who never finished her degree. Thus, only Duke undergraduate
students who have graduated in the last five years represent cases in the population under consideration.
Each such student would represent an individual case. (3) A person with severe heart disease represents a

case. The population includes all people with severe heart disease.
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Figure 1.10: In February 2010, some
media pundits cited one large snow
storm as valid evidence against global
warming. As comedian Jon Stewart
pointed out, “It’s one storm, in one
region, of one country.”

February 10th, 2010.

Anecdotal evidence
Be careful of data collected in a haphazard fashion. Such evidence may be true
and verifiable, but it may only represent extraordinary cases.

Anecdotal evidence typically is composed of unusual cases that we recall based on
their striking characteristics. For instance, we are more likely to remember the two people
we met who took 7 years to graduate than the six others who graduated in four years.
Instead of looking at the most unusual cases, we should examine a sample of many cases
that represent the population.

1.3.3 Sampling from a population

We might try to estimate the time to graduation for Duke undergraduates in the last 5
years by collecting a sample of students. All graduates in the last 5 years represent the
population, and graduates who are selected for review are collectively called the sample.
In general, we always seek to randomly select a sample from a population. The most
basic type of random selection is equivalent to how raffles are conducted. For example, in
selecting graduates, we could write each graduate’s name on a raffle ticket and draw 100
tickets. The selected names would represent a random sample of 100 graduates.

Why pick a sample randomly? Why not just pick a sample by hand? Consider the
following scenario.

@® Example 1.8 Suppose we ask a student who happens to be majoring in nutrition
to select several graduates for the study. What kind of students do you think she
might collect? Do you think her sample would be representative of all graduates?

Perhaps she would pick a disproportionate number of graduates from health-related
fields. Or perhaps her selection would be well-representative of the population. When
selecting samples by hand, we run the risk of picking a biased sample, even if that
bias is unintentional or difficult to discern.
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all graduates

sample

Figure 1.11: In this graphic, five graduates are randomly selected from the
population to be included in the sample.

all graduates

sample

Figure 1.12: Instead of sampling from all graduates equally, a nutrition
major might inadvertently pick graduates with health-related majors dis-
proportionally often.

If someone was permitted to pick and choose exactly which graduates were included
in the sample, it is entirely possible that the sample could be skewed to that person’s inter-
ests, which may be entirely unintentional. This introduces bias into a sample. Sampling
randomly helps resolve this problem. The most basic random sample is called a simple
random sample, and it is the equivalent of using a raffle to select cases. This means that
each case in the population has an equal chance of being included and there is no implied
connection between the cases in the sample.

The act of taking a simple random sample helps minimize bias, however, bias can
crop up in other ways. Even when people are picked at random, e.g. for surveys, caution
must be exercised if the non-response is high. For instance, if only 30% of the people
randomly sampled for a survey actually respond, then it is unclear whether the results are
representative of the entire population. This non-response bias can skew results.

Another common downfall is a convenience sample, where individuals who are easily
accessible are more likely to be included in the sample. For instance, if a political survey
is done by stopping people walking in the Bronx, this will not represent all of New York
City. It is often difficult to discern what sub-population a convenience sample represents.

() Exercise 1.9 We can easily access ratings for products, sellers, and companies
through websites. These ratings are based only on those people who go out of their
way to provide a rating. If 50% of online reviews for a product are negative, do you
think this means that 50% of buyers are dissatisfied with the product?'!

11 Answers will vary. From our own anecdotal experiences, we believe people tend to rant more about
products that fell below expectations than rave about those that perform as expected. For this reason, we
suspect there is a negative bias in product ratings on sites like Amazon. However, since our experiences
may not be representative, we also keep an open mind should data on the subject become available.
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population of interest

population actually

Figure 1.13: Due to the possibility of non-response, surveys studies may
only reach a certain group within the population. It is difficult, and often
times impossible, to completely fix this problem.

1.3.4 Explanatory and response variables
Consider the following question from page 7 for the county data set:

(1) Is federal spending, on average, higher or lower in counties with high rates of poverty?

If we suspect poverty might affect spending in a county, then poverty is the explanatory
variable and federal spending is the response variable in the relationship.'? If there are
many variables, it may be possible to consider a number of them as explanatory variables.

TIP: Explanatory and response variables
To identify the explanatory variable in a pair of variables, identify which of the two
is suspected of affecting the other and plan an appropriate analysis.

explanatory might affect response
variable variable

Caution: association does not imply causation

Labeling variables as explanatory and response does not guarantee the relationship
between the two is actually causal, even if there is an association identified between
the two variables. We use these labels only to keep track of which variable we
suspect affects the other.

In some cases, there is no explanatory or response variable. Consider the following
question from page 7:

(2) If homeownership is lower than the national average in one county, will the percent
of multi-unit structures in that county likely be above or below the national average?

It is difficult to decide which of these variables should be considered the explanatory and
response variable, i.e. the direction is ambiguous, so no explanatory or response labels are
suggested here.

12Sometimes the explanatory variable is called the independent variable and the response variable
is called the dependent variable. However, this becomes confusing since a pair of variables might be
independent or dependent, so we avoid this language.
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1.3.5 Introducing observational studies and experiments

There are two primary types of data collection: observational studies and experiments.

Researchers perform an observational study when they collect data in a way that
does not directly interfere with how the data arise. For instance, researchers may collect
information via surveys, review medical or company records, or follow a cohort of many
similar individuals to study why certain diseases might develop. In each of these situations,
researchers merely observe the data that arise. In general, observational studies can pro-
vide evidence of a naturally occurring association between variables, but they cannot by
themselves show a causal connection.

When researchers want to investigate the possibility of a causal connection, they con-
duct an experiment. Usually there will be both an explanatory and a response variable.
For instance, we may suspect administering a drug will reduce mortality in heart attack
patients over the following year. To check if there really is a causal connection between
the explanatory variable and the response, researchers will collect a sample of individuals
and split them into groups. The individuals in each group are assigned a treatment. When
individuals are randomly assigned to a group, the experiment is called a randomized ex-
periment. For example, each heart attack patient in the drug trial could be randomly
assigned, perhaps by flipping a coin, into one of two groups: the first group receives a
placebo (fake treatment) and the second group receives the drug. See the case study in
Section 1.1 for another example of an experiment, though that study did not employ a
placebo.

TIP: association # causation
In general, association does not imply causation, and causation can only be inferred
from a randomized experiment.

1.4 Observational studies and sampling strategies

1.4.1 Observational studies

Generally, data in observational studies are collected only by monitoring what occurs,
while experiments require the primary explanatory variable in a study be assigned for each
subject by the researchers.

Making causal conclusions based on experiments is often reasonable. However, making
the same causal conclusions based on observational data can be treacherous and is not rec-
ommended. Thus, observational studies are generally only sufficient to show associations.

() Exercise 1.10 Suppose an observational study tracked sunscreen use and skin
cancer, and it was found that the more sunscreen someone used, the more likely the
person was to have skin cancer. Does this mean sunscreen causes skin cancer?'?

Some previous research tells us that using sunscreen actually reduces skin cancer risk,
so maybe there is another variable that can explain this hypothetical association between
sunscreen usage and skin cancer. One important piece of information that is absent is sun
exposure. If someone is out in the sun all day, she is more likely to use sunscreen and more
likely to get skin cancer. Exposure to the sun is unaccounted for in the simple investigation.

13No. See the paragraph following the exercise for an explanation.
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sun exposure
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use sunscreen : -| skin cancer

Sun exposure is what is called a confounding variable,'* which is a variable that
is correlated with both the explanatory and response variables. While one method to
justify making causal conclusions from observational studies is to exhaust the search for
confounding variables, there is no guarantee that all confounding variables can be examined
or measured.

In the same way, the county data set is an observational study with confounding
variables, and its data cannot easily be used to make causal conclusions.

() Exercise 1.11  Figure 1.9 shows a negative association between the homeownership
rate and the percentage of multi-unit structures in a county. However, it is unreason-
able to conclude that there is a causal relationship between the two variables. Suggest
one or more other variables that might explain the relationship visible in Figure 1.9.'°

Observational studies come in two forms: prospective and retrospective studies. A
prospective study identifies individuals and collects information as events unfold. For
instance, medical researchers may identify and follow a group of similar individuals over
many years to assess the possible influences of behavior on cancer risk. One example
of such a study is The Nurses Health Study, started in 1976 and expanded in 1989.'°
This prospective study recruits registered nurses and then collects data from them using
questionnaires. Retrospective studies collect data after events have taken place, e.g.
researchers may review past events in medical records. Some data sets, such as county,
may contain both prospectively- and retrospectively-collected variables. Local governments
prospectively collect some variables as events unfolded (e.g. retails sales) while the federal
government retrospectively collected others during the 2010 census (e.g. county population
counts).

1.4.2 Three sampling methods (special topic)

Almost all statistical methods are based on the notion of implied randomness. If observa-
tional data are not collected in a random framework from a population, these statistical
methods — the estimates and errors associated with the estimates — are not reliable. Here
we consider three random sampling techniques: simple, stratified, and cluster sampling.
Figure 1.14 provides a graphical representation of these techniques.

Simple random sampling is probably the most intuitive form of random sampling.
Consider the salaries of Major League Baseball (MLB) players, where each player is a
member of one of the league’s 30 teams. To take a simple random sample of 120 baseball
players and their salaries from the 2010 season, we could write the names of that season’s
828 players onto slips of paper, drop the slips into a bucket, shake the bucket around until

14 Also called a lurking variable, confounding factor, or a confounder.

15 Answers will vary. Population density may be important. If a county is very dense, then this may
require a larger fraction of residents to live in multi-unit structures. Additionally, the high density may
contribute to increases in property value, making homeownership infeasible for many residents.

16http:/ /www.channing.harvard.edu/nhs/
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Figure 1.14: Examples of simple random, stratified, and cluster sampling.
In the top panel, simple random sampling was used to randomly select
the 18 cases. In the middle panel, stratified sampling was used: cases were
grouped into strata, and then simple random sampling was employed within
each stratum. In the bottom panel, cluster sampling was used, where data
were binned into nine clusters, three of the clusters were randomly selected,

and six cases were randomly sampled in each of these clusters.
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we are sure the names are all mixed up, then draw out slips until we have the sample of
120 players. In general, a sample is referred to as “simple random” if each case in the
population has an equal chance of being included in the final sample and knowing that a
case is included in a sample does not provide useful information about which other cases
are included.

Stratified sampling is a divide-and-conquer sampling strategy. The population is
divided into groups called strata. The strata are chosen so that similar cases are grouped
together, then a second sampling method, usually simple random sampling, is employed
within each stratum. In the baseball salary example, the teams could represent the strata;
some teams have a lot more money (we're looking at you, Yankees). Then we might
randomly sample 4 players from each team for a total of 120 players.

Stratified sampling is especially useful when the cases in each stratum are very similar
with respect to the outcome of interest. The downside is that analyzing data from a
stratified sample is a more complex task than analyzing data from a simple random sample.
The analysis methods introduced in this book would need to be extended to analyze data
collected using stratified sampling.

® Example 1.12 Why would it be good for cases within each stratum to be very
similar?

We might get a more stable estimate for the subpopulation in a stratum if the cases
are very similar. These improved estimates for each subpopulation will help us build
a reliable estimate for the full population.

A cluster sample is much like a two-stage simple random sample. We break up
the population into many groups, called clusters. Then we sample a fixed number of
clusters and collect a simple random sample within each cluster. This technique is similar
to stratified sampling in its process, except that there is no requirement in cluster sampling
to sample from every cluster. Stratified sampling requires observations be sampled from
every stratum.

Sometimes cluster sampling can be a more economical random sampling technique
than the alternatives. Also, unlike stratified sampling, cluster sampling is most helpful
when there is a lot of case-to-case variability within a cluster but the clusters themselves
don’t look very different from one another. For example, if neighborhoods represented
clusters, then this sampling method works best when the neighborhoods are very diverse.
A downside of cluster sampling is that more advanced analysis techniques are typically
required, though the methods in this book can be extended to handle such data.

@® Example 1.13 Suppose we are interested in estimating the malaria rate in a densely
tropical portion of rural Indonesia. We learn that there are 30 villages in that part of
the Indonesian jungle, each more or less similar to the next. Our goal is to test 150
individuals for malaria. What sampling method should be employed?

A simple random sample would likely draw individuals from all 30 villages, which
could make data collection extremely expensive. Stratified sampling would be a
challenge since it is unclear how we would build strata of similar individuals. However,
cluster sampling seems like a very good idea. First, we might randomly select half
the villages, then randomly select 10 people from each. This would probably reduce
our data collection costs substantially in comparison to a simple random sample and
would still give us reliable information.
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1.5 Experiments

Studies where the researchers assign treatments to cases are called experiments. When
this assignment includes randomization, e.g. using a coin flip to decide which treatment
a patient receives, it is called a randomized experiment. Randomized experiments are
fundamentally important when trying to show a causal connection between two variables.

1.5.1 Principles of experimental design
Randomized experiments are generally built on four principles.

Controlling. Researchers assign treatments to cases, and they do their best to control
any other differences in the groups. For example, when patients take a drug in pill
form, some patients take the pill with only a sip of water while others may have it
with an entire glass of water. To control for water consumption, a doctor may ask all
patients to drink a 12 ounce glass of water with the pill.

Randomization. Researchers randomize patients into treatment groups to account for
variables that cannot be controlled. For example, some patients may be more suscep-
tible to a disease than others due to their dietary habits. Randomizing patients into
the treatment or control group helps even out such differences, and it also prevents
accidental bias from entering the study.

Replication. The more cases researchers observe, the more accurately they can estimate
the effect of the explanatory variable on the response. In a single study, we replicate
by collecting a sufficiently large sample. Additionally, a group of scientists may
replicate an entire study to verify an earlier finding.

Blocking. Researchers sometimes know or suspect that variables, other than the treat-
ment, influence the response. Under these circumstances, they may first group in-
dividuals based on this variable into blocks and then randomize cases within each
block to the treatment groups. This strategy is often referred to as blocking. For
instance, if we are looking at the effect of a drug on heart attacks, we might first split
patients in the study into low-risk and high-risk blocks, then randomly assign half
the patients from each block to the control group and the other half to the treatment
group, as shown in Figure 1.15. This strategy ensures each treatment group has an
equal number of low-risk and high-risk patients.

It is important to incorporate the first three experimental design principles into any
study, and this book describes applicable methods for analyzing data from such experi-
ments. Blocking is a slightly more advanced technique, and statistical methods in this
book may be extended to analyze data collected using blocking.

1.5.2 Reducing bias in human experiments

Randomized experiments are the gold standard for data collection, but they do not ensure
an unbiased perspective into the cause and effect relationships in all cases. Human studies
are perfect examples where bias can unintentionally arise. Here we reconsider a study where
a new drug was used to treat heart attack patients.'” In particular, researchers wanted to
know if the drug reduced deaths in patients.

17 Anturane Reinfarction Trial Research Group. 1980. Sulfinpyrazone in the prevention of sudden death
after myocardial infarction. New England Journal of Medicine 302(5):250-256.
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Figure 1.15: Blocking using a variable depicting patient risk. Patients are
first divided into low-risk and high-risk blocks, then each block is evenly
divided into the treatment groups using randomization. This strategy en-
sures an equal representation of patients in each treatment group from both

the low-risk and high-risk categories.
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These researchers designed a randomized experiment because they wanted to draw
causal conclusions about the drug’s effect. Study volunteers'® were randomly placed into
two study groups. One group, the treatment group, received the drug. The other group,
called the control group, did not receive any drug treatment.

Put yourself in the place of a person in the study. If you are in the treatment group,
you are given a fancy new drug that you anticipate will help you. On the other hand, a
person in the other group doesn’t receive the drug and sits idly, hoping her participation
doesn’t increase her risk of death. These perspectives suggest there are actually two effects:
the one of interest is the effectiveness of the drug, and the second is an emotional effect
that is difficult to quantify.

Researchers aren’t usually interested in the emotional effect, which might bias the
study. To circumvent this problem, researchers do not want patients to know which group
they are in. When researchers keep the patients uninformed about their treatment, the
study is said to be blind. But there is one problem: if a patient doesn’t receive a treatment,
she will know she is in the control group. The solution to this problem is to give fake
treatments to patients in the control group. A fake treatment is called a placebo, and
an effective placebo is the key to making a study truly blind. A classic example of a
placebo is a sugar pill that is made to look like the actual treatment pill. Often times, a
placebo results in a slight but real improvement in patients. This effect has been dubbed
the placebo effect.

The patients are not the only ones who should be blinded: doctors and researchers
can accidentally bias a study. When a doctor knows a patient has been given the real
treatment, she might inadvertently give that patient more attention or care than a patient
that she knows is on the placebo. To guard against this bias, which again has been found to
have a measurable effect in some instances, most modern studies employ a double-blind
setup where doctors or researchers who interact with patients are, just like the patients,
unaware of who is or is not receiving the treatment.'?

() Exercise 1.14 Look back to the study in Section 1.1 where researchers were test-
ing whether stents were effective at reducing strokes in at-risk patients. Is this an
experiment? Was the study blinded? Was it double-blinded??"

1.6 Examining numerical data

In this section we will be introduced to techniques for exploring and summarizing numerical
variables. The email50 and county data sets from Section 1.2 provide rich opportunities
for examples. Recall that outcomes of numerical variables are numbers on which it is
reasonable to perform basic arithmetic operations. For example, the pop2010 variable,
which represents the populations of counties in 2010, is numerical since we can sensibly
discuss the difference or ratio of the populations in two counties. On the other hand, area
codes and zip codes are not numerical, but rather they are categorical variables.

18Human subjects are often called patients, volunteers, or study participants.

19There are always some researchers involved in the study who do know which patients are receiving
which treatment. However, they do not interact with the study’s patients and do not tell the blinded health
care professionals who is receiving which treatment.

20The researchers assigned the patients into their treatment groups, so this study was an experiment.
However, the patients could distinguish what treatment they received, so this study was not blind. The
study could not be double-blind since it was not blind.
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1.6.1 Scatterplots for paired data

A scatterplot provides a case-by-case view of data for two numerical variables. In Fig-
ure 1.8 on page 7, a scatterplot was used to examine how federal spending and poverty were
related in the county data set. Another scatterplot is shown in Figure 1.16, comparing the
number of line breaks (line_breaks) and number of characters (num_char) in emails for
the email50 data set. In any scatterplot, each point represents a single case. Since there
are 50 cases in emailb0, there are 50 points in Figure 1.16.
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Figure 1.16: A scatterplot of 1ine_breaks versus num_char for the email50 data.

To put the number of characters in perspective, this paragraph has 363 characters.
Looking at Figure 1.16, it seems that some emails are incredibly verbose! Upon further
investigation, we would actually find that most of the long emails use the HTML format,
which means most of the characters in those emails are used to format the email rather
than provide text.

() Exercise 1.15 What do scatterplots reveal about the data, and how might they
be useful??'

® Example 1.16 Consider a new data set of 54 cars with two variables: vehicle price
and weight.?? A scatterplot of vehicle price versus weight is shown in Figure 1.17.
What can be said about the relationship between these variables?

The relationship is evidently nonlinear, as highlighted by the dashed line. This is
different from previous scatterplots we’ve seen, such as Figure 1.8 on page 7 and
Figure 1.16, which show relationships that are very linear.

() Exercise 1.17 Describe two variables that would have a horseshoe shaped associ-
ation in a scatterplot.’’

21 Answers may vary. Scatterplots are helpful in quickly spotting associations relating variables, whether
those associations come in the form of simple trends or whether those relationships are more complex.

228ubset of data from http://www.amstat.org/publications/jse/vinl/datasets.lock.html

23Consider the case where your vertical axis represents something “good” and your horizontal axis
represents something that is only good in moderation. Health and water consumption fit this description
since water becomes toxic when consumed in excessive quantities.


http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
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Figure 1.17: A scatterplot of price versus weight for 54 cars.

1.6.2 Dot plots and the mean

Sometimes two variables is one too many: only one variable may be of interest. In these
cases, a dot plot provides the most basic of displays. A dot plot is a one-variable scatter-
plot; an example using the number of characters from 50 emails is shown in Figure 1.18.
A stacked version of this dot plot is shown in Figure 1.19.
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Figure 1.18: A dot plot of num_char for the email50 data set.

The mean, sometimes called the average, is a common way to measure the center
of a distribution of data. To find the mean number of characters in the 50 emails, we
add up all the character counts and divide by the number of emails. For computational
convenience, the number of characters is listed in the thousands and rounded to the first
decimal.

21.7+70+---+158
50 -

T =

11.6 (1.18)

The sample mean is often labeled . The letter x is being used as a generic placeholder for
the variable of interest, num_char, and the bar says it is the average number of characters
in the 50 emails was 11,600. It is useful to think of the mean as the balancing point of the
distribution. The sample mean is shown as a triangle in Figures 1.18 and 1.19.

sample
mean
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Figure 1.19: A stacked dot plot of num_char for the email50 data set.

Mean

The sample mean of a numerical variable is computed as the sum of all of the
observations divided by the number of observations:

gzt P2t 2 (1.19)
n

n
sample size

where x1,x2,...,x, represent the n observed values.

() Exercise 1.20 Examine Equations (1.18) and (1.19) above. What does z1 corre-
spond to? And z5? Can you infer a general meaning to what z; might represent?*

() Exercise 1.21  What was n in this sample of emails??°

The email50 data set represents a sample from a larger population of emails that were
received in January and March. We could compute a mean for this population in the same
way as the sample mean, however, the population mean has a special label: p. The symbol

population 1 is the Greek letter mu and represents the average of all observations in the population.
meatt Sometimes a subscript, such as ., is used to represent which variable the population mean
refers to, e.g. .

) Example 1.22 The average number of characters across all emails can be estimated
using the sample data. Based on the sample of 50 emails, what would be a reasonable
estimate of p,, the mean number of characters in all emails in the email data set?
(Recall that email50 is a sample from email.)

The sample mean, 11,600, may provide a reasonable estimate of p,. While this
number will not be perfect, it provides a point estimate of the population mean. In
Chapter 4 and beyond, we will develop tools to characterize the accuracy of point
estimates, and we will find that point estimates based on larger samples tend to be
more accurate than those based on smaller samples.

2424 corresponds to the number of characters in the first email in the sample (21.7, in thousands), z2

to the number of characters in the second email (7.0, in thousands), and z; corresponds to the number of
characters in the i*" email in the data set.
25The sample size was n = 50.
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@® Example 1.23 We might like to compute the average income per person in the US.
To do so, we might first think to take the mean of the per capita incomes across the
3,143 counties in the county data set. What would be a better approach?

The county data set is special in that each county actually represents many individual
people. If we were to simply average across the income variable, we would be treating
counties with 5,000 and 5,000,000 residents equally in the calculations. Instead, we
should compute the total income for each county, add up all the counties’ totals,
and then divide by the number of people in all the counties. If we completed these
steps with the county data, we would find that the per capita income for the US is
$27,348.43. Had we computed the simple mean of per capita income across counties,
the result would have been just $22,504.70!

Example 1.23 used what is called a weighted mean, which will not be a key topic
in this textbook. However, we have provided an online supplement on weighted means for
interested readers:

http://www.openintro.org/stat/down/supp/wtdmean.pdf

1.6.3 Histograms and shape

Dot plots show the exact value for each observation. This is useful for small data sets,
but they can become hard to read with larger samples. Rather than showing the value of
each observation, we prefer to think of the value as belonging to a bin. For example, in
the email50 data set, we create a table of counts for the number of cases with character
counts between 0 and 5,000, then the number of cases between 5,000 and 10,000, and so
on. Observations that fall on the boundary of a bin (e.g. 5,000) are allocated to the lower
bin. This tabulation is shown in Table 1.20. These binned counts are plotted as bars in
Figure 1.21 into what is called a histogram, which resembles the stacked dot plot shown
in Figure 1.19.

Characters 0-5 510 10-15 15-20 20-25 25-30 ---  55-60 60-65
(in thousands)
Count 19 12 6 2 3 5 . 0 1

Table 1.20: The counts for the binned num_char data.

Histograms provide a view of the data density. Higher bars represent where the data
are relatively more common. For instance, there are many more emails with fewer than
20,000 characters than emails with at least 20,000 in the data set. The bars make it easy
to see how the density of the data changes relative to the number of characters.

Histograms are especially convenient for describing the shape of the data distribution.
Figure 1.21 shows that most emails have a relatively small number of characters, while
fewer emails have a very large number of characters. When data trail off to the right in
this way and have a longer right tail, the shape is said to be right skewed.?’

Data sets with the reverse characteristic — a long, thin tail to the left — are said to be
left skewed. We also say that such a distribution has a long left tail. Data sets that show
roughly equal trailing off in both directions are called symmetric.

26Other ways to describe data that are skewed to the right: skewed to the right, skewed to the
high end, or skewed to the positive end.


http://www.openintro.org/stat/down/supp/wtdmean.pdf
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Figure 1.21: A histogram of num_char. This distribution is very strongly
skewed to the right.

Long tails to identify skew

When data trail off in one direction, the distribution has a long tail. If a distri-
bution has a long left tail, it is left skewed. If a distribution has a long right tail,
it is right skewed.

() Exercise 1.24 Take a look at the dot plots in Figures 1.18 and 1.19. Can you see
the skew in the data? Is it easier to see the skew in this histogram or the dot plots?””

() Exercise 1.25 Besides the mean (since it was labeled), what can you see in the
dot plots that you cannot see in the histogram??®

In addition to looking at whether a distribution is skewed or symmetric, histograms
can be used to identify modes. A mode is represented by a prominent peak in the distri-
bution.?” There is only one prominent peak in the histogram of num_char.

Figure 1.22 shows histograms that have one, two, or three prominent peaks. Such
distributions are called unimodal, bimodal, and multimodal, respectively. Any distri-
bution with more than 2 prominent peaks is called multimodal. Notice that there was one
prominent peak in the unimodal distribution with a second less prominent peak that was
not counted since it only differs from its neighboring bins by a few observations.

() Exercise 1.26 Figure 1.21 reveals only one prominent mode in the number of
characters. Is the distribution unimodal, bimodal, or multimodal?*’

27The skew is visible in all three plots, though the flat dot plot is the least useful. The stacked dot plot
and histogram are helpful visualizations for identifying skew.

28 Character counts for individual emails.

29 Another definition of mode, which is not typically used in statistics, is the value with the most
occurrences. It is common to have no observations with the same value in a data set, which makes this
other definition useless for many real data sets.

30Unimodal. Remember that uni stands for 1 (think wnicycles). Similarly, bi stands for 2 (think
bicycles). (We're hoping a multicycle will be invented to complete this analogy.)
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Figure 1.22: Counting only prominent peaks, the distributions are (left to
right) unimodal, bimodal, and multimodal.

() Exercise 1.27 Height measurements of young students and adult teachers at a K-3
elementary school were taken. How many modes would you anticipate in this height
data set??!

TIP: Looking for modes

Looking for modes isn’t about finding a clear and correct answer about the number
of modes in a distribution, which is why prominent is not rigorously defined in this
book. The important part of this examination is to better understand your data
and how it might be structured.

1.6.4 Variance and standard deviation

The mean was introduced as a method to describe the center of a data set, but the variability
in the data is also important. Here, we introduce two measures of variability: the variance
and the standard deviation. Both of these are very useful in data analysis, even though
their formulas are a bit tedious to calculate by hand. The standard deviation is the easier
of the two to understand, and it roughly describes how far away the typical observation is
from the mean.

We call the distance of an observation from its mean its deviation. Below are the
deviations for the 1%, 27¢ 374 and 50" observations in the num_char variable. For com-
putational convenience, the number of characters is listed in the thousands and rounded to
the first decimal.

z, —T=21.7-11.6=10.1
Ty —T=T70-11.6=—46
2y —Z=06—11.6=—11.0

Tsy— =158 —11.6 = 4.2

31There might be two height groups visible in the data set: one of the students and one of the adults.
That is, the data are probably bimodal.
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Figure 1.23: In the num_char data, 41 of the 50 emails (82%) are within
1 standard deviation of the mean, and 47 of the 50 emails (94%) are within
2 standard deviations. Usually about 70% of the data are within 1 standard
deviation of the mean and 95% are within 2 standard deviations, though
this rule of thumb is less accurate for skewed data, as shown in this example.

If we square these deviations and then take an average, the result is about equal to the
sample variance, denoted by s2:

5 1012+ (—4.6)* + (—11.0)% + - - - + 4.22

o= 50 — 1
102,01 + 21,16 + 12100 + - - - + 17.64
B 49

=172.44

We divide by n — 1, rather than dividing by n, when computing the variance; you need

not worry about this mathematical nuance for the material in this textbook. Notice that

squaring the deviations does two things. First, it makes large values much larger, seen by

comparing 10.1%, (—4.6)2, (—11.0)2, and 4.22. Second, it gets rid of any negative signs.
The standard deviation is defined as the square root of the variance:

s =v172.44 = 13.13

The standard deviation of the number of characters in an email is about 13.13 thousand.
A subscript of , may be added to the variance and standard deviation, i.e. s2 and s,, as a
reminder that these are the variance and standard deviation of the observations represented
by z, 25, ..., x,,. The , subscript is usually omitted when it is clear which data the variance
or standard deviation is referencing.

Variance and standard deviation

The variance is roughly the average squared distance from the mean. The standard
deviation is the square root of the variance. The standard deviation is useful when
considering how close the data are to the mean.

Formulas and methods used to compute the variance and standard deviation for a
population are similar to those used for a sample.”> However, like the mean, the population
values have special symbols: o2 for the variance and ¢ for the standard deviation. The
symbol o is the Greek letter sigma.

32The only difference is that the population variance has a division by n instead of n — 1.
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Figure 1.24: Three very different population distributions with the same
mean g = 0 and standard deviation o = 1.

TIP: standard deviation describes variability

Focus on the conceptual meaning of the standard deviation as a descriptor of vari-
ability rather than the formulas. Usually 70% of the data will be within one stan-
dard deviation of the mean and about 95% will be within two standard deviations.
However, as seen in Figures 1.23 and 1.24, these percentages are not strict rules.

() Exercise 1.28 On page 23, the concept of shape of a distribution was introduced.
A good description of the shape of a distribution should include modality and whether
the distribution is symmetric or skewed to one side. Using Figure 1.24 as an example,
explain why such a description is important.*?

@ Example 1.29 Describe the distribution of the num_char variable using the his-
togram in Figure 1.21 on page 24. The description should incorporate the center,
variability, and shape of the distribution, and it should also be placed in context: the
number of characters in emails. Also note any especially unusual cases.

The distribution of email character counts is unimodal and very strongly skewed to
the high end. Many of the counts fall near the mean at 11,600, and most fall within
one standard deviation (13,130) of the mean. There is one exceptionally long email
with about 65,000 characters.

In practice, the variance and standard deviation are sometimes used as a means to
an end, where the “end” is being able to accurately estimate the uncertainty associated
with a sample statistic. For example, in Chapter 4 we will use the variance and standard
deviation to assess how close the sample mean is to the population mean.

33Figure 1.24 shows three distributions that look quite different, but all have the same mean, variance,
and standard deviation. Using modality, we can distinguish between the first plot (bimodal) and the
last two (unimodal). Using skewness, we can distinguish between the last plot (right skewed) and the
first two. While a picture, like a histogram, tells a more complete story, we can use modality and shape
(symmetry/skew) to characterize basic information about a distribution.
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1.6.5 Box plots, quartiles, and the median

A box plot summarizes a data set using five statistics while also plotting unusual observa-
tions. Figure 1.25 provides a vertical dot plot alongside a box plot of the num_char variable
from the email50 data set.
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Figure 1.25: A vertical dot plot next to a labeled box plot for the number
of characters in 50 emails. The median (6,890), splits the data into the
bottom 50% and the top 50%, marked in the dot plot by horizontal dashes
and open circles, respectively.

The first step in building a box plot is drawing a dark line denoting the median,
which splits the data in half. Figure 1.25 shows 50% of the data falling below the median
(dashes) and other 50% falling above the median (open circles). There are 50 character
counts in the data set (an even number) so the data are perfectly split into two groups of 25.
We take the median in this case to be the average of the two observations closest to the
50" percentile: (6,768 7,012)/2 = 6,890. When there are an odd number of observations,
there will be exactly one observation that splits the data into two halves, and in this case
that observation is the median (no average needed).

Median: the number in the middle

If the data are ordered from smallest to largest, the median is the observation
right in the middle. If there are an even number of observations, there will be two
values in the middle, and the median is taken as their average.

The second step in building a box plot is drawing a rectangle to represent the middle
50% of the data. The total length of the box, shown vertically in Figure 1.25, is called
the interquartile range (IQR, for short). It, like the standard deviation, is a measure of
variability in data. The more variable the data, the larger the standard deviation and IQR.
The two boundaries of the box are called the first quartile (the 25" percentile, i.e. 25%
of the data fall below this value) and the third quartile (the 75! percentile), and these
are often labeled @)1 and @3, respectively.
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Interquartile range (IQR)
The IQR is the length of the box in a box plot. It is computed as

IQR = Qs — 1

where Q; and Q3 are the 25! and 75" percentiles.

() Exercise 1.30 What percent of the data fall between @7 and the median? What
percent is between the median and Q37

Extending out from the box, the whiskers attempt to capture the data outside of
the box, however, their reach is never allowed to be more than 1.5 x IQR.?® They capture
everything within this reach. In Figure 1.25, the upper whisker does not extend to the last
three points, which is beyond Q3+ 1.5 x IQR, and so it extends only to the last point below
this limit. The lower whisker stops at the lowest value, 33, since there is no additional data
to reach; the lower whisker’s limit is not shown in the figure because the plot does not
extend down to Q1 — 1.5 X IQR. In a sense, the box is like the body of the box plot and
the whiskers are like its arms trying to reach the rest of the data.

Any observation that lies beyond the whiskers is labeled with a dot. The purpose of
labeling these points — instead of just extending the whiskers to the minimum and maximum
observed values — is to help identify any observations that appear to be unusually distant
from the rest of the data. Unusually distant observations are called outliers. In this case,
it would be reasonable to classify the emails with character counts of 41,623, 42,793, and
64,401 as outliers since they are numerically distant from most of the data.

Outliers are extreme
An outlier is an observation that appears extreme relative to the rest of the data.

TIP: Why it is important to look for outliers
Examination of data for possible outliers serves many useful purposes, including

1. Identifying strong skew in the distribution.

2. Identifying data collection or entry errors. For instance, we re-examined the
email purported to have 64,401 characters to ensure this value was accurate.

3. Providing insight into interesting properties of the data.

() Exercise 1.31  The observation 64,401, a suspected outlier, was found to be an
accurate observation. What would such an observation suggest about the nature of
character counts in emails?*%

() Exercise 1.32  Using Figure 1.25, estimate the following values for num_char in
the email50 data set: (a) Q1, (b) Q3, and (c) IQR.*"

34Gince Q1 and Q3 capture the middle 50% of the data and the median splits the data in the middle,
25% of the data fall between Q1 and the median, and another 25% falls between the median and Q3.

35While the choice of exactly 1.5 is arbitrary, it is the most commonly used value for box plots.

36That occasionally there may be very long emails.

37These visual estimates will vary a little from one person to the next: Qi = 3,000, Q3 = 15,000,
IQR = Q3 — Q1 = 12,000. (The true values: Q1 = 2,536, Q3 = 15,411, IQR = 12,875.)
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1.6.6 Robust statistics

How are the sample statistics of the num_char data set affected by the observation, 64,4017
What would have happened if this email wasn’t observed? What would happen to these
summary statistics if the observation at 64,401 had been even larger, say 150,0007 These
scenarios are plotted alongside the original data in Figure 1.26, and sample statistics are
computed under each scenario in Table 1.27.

Original ew=s e ae
Drop 64,401 esws e an
64,401 to 150,000 emsms = =
I T T 1
0 50 100 150

Number of Characters (in thousands)

Figure 1.26: Dot plots of the original character count data and two modified

data sets.
robust not robust
scenario median  IQR T s
original num_char data 6,890 12,875 11,600 13,130
drop 66,924 observation 6,768 11,702 10,521 10,798
move 66,924 to 150,000 6,890 12,875 13,310 22,434

Table 1.27: A comparison of how the median, IQR, mean (Z), and standard
deviation (s) change when extreme observations are present.

() Exercise 1.33  (a) Which is more affected by extreme observations, the mean or
median? Table 1.27 may be helpful. (b) Is the standard deviation or IQR more
affected by extreme observations?*®

The median and IQR are called robust estimates because extreme observations have
little effect on their values. The mean and standard deviation are much more affected by
changes in extreme observations.

® Example 1.34 The median and IQR do not change much under the three scenarios
in Table 1.27. Why might this be the case?

The median and IQR are only sensitive to numbers near (1, the median, and Q3.
Since values in these regions are relatively stable — there aren’t large jumps between
observations — the median and IQR estimates are also quite stable.

() Exercise 1.35 The distribution of vehicle prices tends to be right skewed, with
a few luxury and sports cars lingering out into the right tail. If you were searching
for a new car and cared about price, should you be more interested in the mean or
median price of vehicles sold, assuming you are in the market for a regular car??’

38(a) Mean is affected more. (b) Standard deviation is affected more. Complete explanations are
provided in the material following Exercise 1.33.

39Buyers of a “regular car” should be concerned about the median price. High-end car sales can drasti-
cally inflate the mean price while the median will be more robust to the influence of those sales.
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1.6.7 Transforming data (special topic)

When data are very strongly skewed, we sometimes transform them so they are easier to
model. Consider the histogram of salaries for Major League Baseball players’ salaries from
2010, which is shown in Figure 1.28(a).

500 300
J 200
100+
0- 0-

T T T T T T T T 1

0 10 20 30 -1 0 1 2 3

Salary (millions of dollars) loge(Salary), where Salary is in millions USD
(a) (b)

Figure 1.28: (a) Histogram of MLB player salaries for 2010, in millions of
dollars. (b) Histogram of the log-transformed MLB player salaries for 2010.

@® Example 1.36 The histogram of MLB player salaries is useful in that we can see
the data are extremely skewed and centered (as gauged by the median) at about $1
million. What isn’t useful about this plot?

Most of the data are collected into one bin in the histogram and the data are so
strongly skewed that many details in the data are obscured.

There are some standard transformations that are often applied when much of the
data cluster near zero (relative to the larger values in the data set) and all observations are
positive. A transformation is a rescaling of the data using a function. For instance, a plot
of the natural logarithm®’ of player salaries results in a new histogram in Figure 1.28(h).
Transformed data are sometimes easier to work with when applying statistical models
because the transformed data are much less skewed and outliers are usually less extreme.

Transformations can also be applied to one or both variables in a scatterplot. A
scatterplot of the 1ine_breaks and num_char variables is shown in Figure 1.29(a), which
was earlier shown in Figure 1.16. We can see a positive association between the variables
and that many observations are clustered near zero. In Chapter 7, we might want to use
a straight line to model the data. However, we’ll find that the data in their current state
cannot be modeled very well. Figure 1.29(b) shows a scatterplot where both the line_
breaks and num_char variables have been transformed using a log (base e) transformation.
While there is a positive association in each plot, the transformed data show a steadier
trend, which is easier to model than the untransformed data.

Transformations other than the logarithm can be useful, too. For instance, the square
root (y/original observation) and inverse (m) are used by statisticians. Com-
mon goals in transforming data are to see the data structure differently, reduce skew, assist
in modeling, or straighten a nonlinear relationship in a scatterplot.

40Gtatisticians often write the natural logarithm as log. You might be more familiar with it being written
as In.
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Figure 1.29: (a) Scatterplot of 1ine_breaks against num_char for 50 emails.
(b) A scatterplot of the same data but where each variable has been log-
transformed.

1.6.8 Mapping data (special topic)

The county data set offers many numerical variables that we could plot using dot plots,
scatterplots, or box plots, but these miss the true nature of the data. Rather, when we
encounter geographic data, we should map it using an intensity map, where colors are
used to show higher and lower values of a variable. Figures 1.30 and 1.31 shows intensity
maps for federal spending per capita (fed_spend), poverty rate in percent (poverty),
homeownership rate in percent (homeownership), and median household income (med-
income). The color key indicates which colors correspond to which values. Note that the
intensity maps are not generally very helpful for getting precise values in any given county,
but they are very helpful for seeing geographic trends and generating interesting research
questions.

@® Example 1.37 What interesting features are evident in the fed_spend and poverty
intensity maps?

The federal spending intensity map shows substantial spending in the Dakotas and
along the central-to-western part of the Canadian border, which may be related to
the oil boom in this region. There are several other patches of federal spending,
such as a vertical strip in eastern Utah and Arizona and the area where Colorado,
Nebraska, and Kansas meet. There are also seemingly random counties with very high
federal spending relative to their neighbors. If we did not cap the federal spending
range at $18 per capita, we would actually find that some counties have extremely
high federal spending while there is almost no federal spending in the neighboring
counties. These high-spending counties might contain military bases, companies with
large government contracts, or other government facilities with many employees.

Poverty rates are evidently higher in a few locations. Notably, the deep south shows
higher poverty rates, as does the southwest border of Texas. The vertical strip of
eastern Utah and Arizona, noted above for its higher federal spending, also appears
to have higher rates of poverty (though generally little correspondence is seen between
the two variables). High poverty rates are evident in the Mississippi flood plains a
little north of New Orleans and also in a large section of Kentucky and West Virginia.
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(b)

Figure 1.30: (a) Map of federal spending (dollars per capita). (b) Intensity
map of poverty rate (percent).
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Figure 1.31: (a) Intensity map of homeownership rate (percent). (b) Inten-
sity map of median household income ($1000s).
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() Exercise 1.38 What interesting features are evident in the med_income intensity
11
map?

1.7 Considering categorical data

Like numerical data, categorical data can also be organized and analyzed. In this section,
we will introduce tables and other basic tools for categorical data that are used throughout
this book. The email50 data set represents a sample from a larger email data set called
email. This larger data set contains information on 3,921 emails. In this section we will
examine whether the presence of numbers, small or large, in an email provides any useful
value in classifying email as spam or not spam.

1.7.1 Contingency tables and bar plots

Table 1.32 summarizes two variables: spam and number. Recall that number is a categorical
variable that describes whether an email contains no numbers, only small numbers (values
under 1 million), or at least one big number (a value of 1 million or more). A table that
summarizes data for two categorical variables in this way is called a contingency table.
Each value in the table represents the number of times a particular combination of variable
outcomes occurred. For example, the value 149 corresponds to the number of emails in
the data set that are spam and had no number listed in the email. Row and column
totals are also included. The row totals provide the total counts across each row (e.g.
149 + 168 + 50 = 367), and column totals are total counts down each column.

A table for a single variable is called a frequency table. Table 1.33 is a frequency
table for the number variable. If we replaced the counts with percentages or proportions,
the table would be called a relative frequency table.

number
none small big Total
spam 149 168 50 367
spam
not spam 400 2659 495 3554
Total 549 2827 545 3921

Table 1.32: A contingency table for spam and number.

none small big Total
549 2827 545 3921

Table 1.33: A frequency table for the number variable.

A bar plot is a common way to display a single categorical variable. The left panel
of Figure 1.34 shows a bar plot for the number variable. In the right panel, the counts
are converted into proportions (e.g. 549/3921 = 0.140 for none), showing the proportion
of observations that are in each level (i.e. in each category).

41Note: answers will vary. There is a very strong correspondence between high earning and metropolitan
areas. You might look for large cities you are familiar with and try to spot them on the map as dark spots.
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number number

Figure 1.34: Two bar plots of number. The left panel shows the counts,
and the right panel shows the proportions in each group.

1.7.2 Row and column proportions

Table 1.35 shows the row proportions for Table 1.32. The row proportions are computed
as the counts divided by their row totals. The value 149 at the intersection of spam and
none is replaced by 149/367 = 0.416, i.e. 149 divided by its row total, 367. So what does
0.416 represent? It corresponds to the proportion of spam emails in the sample that do not
have any numbers.

none small big Total
spam 149/367 = 0.416 168/367 = 0.458 50/367 = 0.136  1.000
not spam  400/3554 = 0.113  2657/3554 = 0.748 495/3554 = 0.139  1.000
Total 549/3921 = 0.140 2827/3921 = 0.721 545/3921 = 0.139  1.000

Table 1.35: A contingency table with row proportions for the spam and
number variables.

A contingency table of the column proportions is computed in a similar way, where
each column proportion is computed as the count divided by the corresponding column
total. Table 1.36 shows such a table, and here the value 0.271 indicates that 27.1% of emails
with no numbers were spam. This rate of spam is much higher compared to emails with
only small numbers (5.9%) or big numbers (9.2%). Because these spam rates vary between
the three levels of number (none, small, big), this provides evidence that the spam and
number variables are associated.

none small big Total
spam 149/549 = 0.271 168/2827 = 0.059 50/545 = 0.092 367/3921 = 0.094
not spam  400/549 = 0.729  2659/2827 = 0.941  495/545 = 0.908 3684/3921 = 0.906
Total 1.000 1.000 1.000 1.000

Table 1.36: A contingency table with column proportions for the spam and
number variables.



1.7. CONSIDERING CATEGORICAL DATA 37

We could also have checked for an association between spam and number in Table 1.35
using row proportions. When comparing these row proportions, we would look down
columns to see if the fraction of emails with no numbers, small numbers, and big num-
bers varied from spam to not spam.

() Exercise 1.39  What does 0.458 represent in Table 1.357 What does 0.059 represent
in Table 1.367"°

() Exercise 1.40 What does 0.139 represent in Table 1.357 What does 0.908 represent
in the Table 1.367*°

® Example 1.41 Data scientists use statistics to filter spam from incoming email
messages. By noting specific characteristics of an email, a data scientist may be able
to classify some emails as spam or not spam with high accuracy. One of those char-
acteristics is whether the email contains no numbers, small numbers, or big numbers.
Another characteristic is whether or not an email has any HTML content. A con-
tingency table for the spam and format variables from the email data set are shown
in Table 1.37. Recall that an HTML email is an email with the capacity for special
formatting, e.g. bold text. In Table 1.37, which would be more helpful to someone
hoping to classify email as spam or regular email: row or column proportions?

Such a person would be interested in how the proportion of spam changes within each
email format. This corresponds to column proportions: the proportion of spam in
plain text emails and the proportion of emails in HTML emails.

If we generate the column proportions, we can see that a higher fraction of plain text
emails are spam (209/1195 = 17.5%) than compared to HTML emails (158/2726 =
5.8%). This information on its own is insufficient to classify an email as spam or not
spam, as over 80% of plain text emails are not spam. Yet, when we carefully combine
this information with many other characteristics, such as number and other variables,
we stand a reasonable chance of being able to classify some email as spam or not
spam. This is a topic we will return to in Chapter 8.

text HTML Total

spam 209 158 367
not spam 986 2568 3554
Total 1195 2726 3921

Table 1.37: A contingency table for spam and format.

Example 1.41 points out that row and column proportions are not equivalent. Before
settling on one form for a table, it is important to consider each to ensure that the most
useful table is constructed.

() Exercise 1.42  Look back to Tables 1.35 and 1.36. Which would be more useful to
someone hoping to identify spam emails using the number variable?**

420,458 represents the proportion of spam emails that had a small number. 0.058 represents the fraction
of emails with small numbers that are spam.

430,139 represents the fraction of non-spam email that had a big number. 0.908 represents the fraction
of emails with big numbers that are non-spam emails.

44The column proportions in Table 1.36 will probably be most useful, which makes it easier to see that
emails with small numbers spam about 5.9% of the time (relatively rare). We would also see that about
27.1% of emails with no numbers are spam, and 9.2% of emails with big numbers are spam.
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Figure 1.38: (a) Segmented bar plot for numbers found in emails, where the
counts have been further broken down by spam. (b) Standardized version
of Figure (a).

1.7.3 Segmented bar and mosaic plots

Contingency tables using row or column proportions are especially useful for examining
how two categorical variables are related. Segmented bar and mosaic plots provide a way
to visualize the information in these tables.

A segmented bar plot is a graphical display of contingency table information. For
example, a segmented bar plot representing Table 1.36 is shown in Figure 1.38(a), where
we have first created a bar plot using the number variable and then divided each group
by the levels of spam. The column proportions of Table 1.36 have been translated into a
standardized segmented bar plot in Figure 1.38(b), which is a helpful visualization of the
fraction of spam emails in each level of number.

® Example 1.43 Examine both of the segmented bar plots. Which is more useful?

Figure 1.38(a) contains more information, but Figure 1.38(b) presents the information
more clearly. This second plot makes it clear that emails with no number have a
relatively high rate of spam email — about 27%! On the other hand, less than 10% of
email with small or big numbers are spam.

Since the proportion of spam changes across the groups in Figure 1.38(h), we can
conclude the variables are dependent, which is something we were also able to discern using
table proportions. Because both the none and big groups have relatively few observations
compared to the small group, the association is more difficult to see in Figure 1.38(a).

In some other cases, a segmented bar plot that is not standardized will be more useful
in communicating important information. Before settling on a particular segmented bar
plot, create standardized and non-standardized forms and decide which is more effective at
communicating features of the data.

A mosaic plot is a graphical display of contingency table information that is similar to
a bar plot for one variable or a segmented bar plot when using two variables. Figure 1.39(a)
shows a mosaic plot for the number variable. Each column represents a level of number,
and the column widths correspond to the proportion of emails of each number type. For
instance, there are fewer emails with no numbers than emails with only small numbers, so
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Figure 1.39: The one-variable mosaic plot for number and the two-variable
mosaic plot for both number and spam.
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Figure 1.40: Mosaic plot where emails are grouped by the number variable
after they’ve been divided into spam and not spam.

the no number email column is slimmer. In general, mosaic plots use box areas to represent
the number of observations that box represents.

This one-variable mosaic plot is further divided into pieces in Figure 1.39(b) using the
spam variable. Each column is split proportionally according to the fraction of emails that
were spam in each number category. For example, the second column, representing emails
with only small numbers, was divided into emails that were spam (lower) and not spam
(upper). As another example, the bottom of the third column represents spam emails that
had big numbers, and the upper part of the third column represents regular emails that
had big numbers. We can again use this plot to see that the spam and number variables are
associated since some columns are divided in different vertical locations than others, which
was the same technique used for checking an association in the standardized version of the
segmented bar plot.

In a similar way, a mosaic plot representing row proportions of Table 1.32 could
be constructed, as shown in Figure 1.40. However, because it is more insightful for this
application to consider the fraction of spam in each category of the number variable, we
prefer Figure 1.39(h).
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Figure 1.41: A pie chart and bar plot of number for the email data set.

1.7.4 The only pie chart you will see in this book

While pie charts are well known, they are not typically as useful as other charts in a data
analysis. A pie chart is shown in Figure 1.41 alongside a bar plot. It is generally more
difficult to compare group sizes in a pie chart than in a bar plot, especially when categories
have nearly identical counts or proportions. In the case of the none and big categories,
the difference is so slight you may be unable to distinguish any difference in group sizes for
either plot!

1.7.5 Comparing numerical data across groups

Some of the more interesting investigations can be considered by examining numerical data
across groups. The methods required here aren’t really new. All that is required is to make
a numerical plot for each group. Here two convenient methods are introduced: side-by-side
box plots and hollow histograms.

We will take a look again at the county data set and compare the median household
income for counties that gained population from 2000 to 2010 versus counties that had
no gain. While we might like to make a causal connection here, remember that these are
observational data and so such an interpretation would be unjustified.

There were 2,041 counties where the population increased from 2000 to 2010, and
there were 1,099 counties with no gain (all but one were a loss). A random sample of 100
counties from the first group and 50 from the second group are shown in Table 1.42 to give
a better sense of some of the raw data.

The side-by-side box plot is a traditional tool for comparing across groups. An
example is shown in the left panel of Figure 1.43, where there are two box plots, one for
each group, placed into one plotting window and drawn on the same scale.

Another useful plotting method uses hollow histograms to compare numerical data
across groups. These are just the outlines of histograms of each group put on the same
plot, as shown in the right panel of Figure 1.43.
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population gain no gain
41.2 331 304 37.3 79.1 345 40.3 33.5 348
229 399 314 451 506 594 29.5 31.8 41.3
479 36.4 422 432 318 36.9 28 39.1 428
50.1 273 375 535 26.1 572 38.1 39.5 223
574 426 406 488 281 294 43.3 375 471
43.8 26 338 357 385 423 43.7 36.7 36
41.3 40.5 68.3 31 46.7 30.5 35.8 38.7 398
68.3 483 387 62 376 322 46  42.3 48.2
42.6 53.6 50.7 351 306 56.8 38.6 319 31.1
66.4 414 343 389 373 41.7 37.6 29.3 30.1
51.9 833 46.3 484 40.8 426 57.5 32.6 31.1
44.5 34  48.7 452 34.7 322 46.2 26.5 40.1
39.4 386 40 573 452 33.1 38.4 46.7 25.9
43.8 71.7 451 322 63.3 54.7 36.4 41.5 45.7
71.3 363 364 41 37 66.7 39.7 37 377
50.2 458 45.7 60.2 53.1 21.4 293 50.1
35.8 404 515 664 36.1 43.6  39.8
Table 1.42: In this table, median household income (in $1000s) from a
random sample of 100 counties that held steady or gained population over
2000-2010 are shown on the left. Median incomes from a random sample
of 50 counties that had no population gain are shown on the right.
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Figure 1.43: Side-by-side box plot (left panel) and hollow histograms (right
panel) for med_income, where the counties are split by whether there was a
population gain or loss from 2000 to 2010. The income data were collected
between 2006 and 2010.
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() Exercise 1.44  Use the plots in Figure 1.43 to compare the incomes for counties
across the two groups. What do you notice about the approximate center of each
group? What do you notice about the variability between groups? Is the shape
relatively consistent between groups? How many prominent modes are there for each
group?®®

() Exercise 1.45 What components of each plot in Figure 1.43 do you find most
useful 240

1.8 Case study: gender discrimination (special topic)

@® Example 1.46 Suppose your professor splits the students in class into two groups:
students on the left and students on the right. If p, and p, represent the proportion
of students who own an Apple product on the left and right, respectively, would you
be surprised if p, did not exactly equal p,?

While the proportions would probably be close to each other, it would be unusual for
them to be exactly the same. We would probably observe a small difference due to
chance.

() Exercise 1.47 If we don’t think the side of the room a person sits on in class
is related to whether the person owns an Apple product, what assumption are we
making about the relationship between these two variables?*”

1.8.1 Variability within data

We consider a study investigating gender discrimination in the 1970s, which is set in the
context of personnel decisions within a bank.’® The research question we hope to an-
swer is, “Are females unfairly discriminated against in promotion decisions made by male
managers?”

The participants in this study are 48 male bank supervisors attending a management
institute at the University of North Carolina in 1972. They were asked to assume the role of
the personnel director of a bank and were given a personnel file to judge whether the person
should be promoted to a branch manager position. The files given to the participants were
identical, except that half of them indicated the candidate was male and the other half
indicated the candidate was female. These files were randomly assigned to the subjects.

45 Answers may vary a little. The counties with population gains tend to have higher income (median of
about $45,000) versus counties without a gain (median of about $40,000). The variability is also slightly
larger for the population gain group. This is evident in the IQR, which is about 50% bigger in the gain
group. Both distributions show slight to moderate right skew and are unimodal. There is a secondary
small bump at about $60,000 for the no gain group, visible in the hollow histogram plot, that seems out
of place. (Looking into the data set, we would find that 8 of these 15 counties are in Alaska and Texas.)
The box plots indicate there are many observations far above the median in each group, though we should
anticipate that many observations will fall beyond the whiskers when using such a large data set.

46 Answers will vary. The side-by-side box plots are especially useful for comparing centers and spreads,
while the hollow histograms are more useful for seeing distribution shape, skew, and groups of anomalies.

47We would be assuming that these two variables are independent.

48Rosen B and Jerdee T. 1974. Influence of sex role stereotypes on personnel decisions. Journal of
Applied Psychology 59(1):9-14.
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() Exercise 1.48 s this an observational study or an experiment? What implications
does the study type have on what can be inferred from the results?*’

For each supervisor we record the gender associated with the assigned file and the
promotion decision. Using the results of the study summarized in Table 1.44, we would
like to evaluate if females are unfairly discriminated against in promotion decisions. In this
study, a smaller proportion of females are promoted than males (0.583 versus 0.875), but
it is unclear whether the difference provides convincing evidence that females are unfairly
discriminated against.

decision
promoted not promoted Total
male 21 3 24
gonder  pomale 14 10 24
Total 35 13 48

Table 1.44: Summary results for the gender discrimination study.

@® Example 1.49 Statisticians are sometimes called upon to evaluate the strength
of evidence. When looking at the rates of promotion for males and females in this
study, what comes to mind as we try to determine whether the data show convincing
evidence of a real difference?

The observed promotion rates (58.3% for females versus 87.5% for males) suggest
there might be discrimination against women in promotion decisions. However, we
cannot be sure if the observed difference represents discrimination or is just from
random chance. Generally there is a little bit of fluctuation in sample data, and we
wouldn’t expect the sample proportions to be exactly equal, even if the truth was
that the promotion decisions were independent of gender.

Example 1.49 is a reminder that the observed outcomes in the sample may not perfectly
reflect the true relationships between variables in the underlying population. Table 1.44
shows there were 7 fewer promotions in the female group than in the male group, a difference
in promotion rates of 29.2% (% - % = 0.292). This difference is large, but the sample size
for the study is small, making it unclear if this observed difference represents discrimination

or whether it is simply due to chance. We label these two competing claims, Hy and H 4:

Hy: Independence model. The variables gender and decision are independent. They
have no relationship, and the observed difference between the proportion of males
and females who were promoted, 29.2%, was due to chance.

Hy4: Alternative model. The variables gender and decision are not independent. The
difference in promotion rates of 29.2% was not due to chance, and equally qualified
females are less likely to be promoted than males.

What would it mean if the independence model, which says the variables gender and
decision are unrelated, is true? It would mean each banker was going to decide whether
to promote the candidate without regard to the gender indicated on the file. That is,

49The study is an experiment, as subjects were randomly assigned a male file or a female file. Since this
is an experiment, the results can be used to evaluate a causal relationship between gender of a candidate
and the promotion decision.
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the difference in the promotion percentages was due to the way the files were randomly
divided to the bankers, and the randomization just happened to give rise to a relatively
large difference of 29.2%.

Consider the alternative model: bankers were influenced by which gender was listed
on the personnel file. If this was true, and especially if this influence was substantial, we
would expect to see some difference in the promotion rates of male and female candidates.
If this gender bias was against females, we would expect a smaller fraction of promotion
decisions for female personnel files relative to the male files.

We choose between these two competing claims by assessing if the data conflict so
much with Hy that the independence model cannot be deemed reasonable. If this is the
case, and the data support H 4, then we will reject the notion of independence and conclude
there was discrimination.

1.8.2 Simulating the study

Table 1.44 shows that 35 bank supervisors recommended promotion and 13 did not. Now,
suppose the banker’s decisions were independent of gender. Then, if we conducted the ex-
periment again with a different random arrangement of files, differences in promotion rates
would be based only on random fluctuation. We can actually perform this randomization,
which simulates what would have happened if the bankers decisions had been independent
of gender but we had distributed the files differently.

In this simulation, we thoroughly shuffle 48 personnel files, 24 labeled male_sim and
24 labeled female_sim, and deal these files into two stacks. We will deal 35 files into the first
stack, which will represent the 35 supervisors who recommended promotion. The second
stack will have 13 files, and it will represent the 13 supervisors who recommended against
promotion. Then, as we did with the original data, we tabulate the results and determine
the fraction of male_sim and female_sim who were promoted. The randomization of files
in this simulation is independent of the promotion decisions, which means any difference in
the two fractions is entirely due to chance. Table 1.45 show the results of such a simulation.

decision
promoted not promoted Total
gonder_sim male_sim 18 6 24
female_sim 17 7 24
Total 35 13 48

Table 1.45: Simulation results, where any difference in promotion rates
between male_sim and female_sim is purely due to chance.

() Exercise 1.50 What is the difference in promotion rates between the two simulated
groups in Table 1.457 How does this compare to the observed 29.2% in the actual
groups?”’

5018/24 — 17/24 = 0.042 or about 4.2% in favor of the men. This difference due to chance is much
smaller than the difference observed in the actual groups.
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1.8.3 Checking for independence

We computed one possible difference under the independence model in Exercise 1.50, which
represents one difference due to chance. While in this first simulation, we physically dealt
out files, it is more efficient to perform this simulation using a computer. Repeating the
simulation on a computer, we get another difference due to chance: -0.042. And another:
0.208. And so on until we repeat the simulation enough times that we have a good idea
of what represents the distribution of differences from chance alone. Figure 1.46 shows a
plot of the differences found from 100 simulations, where each dot represents a simulated
difference between the proportions of male and female files that were recommended for
promotion.

evsecces
evecee

-0.4 -0.2 0 0.2 0.4

Difference in promotion rates

Figure 1.46: A stacked dot plot of differences from 100 simulations produced
under the independence model, Hy, where gender_sim and decision are
independent. Two of the 100 simulations had a difference of at least 29.2%,
the difference observed in the study.

Note that the distribution of these simulated differences is centered around 0. We
simulated these differences assuming that the independence model was true, and under
this condition, we expect the difference to be zero with some random fluctation. We would
generally be surprised to see a difference of exactly 0: sometimes, just by chance, the
difference is higher than 0, and other times it is lower than zero.

® Example 1.51 How often would you observe a difference of at least 29.2% (0.292)
according to Figure 1.467 Often, sometimes, rarely, or never?

It appears that a difference of at least 29.2% due to chance alone would only happen
about 2% of the time according to Figure 1.46. Such a low probability indicates a
rare event.

The difference of 29.2% being a rare event suggests two possible interpretations of the
results of the study:

Hy Independence model. Gender has no effect on promotion decision, and we observed
a difference that would only happen rarely.

H, Alternative model. Gender has an effect on promotion decision, and what we
observed was actually due to equally qualified women being discriminated against in
promotion decisions, which explains the large difference of 29.2%.
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Based on the simulations, we have two options. (1) We conclude that the study results
do not provide strong evidence against the independence model. That is, we do not have
sufficiently strong evidence to conclude there was gender discrimination. (2) We conclude
the evidence is sufficiently strong to reject Hy and assert that there was gender discrimina-
tion. When we conduct formal studies, usually we reject the notion that we just happened
to observe a rare event.”’ So in this case, we reject the independence model in favor of
the alternative. That is, we are concluding the data provide strong evidence of gender
discrimination against women by the supervisors.

One field of statistics, statistical inference, is built on evaluating whether such dif-
ferences are due to chance. In statistical inference, statisticians evaluate which model is
most reasonable given the data. Errors do occur, just like rare events, and we might choose
the wrong model. While we do not always choose correctly, statistical inference gives us
tools to control and evaluate how often these errors occur. In Chapter 4, we give a formal
introduction to the problem of model selection. We spend the next two chapters building
a foundation of probability and theory necessary to make that discussion rigorous.

51This reasoning does not generally extend to anecdotal observations. Each of us observes incredibly
rare events every day, events we could not possibly hope to predict. However, in the non-rigorous setting of
anecdotal evidence, almost anything may appear to be a rare event, so the idea of looking for rare events in
day-to-day activities is treacherous. For example, we might look at the lottery: there was only a 1 in 176
million chance that the Mega Millions numbers for the largest jackpot in history (March 30, 2012) would
be (2, 4, 23, 38, 46) with a Mega ball of (23), but nonetheless those numbers came up! However, no matter
what numbers had turned up, they would have had the same incredibly rare odds. That is, any set of
numbers we could have observed would ultimately be incredibly rare. This type of situation is typical of our
daily lives: each possible event in itself seems incredibly rare, but if we consider every alternative, those
outcomes are also incredibly rare. We should be cautious not to misinterpret such anecdotal evidence.
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1.9 Exercises

1.9.1 Case study

1.1 Migraine and accupuncture. A migraine is a particularly painful type of headache,
which patients sometimes wish to treat with acupuncture. To determine whether acupuncture
relieves migraine pain, researchers conducted a randomized controlled study where 89 females
diagnosed with migraine headaches were randomly assigned to one of two groups: treatment or
control. 43 patients in the treatment group received acupuncture that is specifically designed to
treat migraines. 46 patients in the control group received placebo acupuncture (needle insertion
at nonacupoint locations). 24 hours after patients received acupuncture, they were asked if they

were pain free. Results are summarized in the contingency table below.”

. Figure from the original
Pain free 8 &

" Yes No Total
Treatment 10 33 43
Control 2 44 46
Total 12 Yud 89

paper displaying the ap-

propriate area (M) versus
the inappropriate area (S)

Group

used in the treatment of

migraine attacks.

(a) What percent of patients in the treatment group were pain free 24 hours after receiving
acupuncture? What percent in the control group?

(b) At first glance, does acupuncture appear to be an effective treatment for migraines? Explain
your reasoning.

(c) Do the data provide convincing evidence that there is a real pain reduction for those patients
in the treatment group? Or do you think that the observed difference might just be due to
chance?

1.2 Sinusitis and antibiotics, Part I. Researchers studying the effect of antibiotic treatment
for acute sinusitis compared to symptomatic treatments randomly assigned 166 adults diagnosed
with acute sinusitis to one of two groups: treatment or control. Study participants received either
a 10-day course of amoxicillin (an antibiotic) or a placebo similar in appearance and taste. The
placebo consisted of symptomatic treatments such as acetaminophen, nasal decongestants, etc. At
the end of the 10-day period patients were asked if they experienced significant improvement in
symptoms. The distribution of responses are summarized below.?

Self-reported significant
improvement in symptoms

Yes No Total
Group Treatment 66 19 85
Control 65 16 81
Total 131 35 166

(a) What percent of patients in the treatment group experienced a significant improvement in
symptoms? What percent in the control group?

(b) At first glance, which treatment appears to be more effective for sinusitis?

(¢) Do the data provide convincing evidence that there is a difference in the improvement rates
of sinusitis symptoms? Or do you think that the observed difference might just be due to
chance?

52G. Allais et al. “Bar acupuncture in the treatment of migraine attacks: a randomized trial on the
efficacy of appropriate versus inappropriate acupoints”. In: Neurological Sciences 32.1 (2011), pp. 173-175.

53] M. Garbutt et al. “Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial”. In: JAMA:
The Journal of the American Medical Association 307.7 (2012), pp. 685-692.


http://www.ncbi.nlm.nih.gov/pubmed/21533739
http://www.ncbi.nlm.nih.gov/pubmed/21533739
http://jama.jamanetwork.com/article.aspx?articleid=1104985
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1.9.2 Data basics

1.3 Identify study components, Part I. Identify (i) the cases, (ii) the variables and their
types, and (iii) the main research question in the studies described below.

(a) Researchers collected data to examine the relationship between pollutants and preterm births
in Southern California. During the study air pollution levels were measured by air quality
monitoring stations. Specifically, levels of carbon monoxide were recorded in parts per million,
nitrogen dioxide and ozone in parts per hundred million, and coarse particulate matter (PMig)
in ,ug/mS. Length of gestation data were collected on 143,196 births between the years 1989
and 1993, and air pollution exposure during gestation was calculated for each birth. The
analysis suggested that increased ambient PMo and, to a lesser degree, CO concentrations
may be associated with the occurrence of preterm births.”

(b) The Buteyko method is a shallow breathing technique developed by Konstantin Buteyko, a
Russian doctor, in 1952. Anecdotal evidence suggests that the Buteyko method can reduce
asthma symptoms and improve quality of life. In a scientific study to determine the effec-
tiveness of this method, researchers recruited 600 asthma patients aged 18-69 who relied on
medication for asthma treatment. These patients were split into two research groups: one
practiced the Buteyko method and the other did not. Patients were scored on quality of life,
activity, asthma symptoms, and medication reduction on a scale from 0 to 10. On average,
the participants in the Buteyko group experienced a significant reduction in asthma symptoms
and an improvement in quality of life.””

1.4 Identify study components, Part II. Identify (i) the cases, (ii) the variables and their
types, and (iii) the main research question of the studies described below.

(a) While obesity is measured based on body fat percentage (more than 35% body fat for women
and more than 25% for men), precisely measuring body fat percentage is difficult. Body
mass index (BMI), calculated as the ratio weight/height2, is often used as an alternative
indicator for obesity. A common criticism of BMI is that it assumes the same relative body
fat percentage regardless of age, sex, or ethnicity. In order to determine how useful BMI is for
predicting body fat percentage across age, sex and ethnic groups, researchers studied 202 black
and 504 white adults who resided in or near New York City, were ages 20-94 years old, had
BMIs of 18-35 kg/m?, and who volunteered to be a part of the study. Participants reported
their age, sex, and ethnicity and were measured for weight and height. Body fat percentage
was measured by submerging the participants in water.”®

(b) In a study of the relationship between socio-economic class and unethical behavior, 129 Uni-
versity of California undergraduates at Berkeley were asked to identify themselves as having
low or high social-class by comparing themselves to others with the most (least) money, most
(least) education, and most (least) respected jobs. They were also presented with a jar of
individually wrapped candies and informed that they were for children in a nearby laboratory,
but that they could take some if they wanted. Participants completed unrelated tasks and
then reported the number of candies they had taken. It was found that those in the upper-class
rank condition took more candy than did those in the lower-rank condition.””

54B. Ritz et al. “Effect of air pollution on preterm birth among children born in Southern California
between 1989 and 1993”. In: Epidemiology 11.5 (2000), pp. 502-511.

55J. McGowan. “Health Education: Does the Buteyko Institute Method make a difference?” In: Thorax
58 (2003).

56 Gallagher et al. “How useful is body mass index for comparison of body fatness across age, sex, and
ethnic groups?” In: American Journal of Epidemiology 143.3 (1996), pp. 228-239.

5TP.K. Piff et al. “IHigher social class predicts increased unethical behavior”. In: Proceedings of the
National Academy of Sciences (2012).


http://journals.lww.com/epidem/Abstract/2000/09000/Effect_of_Air_Pollution_on_Preterm_Birth_Among.4.aspx
http://journals.lww.com/epidem/Abstract/2000/09000/Effect_of_Air_Pollution_on_Preterm_Birth_Among.4.aspx
http://aje.oxfordjournals.org/content/143/3/228.full.pdf
http://aje.oxfordjournals.org/content/143/3/228.full.pdf
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxwYXVscGlmZnxneDoxNzNmMTIwNDk5MTJiMzlj

1.9. EXERCISES 49

1.5 Fisher’s irises. Sir Ronald Aylmer Fisher was an English statistician, evolutionary biologist,
and geneticist who worked on a data set that contained sepal length and width, and petal length
and width from three species of iris flowers (setosa, versicolor and virginica). There were 50 flowers
from each species in the data set.”®

(a) How many cases were included in the data?

(b) How many numerical variables are included in the
data? Indicate what they are, and if they are con-
tinuous or discrete.

(c) How many categorical variables are included in the
data, and what are they? List the corresponding
levels (categories).

1.6 Smoking habits of UK residents. A survey was conducted to study the smoking habits
of UK residents. Below is a data matrix displaying a portion of the data collected in this survey.
Note that “£” stands for British Pounds Sterling, “cig” stands for cigarettes, and “N/A” refers to
a missing component of the data.””

gender age marital grossIncome smoke amtWeekends amtWeekdays
1  Female 42 Single Under £2,600 Yes 12 cig/day 12 cig/day
2 Male 44 Single £10,400 to £15,600 No N/A N/A
3 Male 53 Married Above £36,400 Yes 6 cig/day 6 cig/day
1691 Male 40 Single £2,600 to £5,200 Yes 8 cig/day 8 cig/day

(a) What does each row of the data matrix represent?
(b) How many participants were included in the survey?

(c¢) Indicate whether each variable in the study is numerical or categorical. If numerical, identify
as continuous or discrete. If categorical, indicate if the variable is ordinal.

1.9.3 Overview of data collection principles

1.7 Generalizability and causality, Part 1. Identify the population of interest and the sample
in the the studies described in Exercise 1.3. Also comment on whether or not the results of the
study can be generalized to the population and if the findings of the study can be used to establish
causal relationships.

1.8 Generalizability and causality, Part II. Identify the population of interest and the
sample in the the studies described in Exercise 1.4. Also comment on whether or not the results
of the study can be generalized to the population and if the findings of the study can be used to
establish causal relationships.

58Photo by rtclauss on Flickr, Iris.; R.A Fisher. “The Use of Multiple Measurements in Taxonomic
Problems”. In: Annals of Eugenics 7 (1936), pp. 179-188.
598tats4Schools, Smoking.


http://www.flickr.com/photos/rtclauss/3834965043
http://onlinelibrary.wiley.com/store/10.1111/j.1469-1809.1936.tb02137.x/asset/j.1469-1809.1936.tb02137.x.pdf?v=1&t=h407g9i2&s=7d41a7d29aeebe716c4581a5206dc85edbe6b935
http://onlinelibrary.wiley.com/store/10.1111/j.1469-1809.1936.tb02137.x/asset/j.1469-1809.1936.tb02137.x.pdf?v=1&t=h407g9i2&s=7d41a7d29aeebe716c4581a5206dc85edbe6b935
http://www.rsscse.org.uk/stats4schools/large_datasets/smoking/default.html
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1.9 GPA and study time. A survey was conducted on 218 undergraduates from Duke Uni-
versity who took an introductory statistics course in Spring 2012. Among many other questions,
this survey asked them about their GPA and the number of hours they spent studying per week.
The scatterplot below displays the relationship between these two variables.

(a) What is the explanatory variable and
what is the response variable? 4.0 t o8

(b) Describe the relationship between the

two variables. Make sure to discuss un- <

usual observations, if any. ?5 359

* o wsemoew
«
°

(c) Is this an experiment or an observa- . o
tional study? 3.0-

(d) Can we conclude that studying longer
hours leads to higher GPAs?

0 20 40 60
Study hours/week

1.10 Income and education. The scatterplot below shows the relationship between per capita
income (in thousands of dollars) and percent of population with a bachelor’s degree in 3,143
counties in the US in 2010.

(a) What are the explanatory and response
variables?
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(b) Describe the relationship between the
two variables. Make sure to discuss un-
usual observations, if any.
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(¢) Can we conclude that having a bache-
lor’s degree increases one’s income?
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1.9.4 Observational studies and sampling strategies

1.11 Propose a sampling strategy. A large college class has 160 students. All 160 students
attend the lectures together, but the students are divided into 4 groups, each of 40 students, for
lab sections administered by different teaching assistants. The professor wants to conduct a survey
about how satisfied the students are with the course, and he believes that the lab section a student
is in might affect the student’s overall satisfaction with the course.

(a) What type of study is this?

(b) Suggest a sampling strategy for carrying out this study.
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1.12 Internet use and life expectancy. The scatterplot below shows the relationship between
estimated life expectancy at birth as of 2012°° and percentage of internet users in 2010°" in 208
countries.

90

(a) Describe the relationship between life
expectancy and percentage of internet
users.

(b) What type of study is this?

(c) State a possible confounding variable
that might explain this relationship
and describe its potential effect.
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1.13 Random digit dialing. The Gallup Poll uses a procedure called random digit dialing,
which creates phone numbers based on a list of all area codes in America in conjunction with the
associated number of residential households in each area code. Give a possible reason the Gallup
Poll chooses to use random digit dialing instead of picking phone numbers from the phone book.

1.14 Sampling strategies. A statistics student who is curious about the relationship between
the amount of time students spend on social networking sites and their performance at school
decides to conduct a survey. Three research strategies for collecting data are described below. In
each, name the sampling method proposed and any bias you might expect.

(a) He randomly samples 40 students from the study’s population, gives them the survey, asks
them to fill it out and bring it back the next day.

(b) He gives out the survey only to his friends, and makes sure each one of them fills out the
survey.

(c) He posts a link to an online survey on his Facebook wall and asks his friends to fill out the
survey.

1.15 Family size. Suppose we want to estimate family size, where family is defined as one
or more parents living with children. If we select students at random at an elementary school
and ask them what their family size is, will our average be biased? If so, will it overestimate or
underestimate the true value?

60CIA Factbook, Country Comparison: Life Expectancy at Birth, 2012.
611TU World Telecommunication/ICT Indicators database, World Telecommunication/ICT Indicators
Database, 2012.


https://www.cia.gov/library/publications/the-world-factbook/rankorder/2102rank.html
http://www.itu.int/ITU-D/ict/statistics/index.html
http://www.itu.int/ITU-D/ict/statistics/index.html
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1.16 Flawed reasoning. Identify the flaw in reasoning in the following scenarios. Explain
what the individuals in the study should have done differently if they wanted to make such strong
conclusions.

(a) Students at an elementary school are given a questionnaire that they are required to return
after their parents have completed it. One of the questions asked is, “Do you find that your
work schedule makes it difficult for you to spend time with your kids after school?” Of the
parents who replied, 85% said “no”. Based on these results, the school officials conclude that
a great majority of the parents have no difficulty spending time with their kids after school.

(b) A survey is conducted on a simple random sample of 1,000 women who recently gave birth,
asking them about whether or not they smoked during pregnancy. A follow-up survey asking
if the children have respiratory problems is conducted 3 years later, however, only 567 of these
women are reached at the same address. The researcher reports that these 567 women are
representative of all mothers.

(¢) A orthopedist administers a questionnaire to 30 of his patients who do not have any joint
problems and finds that 20 of them regularly go running. He concludes that running decreases
the risk of joint problems.

1.17 Reading the paper. Below are excerpts from two articles published in the NY Times:

(a) An article called Risks: Smokers Found More Prone to Dementia states the following:®”
“Researchers analyzed the data of 23,123 health plan members who participated in a volun-
tary exam and health behavior survey from 1978 to 1985, when they were 50 to 60 years old.
Twenty-three years later, about one-quarter of the group, or 5,367, had dementia, including
1,136 with Alzheimers disease and 416 with vascular dementia. After adjusting for other
factors, the researchers concluded that pack-a-day smokers were 37 percent more likely than
nonsmokers to develop dementia, and the risks went up sharply with increased smoking; 44
percent for one to two packs a day; and twice the risk for more than two packs.”

Based on this study, can we conclude that smoking causes dementia later in life? Explain your
reasoning.

(b) Another article called The School Bully Is Sleepy states the following:“*

“The University of Michigan study, collected survey data from parents on each child’s sleep
habits and asked both parents and teachers to assess behavioral concerns. About a third of
the students studied were identified by parents or teachers as having problems with disruptive
behavior or bullying. The researchers found that children who had behavioral issues and
those who were identified as bullies were twice as likely to have shown symptoms of sleep
disorders.”
A friend of yours who read the article says, “The study shows that sleep disorders lead to
bullying in school children.” Is this statement justified? If not, how best can you describe the
conclusion that can be drawn from this study?

1.18 Shyness on Facebook. Given the anonymity afforded to individuals in online interac-
tions, researchers hypothesized that shy individuals would have more favorable attitudes toward
Facebook and that shyness would be positively correlated with time spent on Facebook. They also
hypothesized that shy individuals would have fewer Facebook “Friends” just like they have fewer
friends than non-shy individuals have in the offline world. Data were collected on 103 undergrad-
uate students at a university in southwestern Ontario via online questionnaires. The study states
“Participants were recruited through the university’s psychology participation pool. After indicat-
ing an interest in the study, participants were sent an e-mail containing the study’s URL as well
as the necessary login credentials.” Are the results of this study generalizable to the population of
all Facebook users?’*

62R.C. Rabin. “Risks: Smokers Found More Prone to Dementia”. In: New York Times (2010).
63T, Parker-Pope. “The School Bully Is Sleepy”. In: New York Times (2011).
64E.S. Orr et al. “The influence of shyness on the use of Facebook in an undergraduate sample”. In:

CyberPsychology € Behavior 12.3 (2009), pp. 337-340.


http://www.nytimes.com/2010/11/02/health/research/02risks.html
http://well.blogs.nytimes.com/2011/06/02/the-school-bully-is-sleepy
http://online.liebertpub.com/doi/abs/10.1089/cpb.2008.0214
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1.9.5 Experiments

1.19 Vitamin supplements. In order to assess the effectiveness of taking large doses of vitamin
C in reducing the duration of the common cold, researchers recruited 400 healthy volunteers from
staff and students at a university. A quarter of the patients were assigned a placebo, and the
rest were evenly divided between 1g Vitamin C, 3g Vitamin C, or 3g Vitamin C plus additives
to be taken at onset of a cold for the following two days. All tablets had identical appearance
and packaging. The nurses who handed the prescribed pills to the patients knew which patient
received which treatment, but the researchers assessing the patients when they were sick did not.
No significant differences were observed in any measure of cold duration or severity between the
four medication groups, and the placebo group had the shortest duration of symptoms.°”

a) Was this an experiment or an observational study? Why?
) What are the explanatory and response variables in this study?
(c) Were the patients blinded to their treatment?
(d) Was this study double-blind?
)

Participants are ultimately able to choose whether or not to use the pills prescribed to them.
We might expect that not all of them will adhere and take their pills. Does this introduce a
confounding variable to the study? Explain your reasoning.

1.20 Soda preference. You would like to conduct an experiment in class to see if your class-
mates prefer the taste of regular Coke or Diet Coke. Briefly outline a design for this study.

1.21 Exercise and mental health. A researcher is interested in the effects of exercise on
mental health and he proposes the following study: Use stratified random sampling to ensure
representative proportions of 18-30, 31-40 and 41-55 year olds from the population. Next, randomly
assign half the subjects from each age group to exercise twice a week, and instruct the rest not
to exercise. Conduct a mental health exam at the beginning and at the end of the study, and
compare the results.

(a) What type of study is this?

(b) What are the treatment and control groups in this study?

(¢) Does this study make use of blocking? If so, what is the blocking variable?

(d) Does this study make use of blinding?

(e) Comment on whether or not the results of the study can be used to establish a causal rela-
tionship between exercise and mental health, and indicate whether or not the conclusions can
be generalized to the population at large.

(f) Suppose you are given the task of determining if this proposed study should get funding.
Would you have any reservations about the study proposal?

65C. Audera et al. “Mega-dose vitamin C in treatment of the common cold: a randomised controlled

trial”. In: Medical Journal of Australia 175.7 (2001), pp. 359-362.


https://www.mja.com.au/journal/2001/175/7/mega-dose-vitamin-c-treatment-common-cold-randomised-controlled-trial
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1.22 Chia seeds and weight loss. Chia Pets — those terra-cotta figurines that sprout fuzzy
green hair — made the chia plant a household name. But chia has gained an entirely new reputation
as a diet supplement. In one 2009 study, a team of researchers recruited 38 men and divided them
evenly into two groups: treatment or control. They also recruited 38 women, and they randomly
placed half of these participants into the treatment group and the other half into the control group.
One group was given 25 grams of chia seeds twice a day, and the other was given a placebo. The
subjects volunteered to be a part of the study. After 12 weeks, the scientists found no significant
difference between the groups in appetite or weight loss.’°

(a) What type of study is this?
(b) What are the experimental and control treatments in this study?
(c) Has blocking been used in this study? If so, what is the blocking variable?
) Has blinding been used in this study?
)

Comment on whether or not we can make a causal statement, and indicate whether or not we
can generalize the conclusion to the population at large.

1.9.6 Examining numerical data

1.23 Mammal life spans. Data were collected on life spans (in years) and gestation lengths
(in days) for 62 mammals. A scatterplot of life span versus length of gestation is shown below.””

(a) What type of an association is apparent be- 1007
tween life span and length of gestation? _ sod
(b) What type of an association would you ex- g
pect to see if the axes of the plot were re- f% 60-|
versed, i.e. if we plotted length of gestation S
versus life span? @ 40
(c) Are life span and length of gestation indepen- 'i.g
dent? Explain your reasoning. 207 S ;
ol %4 '

T T T T T T T
0 100 200 300 400 500 600

Gestation (days)
1.24 Office productivity. Office productivity is relatively low when the employees feel no stress

about their work or job security. However, high levels of stress can also lead to reduced employee
productivity. Sketch a plot to represent the relationship between stress and productivity.

66D.C. Nieman et al. “Chia seed does not promote weight loss or alter disease risk factors in overweight
adults”. In: Nutrition Research 29.6 (2009), pp. 414-418.
67T. Allison and D.V. Cicchetti. “Sleep in mammals: ecological and constitutional correlates”. In: Arch.

Hydrobiol 75 (1975), p. 442.


http://www.sciencedirect.com/science/article/pii/S027153170900089X
http://www.sciencedirect.com/science/article/pii/S027153170900089X
http://www.faculty.biol.ttu.edu/strauss/Multivar/Lab/AllisonCicchetti1976.pdf
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1.25 Associations. Indicate which of the plots show a

(a) positive association

(b) negative association _— TR -

(c) no association L et R T L
Also determine if the positive and . _',.:'-—

negative associations are linear or . .
nonlinear. Each part may refer to 1) @)

more than one plot.

®3) (4)

1.26 Parameters and statistics. Identify which value represents the sample mean and which
value represents the claimed population mean.

(a) A recent article in a college newspaper stated that college students get an average of 5.5 hrs of
sleep each night. A student who was skeptical about this value decided to conduct a survey by
randomly sampling 25 students. On average, the sampled students slept 6.25 hours per night.

(b) American households spent an average of about $52 in 2007 on Halloween merchandise such as
costumes, decorations and candy. To see if this number had changed, researchers conducted
a new survey in 2008 before industry numbers were reported. The survey included 1,500
households and found that average Halloween spending was $58 per household.

(c) The average GPA of students in 2001 at a private university was 3.37. A survey on a sample of
203 students from this university yielded an average GPA of 3.59 in Spring semester of 2012.

1.27 Make-up exam. In a class of 25 students, 24 of them took an exam in class and 1 student
took a make-up exam the following day. The professor graded the first batch of 24 exams and
found an average score of 74 points with a standard deviation of 8.9 points. The student who took
the make-up the following day scored 64 points on the exam.

(a) Does the new student’s score increase or decrease the average score?
(b) What is the new average?
(c) Does the new student’s score increase or decrease the standard deviation of the scores?

1.28 Days off at a mining plant. Workers at a particular mining site receive an average of 35
days paid vacation, which is lower than the national average. The manager of this plant is under
pressure from a local union to increase the amount of paid time off. However, he does not want
to give more days off to the workers because that would be costly. Instead he decides he should
fire 10 employees in such a way as to raise the average number of days off that are reported by his
employees. In order to achieve this goal, should he fire employees who have the most number of
days off, least number of days off, or those who have about the average number of days off?
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1.29 Smoking habits of UK residents, Part I. Exercise 1.6 introduces a data set on the
smoking habits of UK residents. Below are histograms displaying the distributions of the num-
ber of cigarettes smoked on weekdays and weekends, excluding non-smokers. Describe the two
distributions and compare them.

100
50
O [ T T T T T 1
0 10 20 30 40 50 60
Amount Weekends
50
O [ T T T T T 1
0 10 20 30 40 50 60

Amount Weekdays

1.30 Stats scores. Below are the final scores of 20 introductory statistics students.

79, 83, 57, 82, 94, 83, 72, 74, 73, 71,
66, 89, 78, 81, 78, 81, 88, 69, 77, 79

Draw a histogram of these data and describe the distribution.

1.31 Smoking habits of UK residents, Part II. A random sample of 5 smokers from the
data set discussed in Exercises 1.6 and 1.29 is provided below.

gender age maritalStatus grossIncome smoke amtWeekends amtWeekdays
Female 51 Married £2,600 to £5,200 Yes 20 cig/day 20 cig/day
Male 24 Single £10,400 to £15,600 Yes 20 cig/day 15 cig/day
Female 33 Married £10,400 to £15,600 Yes 20 cig/day 10 cig/day
Female 17 Single £5,200 to £10,400 Yes 20 cig/day 15 cig/day
Female 76 Widowed £5,200 to £10,400 Yes 20 cig/day 20 cig/day

(a) Find the mean amount of cigarettes smoked on weekdays and weekends by these 5 respondents.

(b) Find the standard deviation of the amount of cigarettes smoked on weekdays and on weekends
by these 5 respondents. Is the variability higher on weekends or on weekdays?

1.32 Factory defective rate. A factory quality control manager decides to investigate the
percentage of defective items produced each day. Within a given work week (Monday through
Friday) the percentage of defective items produced was 2%, 1.4%, 4%, 3%, 2.2%.

(a) Calculate the mean for these data.

(b) Calculate the standard deviation for these data, showing each step in detail.

1.33 Medians and IQRs. For each part, compare distributions (1) and (2) based on their
medians and IQRs. You do not need to calculate these statistics; simply state how the medians
and IQRs compare. Make sure to explain your reasoning.

(a) (1)3,5,6,7,9 (¢) (1)1,2,3,4,5
(2) 3,5, 6,7, 20 (2)6,7,8,9,10

(b) (1)3,5,6,7,9 (d) (1) 0, 10, 50, 60, 100
(2)3,5,8,7,9 (2) 0, 100, 500, 600, 1000
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1.34 Means and SDs. For each part, compare distributions (1) and (2) based on their means
and standard deviations. You do not need to calculate these statistics; simply state how the means
and the standard deviations compare. Make sure to explain your reasoning. Hint: It may be useful
to sketch dot plots of the distributions.

(a) (1)3,5,5,5,8, 11,11, 11, 13 (c) (1)0,2,4,6,8,10
(2) 3,5,5,5,8, 11, 11, 11, 20 (2) 20, 22, 24, 26, 28, 30
(b) (1) -20, 0, 0, 0, 15, 25, 30, 30 (d) (1) 100, 200, 300, 400, 500
(2) -40, 0, 0, 0, 15, 25, 30, 30 (2) 0, 50, 300, 550, 600

1.35 Box plot. Create a box plot for the data given in Exercise 1.30. The five number summary
provided below may be useful.

Min Q1 Q2 (Median) Q3 Max
57 72.5 78.5 82.5 94

1.36 Infant mortality. The infant mortality rate is defined as the number of infant deaths per
1,000 live births. This rate is often used as an indicator of the level of health in a country. The
relative frequency histogram below shows the distribution of estimated infant death rates in 2012
for 222 countries.’®

0.375
(a) Estimate Q1, the median, and Q3

from the histogram.
(b) Would you expect the mean of this 0.25
data set to be smaller or larger than
the median? Explain your reasoning.

0.125

T T T T T T 1
0 20 40 60 80 100 120

Infant Mortality Rate (per 1000 births)

1.37 Matching histograms and box plots. Describe the distribution in the histograms below
and match them to the box plots.

70 100+ o m—

65

60

404

24
55 204
8 o —

© ()] @ ®3)

50 60 70
(a)

68CIA Factbook, Country Comparison: Infant Mortality Rate, 2012.


https://www.cia.gov/library/publications/the-world-factbook/rankorder/2091rank.html
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1.38 Air quality. Daily air quality is measured by the air quality index (AQI) reported by
the Environmental Protection Agency. This index reports the pollution level and what associated
health effects might be a concern. The index is calculated for five major air pollutants regulated
by the Clean Air Act. and takes values from 0 to 300, where a higher value indicates lower air
quality. AQI was reported for a sample of 91 days in 2011 in Durham, NC. The relative frequency
histogram below shows the distribution of the AQI values on these days."’

0.2+
0.154
0.1
0.05
0 .
I T T T T 1
10 20 30 40 50 60
daily AQI value

(a) Estimate the median AQI value of this sample.

(b) Would you expect the mean AQI value of this sample to be higher or lower than the median?
Explain your reasoning.

(c) Estimate Q1, Q3, and IQR for the distribution.
1.39 Histograms and box plots. Compare the two plots below. What characteristics of the

distribution are apparent in the histogram and not in the box plot? What characteristics are
apparent in the box plot but not in the histogram?

200 »5 é
150 20 T
100 15
50 10
o R I

69US Environmental Protection Agency, AirData, 2011.


http://www.epa.gov/airdata/ad_data_daily.html
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1.40 Marathon winners. The histogram and box plots below show the distribution of finishing

times for male and female winners of the New York Marathon between 1980 and 1999.

2.0

I
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Marathon times (in hrs)
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N
o
|

(a) What features of the distribution are apparent in the histogram and not the box plot? What
features are apparent in the box plot but not in the histogram?

(b) What may be the reason for the bimodal distribution? Explain.

(c) Compare the distribution of marathon times for men and women based on the box plot shown
below.

males

females

2.0 2.4

(d) The time series plot shown below is another way to look at these data. Describe what is visible
in this plot but not in the others.
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1.41 Robust statistics. The first histogram below shows the distribution of the yearly incomes
of 40 patrons at a college coffee shop. Suppose two new people walk into the coffee shop: one
making $225,000 and the other $250,000. The second histogram shows the new income distribution.
Summary statistics are also provided.

12
4 (1) (2)
. . ! . . n 40 42
60000 62500 65000 67500 70000 Min. 60,680 60,680
) 1st Qu. 63,620 63,710

Median 65,240 65,350

12 Mean 65,090 73,300

3rd Qu. 66,160 66,540
Max. 69,890 250,000
SD 2,122  3,7321

I T T T 1
60000 110000 160000 210000 260000

2
(a) Would the mean or the median best represent what we might think of as a typical income
for the 42 patrons at this coffee shop? What does this say about the robustness of the two
measures?
(b) Would the standard deviation or the IQR best represent the amount of variability in the
incomes of the 42 patrons at this coffee shop? What does this say about the robustness of the
two measures?

1.42 Distributions and appropriate statistics. For each of the following, describe whether
you expect the distribution to be symmetric, right skewed, or left skewed. Also specify whether the
mean or median would best represent a typical observation in the data, and whether the variability
of observations would be best represented using the standard deviation or IQR.

(a) Housing prices in a country where 25% of the houses cost below $350,000, 50% of the houses
cost below $450,000, 75% of the houses cost below $1,000,000 and there are a meaningful
number of houses that cost more than $6,000,000.

(b) Housing prices in a country where 25% of the houses cost below $300,000, 50% of the houses
cost below $600,000, 75% of the houses cost below $900,000 and very few houses that cost
more than $1,200,000.

(¢) Number of alcoholic drinks consumed by college students in a given week.
(d) Annual salaries of the employees at a Fortune 500 company.

1.43 Commuting times, Part I.
The histogram to the right shows the
distribution of mean commuting times
in 3,143 US counties in 2010. De-
scribe the distribution and comment on 100+
whether or not a log transformation
may be advisable for these data.

200

10 20 30 40
Mean work travel (in min)
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1.44 Hispanic population, Part I. The histogram below shows the distribution of the per-
centage of the population that is Hispanic in 3,143 counties in the US in 2010. Also shown is a
histogram of logs of these values. Describe the distribution and comment on why we might want
to use log-transformed values in analyzing or modeling these data.

2000
250
1500 200
1000+ 1501
100+
500
50
0- 0
[ T T T T 1 I T T T T T 1
0 20 40 60 80 100 -2 -1 0 1 2 3 4
% Hispanic % Hispanic

1.45 Commuting times, Part I1. Exercise 1.43 displays histograms of mean commuting times
in 3,143 US counties in 2010. Describe the spatial distribution of commuting times using the map
below.

>33

19
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1.46 Hispanic population, Part II. Exercise 1.44 displays histograms of the distribution of
the percentage of the population that is Hispanic in 3,143 counties in the US in 2010.

>40

20

(a) What features of this distribution are apparent in the map but not in the histogram?
(b) What features are apparent in the histogram but not the map?

(c) Is one visualization more appropriate or helpful than the other? Explain your reasoning.

1.9.7 Considering categorical data

1.47 Antibiotic use in children. The bar plot and the pie chart below show the distribution of
pre-existing medical conditions of children involved in a study on the optimal duration of antibiotic
use in treatment of tracheitis, which is an upper respiratory infection.

(a) What features are apparent in the bar plot but not in the pie chart?

(b) What features are apparent in the pie chart but not in the bar plot?

(¢) Which graph would you prefer to use for displaying these categorical data?

Prematurity Trauma.

Cardio

Cardiovascular

Respiratory Resp Gastro

Trauma Gen/meta

Neuromuscular Immuno

Genetic/metabolic

Immunocompromised Neuro

Gastrointestinal - Premat

0.00 005 010 015 020 025 030 035

Relative frequency
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1.48 Views on immigration. 910 randomly sampled registered voters from Tampa, FL were
asked if they thought workers who have illegally entered the US should be (i) allowed to keep their
jobs and apply for US citizenship, (ii) allowed to keep their jobs as temporary guest workers but
not allowed to apply for US citizenship, or (iii) lose their jobs and have to leave the country. The
results of the survey by political ideology are shown below."’

Political ideology
Conservative Moderate Liberal Total

(i) Apply for citizenship 57 120 101 278
Response (ii) Guest worker 121 113 28 262
(iii) Leave the country 179 126 45 350
(iv) Not sure 15 4 1 20
Total 372 363 175 910

(a) What percent of these Tampa, FL voters identify themselves as conservatives?
(b) What percent of these Tampa, FL voters are in favor of the citizenship option?

(c) What percent of these Tampa, FL voters identify themselves as conservatives and are in favor
of the citizenship option?

(d) What percent of these Tampa, FL voters who identify themselves as conservatives are also in
favor of the citizenship option? What percent of moderates and liberal share this view?

(e) Do political ideology and views on immigration appear to be independent? Explain your
reasoning.

Political ideology
1.49 Views on the DREAM Act. The same Conservaiive Moderate _ Liberal

survey from Exercise 1.48 also asked respondents
if they support the DREAM Act, a proposed law
which would provide a path to citizenship for peo-
ple brought illegally to the US as children. Based
on the mosaic plot shown on the right, are views
on the DREAM Act and political ideology inde-
pendent?

I
1.50 Heart transplants, Part I. The Stanford University Heart Transplant Study was con-
ducted to determine whether an experimental heart transplant program increased lifespan. Each
patient entering the program was designated an official heart transplant candidate, meaning that
he was gravely ill and would most likely benefit from a new heart. Some patients got a transplant
and some did not. The variable transplant indicates which group the patients were in; patients
in the treatment group got a transplant and those in the control group did not. Another variable

called survived was used to indicate whether or not the patient was alive at the end of the study.
Figures may be found on the next page.”

Support DREAM act
&
12

=z
o

Not sure

(a) Based on the mosaic plot, is survival independent of whether or not the patient got a trans-
plant? Explain your reasoning.

(b) What do the box plots suggest about the efficacy (effectiveness) of transplants?

70SurveyUSA, News Poll #18927, data collected Jan 27-29, 2012.
71B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical
Association 69 (1974), pp. 74-80.


http://www.surveyusa.com/client/PollReport.aspx?g=60d6fa81-2698-4c51-a5f8-714f40976df2
http://www.jstor.org/discover/10.2307/2285502?uid=3739256&uid=2129&uid=2&uid=70&uid=4&sid=47699108222567
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1.9.8 Case study: gender discrimination

1.51 Side effects of Avandia, Part 1. Rosiglitazone is the active ingredient in the controversial
type 2 diabetes medicine Avandia and has been linked to an increased risk of serious cardiovascular
problems such as stroke, heart failure, and death. A common alternative treatment is pioglitazone,
the active ingredient in a diabetes medicine called Actos. In a nationwide retrospective observa-
tional study of 227,571 Medicare beneficiaries aged 65 years or older, it was found that 2,593 of
the 67,593 patients using rosiglitazone and 5,386 of the 159,978 using pioglitazone had serious
cardiovascular problems. These data are summarized in the contingency table below.””

Cardiovascular problems

Yes No Total

Treatment Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

Determine if each of the following statements is true or false. If false, explain why. Be careful: The
reasoning may be wrong even if the statement’s conclusion is correct. In such cases, the statement
should be considered false.

(a) Since more patients on pioglitazone had cardiovascular problems (5,386 vs. 2,593), we can
conclude that the rate of cardiovascular problems for those on a pioglitazone treatment is
higher.

(b) The data suggest that diabetic patients who are taking rosiglitazone are more likely to have
cardiovascular problems since the rate of incidence was (2,593 / 67,593 = 0.038) 3.8% for
patients on this treatment, while it was only (5,386 / 159,978 = 0.034) 3.4% for patients on
pioglitazone.

(c) The fact that the rate of incidence is higher for the rosiglitazone group proves that rosiglitazone
causes serious cardiovascular problems.

(d) Based on the information provided so far, we cannot tell if the difference between the rates of
incidences is due to a relationship between the two variables or due to chance.

72D.J. Graham et al. “Risk of acute myocardial infarction, stroke, heart failure, and death in elderly
Medicare patients treated with rosiglitazone or pioglitazone”. In: JAMA 304.4 (2010), p. 411. 1sSSN: 0098-
7484.
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1.52 Heart transplants, Part II. Exercise 1.50 introduces the Stanford Heart Transplant
Study. Of the 34 patients in the control group, 4 were alive at the end of the study. Of the 69
patients in the treatment group, 24 were alive. The contingency table below summarizes these
results.

Group
Control  Treatment Total
Outcome Alive 4 24 28
Dead 30 45 75
Total 34 69 103

(a) What proportion of patients in the treatment group and what proportion of patients in the
control group died?

(b) One approach for investigating whether or not the treatment is effective is to use a random-
ization technique.

i. What are the claims being tested?

ii. The paragraph below describes the set up for such approach, if we were to do it with-
out using statistical software. Fill in the blanks with a number or phrase, whichever is

appropriate.
We write alive on —_ cards representing patients who were alive at
the end of the study, and dead on _______ cards representing patients
who were not. Then, we shuffle these cards and split them into two groups:
one group of size —_ representing treatment, and another group of
size ____ representing control. We calculate the difference between

the proportion of dead cards in the treatment and control groups (treatment -
control) and record this value. We repeat this many times to build a distribution
centeredat . Lastly, we calculate the fraction of simulations where
the simulated differences in proportionsare . If this fraction is low,
we conclude that it is unlikely to have observed such an outcome by chance and
that the null hypothesis (independence model) should be rejected in favor of the
alternative.

iii. What do the simulation results shown below suggest about the effectiveness of the trans-
plant program?
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1.53 Side effects of Avandia, Part II. Exercise 1.51 introduces a study that compares the
rates of serious cardiovascular problems for diabetic patients on rosiglitazone and pioglitazone
treatments. The table below summarizes the results of the study.

Cardiovascular problems

Yes No Total

Treatment Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

(a) What proportion of all patients had cardiovascular problems?

(b) If the type of treatment and having cardiovascular problems were independent, about how
many patients in the rosiglitazone group would we expect to have had cardiovascular problems?

(¢) We can investigate the relationship between outcome and treatment in this study using a
randomization technique. While in reality we would carry out the simulations required for
randomization using statistical software, suppose we actually simulate using index cards. In
order to simulate from the independence model, which states that the outcomes were inde-
pendent of the treatment, we write whether or not each patient had a cardiovascular problem
on cards, shuffled all the cards together, then deal them into two groups of size 67,593 and
159,978. We repeat this simulation 1,000 times and each time record the number of people
in the rosiglitazone group who had cardiovascular problems. Below is a relative frequency
histogram of these counts.

i. What are the claims being tested?

ii. Compared to the number calculated in part (b), which would provide more support for
the alternative hypothesis, more or fewer patients with cardiovascular problems in the
rosiglitazone group?

iii. What do the simulation results suggest about the relationship between taking rosiglitazone
and having cardiovascular problems in diabetic patients?

0.1

0.05 —

| | |
2250 2350 2450
Simulated rosiglitazone cardiovascular events
under independence model
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1.54 Sinusitis and antibiotics, Part I1. Researchers studying the effect of antibiotic treatment
compared to symptomatic treatment for acute sinusitis randomly assigned 166 adults diagnosed
with sinusitis into two groups (as discussed in Exercise 1.2). Participants in the antibiotic group
received a 10-day course of an antibiotic, and the rest received symptomatic treatments as a
placebo. These pills had the same taste and packaging as the antibiotic. At the end of the 10-day
period patients were asked if they experienced improvement in symptoms since the beginning of
the study. The distribution of responses is summarized below.””

Self reported
improvement in symptoms
Yes No Total
Treatment Antibiotic 66 19 85
Placebo 65 16 81
Total 131 35 166

—
o

) What type of a study is this?
Does this study make use of blinding?

—
=

At first glance, does antibiotic or placebo appear to be more effective for the treatment of
sinusitis? Explain your reasoning using appropriate statistics.

—
o
~

(d) There are two competing claims that this study is used to compare: the independence model
and the alternative model. Write out these competing claims in easy-to-understand language
and in the context of the application. Hint: The researchers are studying the effectiveness of
antibiotic treatment.

(e) Based on your finding in (c), does the evidence favor the alternative model? If not, then
explain why. If so, what would you do to check if whether this is strong evidence?

73 J.M. Garbutt et al. “Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial”. In: JAMA:
The Journal of the American Medical Association 307.7 (2012), pp. 685-692.


http://jama.jamanetwork.com/article.aspx?articleid=1104985

Chapter 2

Probability (special topic)

Probability forms a foundation for statistics. You might already be familiar with many
aspects of probability, however, formalization of the concepts is new for most. This chapter
aims to introduce probability on familiar terms using processes most people have seen
before.

2.1 Defining probability (special topic)

® Example 2.1 A “die”, the singular of dice, is a cube with six faces numbered 1, 2,
3, 4, 5, and 6. What is the chance of getting 1 when rolling a die?

If the die is fair, then the chance of a 1 is as good as the chance of any other number.
Since there are six outcomes, the chance must be 1-in-6 or, equivalently, 1/6.

@® Example 2.2 What is the chance of getting a 1 or 2 in the next roll?

1 and 2 constitute two of the six equally likely possible outcomes, so the chance of
getting one of these two outcomes must be 2/6 = 1/3.

® Example 2.3 What is the chance of getting either 1, 2, 3, 4, 5, or 6 on the next
roll?

100%. The outcome must be one of these numbers.

@® Example 2.4 What is the chance of not rolling a 27

Since the chance of rolling a 2 is 1/6 or 16.6%, the chance of not rolling a 2 must be
100% — 16.6% = 83.3% or 5/6.

Alternatively, we could have noticed that not rolling a 2 is the same as getting a 1, 3,
4,5, or 6, which makes up five of the six equally likely outcomes and has probability
5/6.

® Example 2.5 Consider rolling two dice. If 1/6" of the time the first die is a 1 and
1/6%" of those times the second die is a 1, what is the chance of getting two 1s?

If 16.6% of the time the first die is a 1 and 1/6'" of those times the second die is also
a 1, then the chance that both dice are 1 is (1/6) x (1/6) or 1/36.

68



2.1. DEFINING PROBABILITY (SPECIAL TOPIC) 69

0.30
0.25
0.20
Pn 0.15
0.10

0.05

0.00 -

1 10 100 1,000 10,000 100,000

n (number of rolls)

Figure 2.1: The fraction of die rolls that are 1 at each stage in a simulation.
The proportion tends to get closer to the probability 1/6 &~ 0.167 as the
number of rolls increases.

2.1.1 Probability

We use probability to build tools to describe and understand apparent randomness. We
often frame probability in terms of a random process giving rise to an outcome.
Rolladie — 1,2,3,4,5 0or6
Flipacoin — HorT

Rolling a die or flipping a coin is a seemingly random process and each gives rise to an
outcome.

Probability
The probability of an outcome is the proportion of times the outcome would
occur if we observed the random process an infinite number of times.

Probability is defined as a proportion, and it always takes values between 0 and 1
(inclusively). It may also be displayed as a percentage between 0% and 100%.

Probability can be illustrated by rolling a die many times. Let p,, be the proportion
of outcomes that are 1 after the first n rolls. As the number of rolls increases, p, will
converge to the probability of rolling a 1, p = 1/6. Figure 2.1 shows this convergence for
100,000 die rolls. The tendency of p,, to stabilize around p is described by the Law of
Large Numbers.

Law of Large Numbers
As more observations are collected, the proportion p,, of occurrences with a par-
ticular outcome converges to the probability p of that outcome.

Occasionally the proportion will veer off from the probability and appear to defy the
Law of Large Numbers, as p,, does many times in Figure 2.1. However, these deviations
become smaller as the number of rolls increases.
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Above we write p as the probability of rolling a 1. We can also write this probability
as

P(rolling a 1)

As we become more comfortable with this notation, we will abbreviate it further. For
instance, if it is clear that the process is “rolling a die”, we could abbreviate P(rolling a 1)
as P(1).

(O Exercise 2.6 Random processes include rolling a die and flipping a coin. (a) Think
of another random process. (b) Describe all the possible outcomes of that process.
For instance, rolling a die is a random process with potential outcomes 1, 2, ..., 6.!

What we think of as random processes are not necessarily random, but they may
just be too difficult to understand exactly. The fourth example in the footnote solution
to Exercise 2.6 suggests a roommate’s behavior is a random process. However, even if a
roommate’s behavior is not truly random, modeling her behavior as a random process can
still be useful.

TIP: Modeling a process as random
It can be helpful to model a process as random even if it is not truly random.

2.1.2 Disjoint or mutually exclusive outcomes

Two outcomes are called disjoint or mutually exclusive if they cannot both happen.
For instance, if we roll a die, the outcomes 1 and 2 are disjoint since they cannot both
occur. On the other hand, the outcomes 1 and “rolling an odd number” are not disjoint
since both occur if the outcome of the roll is a 1. The terms disjoint and mutually exclusive
are equivalent and interchangeable.

Calculating the probability of disjoint outcomes is easy. When rolling a die, the
outcomes 1 and 2 are disjoint, and we compute the probability that one of these outcomes
will occur by adding their separate probabilities:

P(lor2)=P1)+P(2)=1/6+1/6=1/3

What about the probability of rolling a 1, 2, 3, 4, 5, or 67 Here again, all of the outcomes
are disjoint so we add the probabilities:

P(lor2or3or4orb5or6)
= P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
=1/6+1/6+1/6+1/6+1/6+1/6=1.

The Addition Rule guarantees the accuracy of this approach when the outcomes are
disjoint.

IHere are four examples. (i) Whether someone gets sick in the next month or not is an apparently
random process with outcomes sick and not. (ii) We can generate a random process by randomly picking
a person and measuring that person’s height. The outcome of this process will be a positive number. (iii)
Whether the stock market goes up or down next week is a seemingly random process with possible outcomes
up, down, and no_change. Alternatively, we could have used the percent change in the stock market as a
numerical outcome. (iv) Whether your roommate cleans her dishes tonight probably seems like a random
process with possible outcomes cleans_dishes and leaves_dishes.
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Addition Rule of disjoint outcomes
If Ay and A, represent two disjoint outcomes, then the probability that one of
them occurs is given by

P(A] or AQ) = P(Al) + P(AQ)

If there are many disjoint outcomes Ay, ..., Ag, then the probability that one of
these outcomes will occur is

P(Ay) + P(Az) + -+ + P(Ag) (2.7)

() Exercise 2.8 We are interested in the probability of rolling a 1, 4, or 5. (a) Explain
why the outcomes 1, 4, and 5 are disjoint. (b) Apply the Addition Rule for disjoint
outcomes to determine P(1 or 4 or 5).”

() Exercise 2.9 In the email data set in Chapter 1, the number variable described
whether no number (labeled none), only one or more small numbers (small), or
whether at least one big number appeared in an email (big). Of the 3,921 emails,
549 had no numbers, 2,827 had only one or more small numbers, and 545 had at least
one big number. (a) Are the outcomes none, small, and big disjoint? (b) Determine
the proportion of emails with value small and big separately. (c) Use the Addition
Rule for disjoint outcomes to compute the probability a randomly selected email from
the data set has a number in it, small or big.”

Statisticians rarely work with individual outcomes and instead consider sets or col-
lections of outcomes. Let A represent the event where a die roll results in 1 or 2 and
B represent the event that the die roll is a 4 or a 6. We write A as the set of outcomes
{1, 2} and B = {4, 6}. These sets are commonly called events. Because A and B have no
elements in common, they are disjoint events. A and B are represented in Figure 2.2.

Figure 2.2: Three events, A, B, and D, consist of outcomes from rolling a
die. A and B are disjoint since they do not have any outcomes in common.

The Addition Rule applies to both disjoint outcomes and disjoint events. The proba-
bility that one of the disjoint events A or B occurs is the sum of the separate probabilities:
P(Aor B)=P(A)+P(B)=1/3+1/3=2/3

() Exercise 2.10 (a) Verify the probability of event A, P(A), is 1/3 using the Addition
Rule. (b) Do the same for event B."

2(a) The random process is a die roll, and at most one of these outcomes can come up. This means
they are disjoint outcomes. (b) P(1 or 4 or 5) = P(1) + P(4) + P(5) = % + % + % = % =3

3(a) Yes. Each email is categorized in only one level of number. (b) Small: % = 0.721. Big:
22 =0.139. (c) P(small or big) = P(small) + P(big) = 0.721 + 0.139 = 0.860.

ta) P(A)=P(1or2)=P1)+ P(2) =+ + + = 2 = 1. (b) Similarly, P(B) = 1/3.
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2% 3% 4% 5k 6% 7H 3k 9% 10k J& Qb Kb Ad
20 30 40 5O 60 7O 80 90 100 IO Q0 KO A
20 30 40 50 60 70 80 90 100 IO Q0 KO A0
26 36 46 5A 6A TA BA O9A 104 JA QA K& AN

Table 2.3: Representations of the 52 unique cards in a deck.

() Exercise 2.11 (a) Using Figure 2.2 as a reference, what outcomes are represented
by event D? (b) Are events B and D disjoint? (c) Are events A and D disjoint?”

() Exercise 2.12 In Exercise 2.11, you confirmed B and D from Figure 2.2 are dis-
joint. Compute the probability that either event B or event D occurs.’

2.1.3 Probabilities when events are not disjoint

Let’s consider calculations for two events that are not disjoint in the context of a regular
deck of 52 cards, represented in Table 2.3. If you are unfamiliar with the cards in a regular
deck, please see the footnote.”

() Exercise 2.13  (a) What is the probability that a randomly selected card is a
diamond? (b) What is the probability that a randomly selected card is a face card?®

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for
two or three variables, attributes, or random processes. The Venn diagram in Figure 2.4
uses a circle to represent diamonds and another to represent face cards. If a card is both a
diamond and a face card, it falls into the intersection of the circles. If it is a diamond but
not a face card, it will be in part of the left circle that is not in the right circle (and so on).
The total number of cards that are diamonds is given by the total number of cards in the
diamonds circle: 10 4+ 3 = 13. The probabilities are also shown (e.g. 10/52 = 0.1923).

() Exercise 2.14  Using the Venn diagram, verify P(face card) = 12/52 = 3/13.”
Let A represent the event that a randomly selected card is a diamond and B represent

the event that it is a face card. How do we compute P(A or B)? Events A and B are
not disjoint — the cards J{, Q¢, and K< fall into both categories — so we cannot use the

5(a) Outcomes 2 and 3. (b) Yes, events B and D are disjoint because they share no outcomes. (c) The
events A and D share an outcome in common, 2, and so are not disjoint.

6Since B and D are disjoint events, use the Addition Rule: P(B or D) = P(B) + P(D) = % + % = %

"The 52 cards are split into four suits: & (club), ¢ (diamond), © (heart), # (spade). Each suit has
its 13 cards labeled: 2, 3, ..., 10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique
combination of a suit and a label, e.g. 40 and J&. The 12 cards represented by the jacks, queens, and
kings are called face cards. The cards that are { or © are typically colored red while the other two suits
are typically colored black.

8(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal

chance of being drawn, so the probability that a randomly selected card is a diamond is P({) = 13— 0.250.

52
(b) Likewise, there are 12 face cards, so P(face card) = é—g = 13—3 =0.231.
9The Venn diagram shows face cards split up into “face card but not " and “face card and ¢”. Since

these correspond to disjoint events, P(face card) is found by adding the two corresponding probabilities:
3

3 9 _ 12 _ 3
52 T 52 =5 = 13-
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Diamonds Face cards

Other cards: 30 (0.5769)

Figure 2.4: A Venn diagram for diamonds and face cards.

Addition Rule for disjoint events. Instead we use the Venn diagram. We start by adding
the probabilities of the two events:

P(A) + P(B) = P({) + P(face card) = 12/52 + 13/52

However, the three cards that are in both events were counted twice, once in each proba-
bility. We must correct this double counting:

P(Aor B) = P(face card or )

= P(face card) + P({) — P(face card and <) (2.15)
12/52 + 13/52 — 3/52
= 22/52 =11/26

Equation (2.15) is an example of the General Addition Rule.

General Addition Rule
If A and B are any two events, disjoint or not, then the probability that at least
one of them will occur is

P(A or B) = P(A)+ P(B) — P(A and B) (2.16)

where P(A and B) is the probability that both events occur.

TIP: “or” is inclusive
When we write “or” in statistics, we mean “and/or” unless we explicitly state
otherwise. Thus, A or B occurs means A, B, or both A and B occur.

() Exercise 2.17 (a) If A and B are disjoint, describe why this implies P(A and
B) = 0. (b) Using part (a), verify that the General Addition Rule simplifies to the
simpler Addition Rule for disjoint events if A and B are disjoint."’

10(a) If A and B are disjoint, A and B can never occur simultaneously. (b) If A and B are disjoint,
then the last term of Equation (2.16) is O (see part (a)) and we are left with the Addition Rule for disjoint
events.
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() Exercise 2.18 In the email data set with 3,921 emails, 367 were spam, 2,827 con-
tained some small numbers but no big numbers, and 168 had both characteristics.
Create a Venn diagram for this setup.'!

() Exercise 2.19 (a) Use your Venn diagram from Exercise 2.18 to determine the
probability a randomly drawn email from the email data set is spam and had small
numbers (but not big numbers). (b) What is the probability that the email had either
of these attributes?'”

2.1.4 Probability distributions

A probability distribution is a table of all disjoint outcomes and their associated prob-
abilities. Table 2.5 shows the probability distribution for the sum of two dice.

Dice sum 2 3 4 5 6 7 8 9 10 11 12
Pobibilty & b % % % % % b b &

Table 2.5: Probability distribution for the sum of two dice.

Rules for probability distributions
A probability distribution is a list of the possible outcomes with corresponding
probabilities that satisfies three rules:

1. The outcomes listed must be disjoint.
2. Each probability must be between 0 and 1.
3. The probabilities must total 1.

() Exercise 2.20 Table 2.6 suggests three distributions for household income in the
United States. Only one is correct. Which one must it be? What is wrong with the
other two?'?

Chapter 1 emphasized the importance of plotting data to provide quick summaries.
Probability distributions can also be summarized in a bar plot. For instance, the distri-
bution of US household incomes is shown in Figure 2.7 as a bar plot.'* The probability
distribution for the sum of two dice is shown in Table 2.5 and plotted in Figure 2.8.

In these bar plots, the bar heights represent the probabilities of outcomes. If the
outcomes are numerical and discrete, it is usually (visually) convenient to make a bar plot
that resembles a histogram, as in the case of the sum of two dice. Another example of
plotting the bars at their respective locations is shown in Figure 2.20 on page 96.

1 Both the counts and corresponding probabilities (e.g. 2659/3921 = small numbers and no big numbers spam
0.678) are shown. Notice that the number of emails represented in 2659 ®
the left circle corresponds to 2659 + 168 = 2827, and the number 0.678
represented in the right circle is 168 + 199 = 367. Other emails: 3921-2659-168-199 = 895 (0.228)

12(a) The solution is represented by the intersection of the two circles: 0.043. (b) This is the sum of the

three disjoint probabilities shown in the circles: 0.678 + 0.043 + 0.051 = 0.772.

13The probabilities of (a) do not sum to 1. The second probability in (b) is negative. This leaves (c),
which sure enough satisfies the requirements of a distribution. One of the three was said to be the actual
distribution of US household incomes, so it must be (c).

141t is also possible to construct a distribution plot when income is not artificially binned into four
groups. Continuous distributions are considered in Section 2.5.
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Income range ($1000s) | 0-25 25-50 50-100 100+
(@ [ 018 0390 033 0.16
(b) | 0.38 -0.27 0.52  0.37
(©) | 0.28 027 020 0.16

Table 2.6: Proposed distributions of US household incomes (Exercise 2.20).

probability

0-25 25-50 50-100 100+

US household incomes ($1000s)

Figure 2.7: The probability distribution of US household income.
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Figure 2.8: The probability distribution of the sum of two dice.
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2.1.5 Complement of an event

Rolling a die produces a value in the set {1, 2, 3, 4, 5, 6}. This set of all possible outcomes
is called the sample space (.5) for rolling a die. We often use the sample space to examine
the scenario where an event does not occur.

Let D = {2, 3} represent the event that the outcome of a die roll is 2 or 3. Then the
complement of D represents all outcomes in our sample space that are not in D, which
is denoted by D¢ = {1, 4, 5, 6}. That is, D¢ is the set of all possible outcomes not already
included in D. Figure 2.9 shows the relationship between D, D¢ and the sample space S.

Figure 2.9: Event D = {2, 3} and its complement, D¢ = {1, 4, 5, 6}.
S represents the sample space, which is the set of all possible events.

(O Exercise 2.21 (a) Compute P(D¢) = P(rolling a 1, 4, 5, or 6). (b) What is
P(D) + P(D%)?'

() Exercise 2.22 Events A = {1, 2} and B = {4, 6} are shown in Figure 2.2 on
page 71. (a) Write out what A° and B¢ represent. (b) Compute P(A°) and P(B¢).
(c) Compute P(A) + P(A€) and P(B) + P(B¢).'0

A complement of an event A is constructed to have two very important properties:
(i) every possible outcome not in A is in A€, and (ii) A and A€ are disjoint. Property (i)
implies
P(Aor A% =1 (2.23)
That is, if the outcome is not in A, it must be represented in A°. We use the Addition
Rule for disjoint events to apply Property (ii):

P(Aor A%) = P(A) + P(A°) (2.24)

Combining Equations (2.23) and (2.24) yields a very useful relationship between the prob-
ability of an event and its complement.

Complement
The complement of event A is denoted A€, and A° represents all outcomes not
in A. A and A° are mathematically related:

P(A)+ P(A°) =1, ie. P(A)=1-P(A°) (2.25)

In simple examples, computing A or A€ is feasible in a few steps. However, using the
complement can save a lot of time as problems grow in complexity.

15(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3.
(b) We can also see that P(D) = % + é =1/3. Since D and D¢ are disjoint, P(D) + P(D¢) = 1.

16Brief solutions: (a) A = {3, 4, 5, 6} and B = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint,
add the individual outcome probabilities to get P(A¢) = 2/3 and P(B¢) =2/3. (c) A and A€ are disjoint,
and the same is true of B and B¢. Therefore, P(A) + P(A¢) =1 and P(B) + P(B¢) = 1.
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() Exercise 2.26 Let A represent the event where we roll two dice and their total
is less than 12. (a) What does the event A° represent? (b) Determine P(A€) from
Table 2.5 on page 74. (c) Determine P(A).!"

() Exercise 2.27 Consider again the probabilities from Table 2.5 and rolling two dice.
Find the following probabilities: (a) The sum of the dice is not 6. (b) The sum is at
least 4. That is, determine the probability of the event B = {4, 5, ..., 12}. (c¢) The
sum is no more than 10. That is, determine the probability of the event D = {2, 3,
ey 10118

2.1.6 Independence

Just as variables and observations can be independent, random processes can be indepen-
dent, too. Two processes are independent if knowing the outcome of one provides no
useful information about the outcome of the other. For instance, flipping a coin and rolling
a die are two independent processes — knowing the coin was heads does not help deter-
mine the outcome of a die roll. On the other hand, stock prices usually move up or down
together, so they are not independent.

Example 2.5 provides a basic example of two independent processes: rolling two dice.
We want to determine the probability that both will be 1. Suppose one of the dice is red
and the other white. If the outcome of the red die is a 1, it provides no information about
the outcome of the white die. We first encountered this same question in Example 2.5
(page 68), where we calculated the probability using the following reasoning: 1/6'" of
the time the red die is a 1, and 1/6%" of those times the white die will also be 1. This
is illustrated in Figure 2.10. Because the rolls are independent, the probabilities of the
corresponding outcomes can be multiplied to get the final answer: (1/6) x (1/6) = 1/36.
This can be generalized to many independent processes.

All rolls

} | 1/6th of the first
1 ! rolls are a 1.

' 1/6th of those times where
- the first roll is a 1 the
second roll is also a 1.

Figure 2.10: 1/6'" of the time, the first roll is a 1. Then 1/6" of those
times, the second roll will also be a 1.

17(a) The complement of A: when the total is equal to 12. (b) P(A®) = 1/36. (c) Use the probability
of the complement from part (b), P(A¢) = 1/36, and Equation (2.25): P(less than 12) = 1 — P(12) =
1—1/36 = 35/36.

18(a) First find P(6) = 5/36, then use the complement: P(not 6) = 1 — P(6) = 31/36.

(b) First find the complement, which requires much less effort: P(2 or 3) = 1/36 +2/36 = 1/12. Then
calculate P(B) =1— P(B¢)=1-1/12=11/12.

(c) As before, finding the complement is the clever way to determine P(D). First find P(D¢) = P(11 or
12) = 2/36 4+ 1/36 = 1/12. Then calculate P(D) =1 — P(D°¢) = 11/12.
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® Example 2.28 What if there was also a blue die independent of the other two?
What is the probability of rolling the three dice and getting all 1s?

The same logic applies from Example 2.5. If 1/36"" of the time the white and red
dice are both 1, then 1/6'" of those times the blue die will also be 1, so multiply:

P(white = 1 and red = 1 and blue = 1) = P(white = 1) X P(red = 1) x P(blue = 1)
=(1/6) x (1/6) x (1/6) = 1/216

Examples 2.5 and 2.28 illustrate what is called the Multiplication Rule for independent
processes.

Multiplication Rule for independent processes

If A and B represent events from two different and independent processes, then
the probability that both A and B occur can be calculated as the product of their
separate probabilities:

P(A and B) = P(A) x P(B) (2.29)
Similarly, if there are k events Ay, ..., Ay from k independent processes, then the
probability they all occur is

P(Ay) x P(A2) x -+ x P(Ay)

() Exercise 2.30  About 9% of people are left-handed. Suppose 2 people are selected
at random from the U.S. population. Because the sample size of 2 is very small
relative to the population, it is reasonable to assume these two people are independent.
(a) What is the probability that both are left-handed? (b) What is the probability
that both are right-handed?'’

() Exercise 2.31 Suppose 5 people are selected at random.?’
(a) What is the probability that all are right-handed?
(b) What is the probability that all are left-handed?
(¢c) What is the probability that not all of the people are right-handed?

19(a) The probability the first person is left-handed is 0.09, which is the same for the second person.
We apply the Multiplication Rule for independent processes to determine the probability that both will be
left-handed: 0.09 x 0.09 = 0.0081.

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right and left handed)
is nearly 0, which results in P(right-handed) = 1 — 0.09 = 0.91. Using the same reasoning as in part (a),
the probability that both will be right-handed is 0.91 x 0.91 = 0.8281.

20(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each
are independent, we apply the Multiplication Rule for independent processes:

P(all five are RH) = P(first = RH, second = RH, ..., fifth = RH)
= P(first = RH) X P(second = RH) x - -- x P(fifth = RH)
=0.91 x 0.91 x 0.91 x 0.91 x 0.91 = 0.624

(b) Using the same reasoning as in (a), 0.09 x 0.09 x 0.09 x 0.09 x 0.09 = 0.0000059
(c¢) Use the complement, P(all five are RH), to answer this question:

P(not all RH) =1 — P(all RH) = 1 — 0.624 = 0.376
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Suppose the variables handedness and gender are independent, i.e. knowing some-
one’s gender provides no useful information about their handedness and vice-versa. Then
we can compute whether a randomly selected person is right-handed and female’' using
the Multiplication Rule:

P(right-handed and female) = P(right-handed) x P(female)
0.91 x 0.50 = 0.455

() Exercise 2.32  Three people are selected at random.””

(a) What is the probability that the first person is male and right-handed?

(b) What is the probability that the first two people are male and right-handed?.

(¢c) What is the probability that the third person is female and left-handed?

(d) What is the probability that the first two people are male and right-handed and
the third person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another out-
come. The question we are asking is, are the occurrences of the two events independent?
We say that two events A and B are independent if they satisfy Equation (2.29).

® Example 2.33 If we shuffle up a deck of cards and draw one, is the event that the
card is a heart independent of the event that the card is an ace?

The probability the card is a heart is 1/4 and the probability that it is an ace is 1/13.
The probability the card is the ace of hearts is 1/52. We check whether Equation 2.29
is satisfied:

1 1 1
P P =-X-—=—=P
(V) x P(ace) 1 G- (© and ace)
Because the equation holds, the event that the card is a heart and the event that the

card is an ace are independent events.

2.2 Conditional probability (special topic)

Are students more likely to use marijuana when their parents used drugs? The drug_use
data set contains a sample of 445 cases with two variables, student and parents, and is
summarized in Table 2.11.%? The student variable is either uses or not, where a student
is labeled as uses if she has recently used marijuana. The parents variable takes the value
used if at least one of the parents used drugs, including alcohol.

® Example 2.34 If at least one parent used drugs, what is the chance their child
(student) uses?

We will estimate this probability using the data. Of the 210 cases in this data set
where parents = used, 125 represent cases where student = uses:

125
P(student = uses given parents = used) = 20 = 0.60

21The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the
probability of sampling a woman. However, this probability does differ in other countries.

22Brief answers are provided. (a) This is the same as P(a randomly selected person is male and right-
handed) = 0.455. (b) 0.207. (c) 0.045. (d) 0.0093.

23Ellis GJ and Stone LH. 1979. Marijuana Use in College: An Evaluation of a Modeling Explanation.
Youth and Society 10:323-334.
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parents
used not Total
uses 125 94 219
student ¢ 85 141 226
Total 210 235 445

Table 2.11: Contingency table summarizing the drug_use data set.

Drug use
parents used
i )
0.19 student uses

Figure 2.12: A Venn diagram using boxes for the drug_use data set.

® Example 2.35 A student is randomly selected from the study and she does not use
drugs. What is the probability that at least one of her parents used?

If the student does not use drugs, then she is one of the 226 students in the second
row. Of these 226 students, 85 had at least one parent who used drugs:

P(parents = used given student = not) = 2876 = 0.376

2.2.1 Marginal and joint probabilities

Table 2.13 includes row and column totals for each variable separately in the drug_use
data set. These totals represent marginal probabilities for the sample, which are the
probabilities based on a single variable without conditioning on any other variables. For
instance, a probability based solely on the student variable is a marginal probability:

21
P(student = uses) = é = 0.492

A probability of outcomes for two or more variables or processes is called a joint proba-

bility:

94
P(student = uses and parents = not) = - 0.21

It is common to substitute a comma for “and” in a joint probability, although either is
acceptable.
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parents: used parents: not Total

student: uses 0.28 0.21 0.49
student: not 0.19 0.32 0.51
Total 0.47 0.53 1.00

Table 2.13: Probability table summarizing parental and student drug use.

Joint outcome Probability
parents = used, student = uses 0.28
parents = used, student = not 0.19
parents = not, student = uses 0.21
parents = not, student = not 0.32
Total 1.00

Table 2.14: A joint probability distribution for the drug_use data set.

Marginal and joint probabilities

If a probability is based on a single variable, it is a marginal probability. The
probability of outcomes for two or more variables or processes is called a joint
probability.

We use table proportions to summarize joint probabilities for the drug_use sample.
These proportions are computed by dividing each count in Table 2.11 by 445 to obtain the
proportions in Table 2.13. The joint probability distribution of the parents and student
variables is shown in Table 2.14.

() Exercise 2.36  Verify Table 2.14 represents a probability distribution: events are
disjoint, all probabilities are non-negative, and the probabilities sum to 1.%*

We can compute marginal probabilities using joint probabilities in simple cases. For
example, the probability a random student from the study uses drugs is found by summing
the outcomes from Table 2.14 where student = uses:

P(student = uses)

= P(parents = used, student = uses) +

P(parents = not, student = uses)
=0.28+0.21=0.49

2.2.2 Defining conditional probability

There is some connection between drug use of parents and of the student: drug use of one is
associated with drug use of the other.?” In this section, we discuss how to use information
about associations between two variables to improve probability estimation.

The probability that a random student from the study uses drugs is 0.49. Could we
update this probability if we knew that this student’s parents used drugs? Absolutely. To

24Each of the four outcome combination are disjoint, all probabilities are indeed non-negative, and the
sum of the probabilities is 0.28 + 0.19 + 0.21 + 0.32 = 1.00.
25This is an observational study and no causal conclusions may be reached.
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do so, we limit our view to only those 210 cases where parents used drugs and look at the
fraction where the student uses drugs:

125
P(student = uses given parents = used) = — = 0.60

We call this a conditional probability because we computed the probability under a
condition: parents = used. There are two parts to a conditional probability, the outcome
of interest and the condition. It is useful to think of the condition as information we
know to be true, and this information usually can be described as a known outcome or event.

We separate the text inside our probability notation into the outcome of interest and
the condition:

P(student = uses given parents = used)
125

= P(student = uses | parents = used) = 310 = 0.60 (2.37)

The vertical bar “|” is read as given.
In Equation (2.37), we computed the probability a student uses based on the condition

that at least one parent used as a fraction:

P(student = uses | parents = used)
# times student = uses and parents = used

2.38
# times parents = used ( )

125 0.60
S 210
We considered only those cases that met the condition, parents = used, and then we
computed the ratio of those cases that satisfied our outcome of interest, the student uses.

Counts are not always available for data, and instead only marginal and joint probabil-
ities may be provided. For example, disease rates are commonly listed in percentages rather
than in a count format. We would like to be able to compute conditional probabilities even
when no counts are available, and we use Equation (2.38) as an example demonstrating
this technique.

We considered only those cases that satisfied the condition, parents = used. Of these
cases, the conditional probability was the fraction who represented the outcome of interest,
student = uses. Suppose we were provided only the information in Table 2.13 on the
preceding page, i.e. only probability data. Then if we took a sample of 1000 people, we
would anticipate about 47% or 0.47 x 1000 = 470 would meet our information criterion.
Similarly, we would expect about 28% or 0.28 x 1000 = 280 to meet both the information
criterion and represent our outcome of interest. Thus, the conditional probability could be
computed:

# (student = uses and parents = used)

P(student = uses | parents = used) = 71 " )
parents = use

280 0.28
= 70 = o7 = 060 (2.39)

In Equation (2.39), we examine exactly the fraction of two probabilities, 0.28 and 0.47,
which we can write as

P(student = uses and parents = used) and P(parents = used).

The fraction of these probabilities represents our general formula for conditional probability.
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Conditional Probability
The conditional probability of the outcome of interest A given condition B is
computed as the following:

P(A and B)

PUAIB) = =55

(2.40)

() Exercise 2.41 (a) Write out the following statement in conditional probability nota-
tion: “The probability a random case has parents = not if it is known that student
= not”. Notice that the condition is now based on the student, not the parent.
(b) Determine the probability from part (a). Table 2.13 on page 81 may be helpful.”

() Exercise 2.42 (a) Determine the probability that one of the parents had used drugs
if it is known the student does not use drugs. (b) Using the answers from part (a)
and Exercise 2.41(b), compute

P(parents = used|student = not) + P(parents = not|student = not)

(c) Provide an intuitive argument to explain why the sum in (b) is 1.%"

() Exercise 2.43 The data indicate that drug use of parents and children are associ-
ated. Does this mean the drug use of parents causes the drug use of the students??*

2.2.3 Smallpox in Boston, 1721

The smallpox data set provides a sample of 6,224 individuals from the year 1721 who were
exposed to smallpox in Boston.?” Doctors at the time believed that inoculation, which
involves exposing a person to the disease in a controlled form, could reduce the likelihood
of death.

Each case represents one person with two variables: inoculated and result. The
variable inoculated takes two levels: yes or no, indicating whether the person was inocu-
lated or not. The variable result has outcomes lived or died. These data are summarized
in Tables 2.15 and 2.16.

() Exercise 2.44  Write out, in formal notation, the probability a randomly selected
person who was not inoculated died from smallpox, and find this probability.*"

26(a) P(parent = not|student = not). (b) Equation (2.40) for conditional probability indicates we
should first find P(parents = not and student = not) = 0.32 and P(student = not) = 0.51. Then the
ratio represents the conditional probability: 0.32/0.51 = 0.63.

. e s P = d -
27(a) This probability is (Parentsp(s‘iedder‘:‘tn:f;d)ent not) _ % = 0.37. (b) The total equals 1. (c) Un-

der the condition the student does not use drugs, the parents must either use drugs or not. The complement
still appears to work when conditioning on the same information.

28No. This was an observational study. Two potential confounding variables include income and region.
Can you think of others?

29Fenner F. 1988. Smallpox and Its Eradication (History of International Public Health, No. 6).
Geneva: World Health Organization. ISBN 92-4-156110-6.

30P(result = died | inoculated = no) = Plresult — died and inoculated = no) _ 0.1356 _ () 1411,

P(inoculated = no) 0.9608
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inoculated
Jes  mo  Total
result lived 238 5136 5374
died 6 844 850
Total 244 5980 6224

Table 2.15: Contingency table for the smallpox data set.

inoculated
yes no  Total
result lived 0.0382 0.8252 0.8634
died 0.0010 0.1356 0.1366
Total 0.0392  0.9608 1.0000

Table 2.16: Table proportions for the smallpox data, computed by dividing
each count by the table total, 6224.

() Exercise 2.45 Determine the probability that an inoculated person died from
smallpox. How does this result compare with the result of Exercise 2.447%

() Exercise 2.46 The people of Boston self-selected whether or not to be inoculated.
(a) Is this study observational or was this an experiment? (b) Can we infer any causal
connection using these data? (c¢) What are some potential confounding variables that
might influence whether someone lived or died and also affect whether that person
was inoculated?””

2.2.4 General multiplication rule

Section 2.1.6 introduced the Multiplication Rule for independent processes. Here we provide
the General Multiplication Rule for events that might not be independent.

General Multiplication Rule
If A and B represent two outcomes or events, then

P(A and B) = P(A|B) x P(B)

It is useful to think of A as the outcome of interest and B as the condition.

This General Multiplication Rule is simply a rearrangement of the definition for con-
ditional probability in Equation (2.40) on page 83.

P(result = died and inoculated = yes) __ 0.0010 __ 0.0255. The

P(inoculated = yes) 0.0392
death rate for individuals who were inoculated is only about 1 in 40 while the death rate is about 1 in 7

for those who were not inoculated.
32Brief answers: (a) Observational. (b) No, we cannot infer causation from this observational study.
(c) Accessibility to the latest and best medical care. There are other valid answers for part (c).

31 P(result = died | inoculated = yes) =
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Example 2.47 Consider the smallpox data set. Suppose we are given only two
pieces of information: 96.08% of residents were not inoculated, and 85.88% of the
residents who were not inoculated ended up surviving. How could we compute the

probability that a resident was not inoculated and lived?

We will compute our answer using the General Multiplication Rule and then verify
it using Table 2.16. We want to determine

P(result = lived and inoculated = no)
and we are given that

P(result = lived | inoculated = no) = 0.8588
P(inoculated = no) = 0.9608

Among the 96.08% of people who were not inoculated, 85.88% survived:
P(result = lived and inoculated = no) = 0.8588 x 0.9608 = 0.8251

This is equivalent to the General Multiplication Rule. We can confirm this probability
in Table 2.16 at the intersection of no and lived (with a small rounding error).

Exercise 2.48 Use P(inoculated = yes) = 0.0392 and P(result = lived |
inoculated = yes) = 0.9754 to determine the probability that a person was both
inoculated and lived.*?

Exercise 2.49 If 97.45% of the people who were inoculated lived, what proportion
of inoculated people must have died?**

Sum of conditional probabilities
Let Ay, ..., Aj represent all the disjoint outcomes for a variable or process. Then
if B is an event, possibly for another variable or process, we have:

The rule for complements also holds when an event and its complement are con-
ditioned on the same information:

P(A1|B) + -+ P(Ag|B) = 1

P(A|B) =1 — P(A°|B)

©)

Exercise 2.50 Based on the probabilities computed above, does it appear that
inoculation is effective at reducing the risk of death from smallpox?*®

33The answer is 0.0382, which can be verified using Table 2.16.

34There were only two possible outcomes: lived or died. This means that 100% - 97.45% = 2.55% of
the people who were inoculated died.

35The samples are large relative to the difference in death rates for the “inoculated” and “not inoculated”
groups, so it seems there is an association between inoculated and outcome. However, as noted in the
solution to Exercise 2.46, this is an observational study and we cannot be sure if there is a causal connection.
(Further research has shown that inoculation is effective at reducing death rates.)
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2.2.5 Independence considerations in conditional probability

If two processes are independent, then knowing the outcome of one should provide no
information about the other. We can show this is mathematically true using conditional
probabilities.

() Exercise 2.51 Let X and Y represent the outcomes of rolling two dice. (a) What
is the probability that the first die, X, is 17 (b) What is the probability that both
X and Y are 17 (c¢) Use the formula for conditional probability to compute P(Y =
1|X =1). (d) What is P(Y = 1)? Is this different from the answer from part (c)?
Explain.®°

We can show in Exercise 2.51(c) that the conditioning information has no influence
by using the Multiplication Rule for independence processes:

P(Y=1and X =1)

PY =1|X=1) = BX = 1)
PY =1)x P(X = 1)
P(X = 1)
= P(Y =1)

() Exercise 2.52 Ron is watching a roulette table in a casino and notices that the
last five outcomes were black. He figures that the chances of getting black six times
in a row is very small (about 1/64) and puts his paycheck on red. What is wrong
with his reasoning?’”

2.2.6 Tree diagrams

Tree diagrams are a tool to organize outcomes and probabilities around the structure of
the data. They are most useful when two or more processes occur in a sequence and each
process is conditioned on its predecessors.

The smallpox data fit this description. We see the population as split by inoculation:
yes and no. Following this split, survival rates were observed for each group. This structure
is reflected in the tree diagram shown in Figure 2.17. The first branch for inoculation
is said to be the primary branch while the other branches are secondary.

Tree diagrams are annotated with marginal and conditional probabilities, as shown in
Figure 2.17. This tree diagram splits the smallpox data by inoculation into the yes and no
groups with respective marginal probabilities 0.0392 and 0.9608. The secondary branches
are conditioned on the first, so we assign conditional probabilities to these branches. For
example, the top branch in Figure 2.17 is the probability that result = lived conditioned
on the information that inoculated = yes. We may (and usually do) construct joint
probabilities at the end of each branch in our tree by multiplying the numbers we come

36Brief solutions: (a) 1/6. (b) 1/36. (c) % = 11/—/366 = 1/6. (d) The probability is the
same as in part (¢): P(Y = 1) =1/6. The probability that ¥ = 1 was unchanged by knowledge about X,
which makes sense as X and Y are independent.

37He has forgotten that the next roulette spin is independent of the previous spins. Casinos do employ
this practice; they post the last several outcomes of many betting games to trick unsuspecting gamblers

into believing the odds are in their favor. This is called the gambler’s fallacy.



2.2. CONDITIONAL PROBABILITY (SPECIAL TOPIC) 87

Innoculated Result
_lived, 0.9754 ) 1392%0.9754 = 0.03824
yes, 0.0392
_ died, 0.0246 ) 1392+0.0246 = 0.00096
_lived, 08589 1 9608+0.8589 = 0.82523
no, 0.9608
died, 0.1411

---------------- 0.9608%0.1411 = 0.13557

Figure 2.17: A tree diagram of the smallpox data set.

across as we move from left to right. These joint probabilities are computed using the
General Multiplication Rule:

P(inoculated = yes and result = lived)
= P(inoculated = yes) x P(result = lived|inoculated = yes)
= 0.0392 x 0.9754 = 0.0382

® Example 2.53 Consider the midterm and final for a statistics class. Suppose 13%
of students earned an A on the midterm. Of those students who earned an A on the
midterm, 47% received an A on the final, and 11% of the students who earned lower
than an A on the midterm received an A on the final. You randomly pick up a final
exam and notice the student received an A. What is the probability that this student
earned an A on the midterm?

The end-goal is to find P(midterm = A|final = A). To calculate this conditional
probability, we need the following probabilities:

P(midterm = A and final = A) and P(final = A)

However, this information is not provided, and it is not obvious how to calculate
these probabilities. Since we aren’t sure how to proceed, it is useful to organize
the information into a tree diagram, as shown in Figure 2.18. When constructing a
tree diagram, variables provided with marginal probabilities are often used to create
the tree’s primary branches; in this case, the marginal probabilities are provided for
midterm grades. The final grades, which correspond to the conditional probabilities
provided, will be shown on the secondary branches.

With the tree diagram constructed, we may compute the required probabilities:

P(midterm = A and final = A) = 0.0611

P(final = A)
= P(midterm = other and final = A) + P(midterm = A and final = A)
= 0.0611 4 0.0957 = 0.1568



88

CHAPTER 2. PROBABILITY (SPECIAL TOPIC)

Midterm Final

L A0AT 6134047 = 0.0611
A 013

_.other, 053 4 13+0.53 = 0.0689

AL 6874011 = 0.0957
other, 0.87

other, 0.89

............... 0.87*0.89 = 0.7743

Figure 2.18: A tree diagram describing the midterm and final variables.

The marginal probability, P(final = A), was calculated by adding up all the joint
probabilities on the right side of the tree that correspond to final = A. We may now
finally take the ratio of the two probabilities:

P(midterm = A and final = A)

P(midterm = A|final = A) = P(final — A)
inal =

0.0611
= 01568 = 0.3897

The probability the student also earned an A on the midterm is about 0.39.

(O Exercise 2.54  After an introductory statistics course, 78% of students can suc-

cessfully construct tree diagrams. Of those who can construct tree diagrams, 97%
passed, while only 57% of those students who could not construct tree diagrams
passed. (a) Organize this information into a tree diagram. (b) What is the probabil-
ity that a randomly selected student passed? (c) Compute the probability a student
is able to construct a tree diagram if it is known that she passed.*®

38 . . . Able to construct Pass class
(a) The tree diagram is shown to the right. tree diagrams pass, 0.97
(b) Identify which two joint probabilities represent - L 0.78+0.97 = 0.7566
students who passed, and add them: P(passed) = yee 078 < )
0.7566 + 0.1254 = 0.8820. (c) P(comstruct tree L Jal 098 0.78:0.03 = 0.0234

diagram | passed) = gg235 = 0.8578.
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2.2.7 Bayes’ Theorem

In many instances, we are given a conditional probability of the form
P(statement about variable 1 | statement about variable 2)

but we would really like to know the inverted conditional probability:
P(statement about variable 2 | statement about variable 1)

Tree diagrams can be used to find the second conditional probability when given the first.
However, sometimes it is not possible to draw the scenario in a tree diagram. In these
cases, we can apply a very useful and general formula: Bayes’ Theorem.

We first take a critical look at an example of inverting conditional probabilities where
we still apply a tree diagram.

@® Example 2.55 In Canada, about 0.35% of women over 40 will be diagnosed with
breast cancer in any given year. A common screening test for cancer is the mam-
mogram, but this test is not perfect. In about 11% of patients with breast cancer,
the test gives a false negative: it indicates a woman does not have breast cancer
when she does have breast cancer. Similarly, the test gives a false positive in 7% of
patients who do not have breast cancer: it indicates these patients have breast cancer
when they actually do not.?” If we tested a random woman over 40 for breast cancer
using a mammogram and the test came back positive — that is, the test suggested
the patient has cancer — what is the probability that the patient actually has breast
cancer?

Truth Mammogram

positive, 0.89 5 )035%0.89 = 0.00312

cancer, 0.0035<
tive, 0.11
Jfegatve, oL 0.0035%0.11 = 0.00038
------------------ 0.9965%0.07 = 0.06976
no cancer, 0.996<
tive, 0.93
negalve, P22 L 0.9965%0.93 = 0.92675
Figure 2.19: Tree diagram for Example 2.55, computing the probability a

random patient who tests positive on a mammogram actually has breast
cancer.

Notice that we are given sufficient information to quickly compute the probability of
testing positive if a woman has breast cancer (1.00 — 0.11 = 0.89). However, we seek
the inverted probability of cancer given a positive test result. (Watch out for the
non-intuitive medical language: a positive test result suggests the possible presence

39The probabilities reported here were obtained using studies reported at www.breastcancer.org and
www.ncbi.nlm.nih.gov/pmec/articles/PMC1173421.


http://www.breastcancer.org/symptoms/testing/new_research/20090831b.jsp
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173421/

90 CHAPTER 2. PROBABILITY (SPECIAL TOPIC)

of cancer in a mammogram screening.) This inverted probability may be broken into
two pieces:

P(has BC and mammogram™)
P(has BC | mammogram™) P(mammogram™)

where “has BC” is an abbreviation for the patient actually having breast cancer and
“mammogram™” means the mammogram screening was positive. A tree diagram is
useful for identifying each probability and is shown in Figure 2.19. The probability
the patient has breast cancer and the mammogram is positive is
P(has BC and mammogram™) = P(mammogram™ | has BC)P(has BC)
= 0.89 x 0.0035 = 0.00312

The probability of a positive test result is the sum of the two corresponding scenarios:

P(mammogram™) = P(mammogram™® and has BC) 4+ P(mammogram™ and no BC)
= P(has BC)P(mammogram™ | has BC)
+ P(no BC)P(mammogram™ | no BC)
= 0.00035 x 0.89 + 0.9965 x 0.07 = 0.07288

Then if the mammogram screening is positive for a patient, the probability the patient
has breast cancer is

P(has BC and mammogram™
P(has BC | mammogram™) ( P (mammogram™) )

~0.00312

= —— ~0.042
0.07288 0.0428

That is, even if a patient has a positive mammogram screening, there is still only
a 4% chance that she has breast cancer.

Example 2.55 highlights why doctors often run more tests regardless of a first positive
test result. When a medical condition is rare, a single positive test isn’t generally definitive.

Consider again the last equation of Example 2.55. Using the tree diagram, we can see
that the numerator (the top of the fraction) is equal to the following product:

P(has BC and mammogram™) = P(mammogram™ | has BC)P(has BC)

The denominator — the probability the screening was positive — is equal to the sum of
probabilities for each positive screening scenario:
)

P(mammogram™) = P(mammogram™® and no BC) + P(mammogram™ and has BC)

In the example, each of the probabilities on the right side was broken down into a product
of a conditional probability and marginal probability using the tree diagram.
P(mammogram™) = P(mammogram™ and no BC) + P(mammogram™ and has BC)
= P(mammogram™ | no BC)P(no BC)
+ P(mammogram™ | has BC)P(has BC)
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We can see an application of Bayes’ Theorem by substituting the resulting probability
expressions into the numerator and denominator of the original conditional probability.

)
P(mammogram™ | has BC)P(has BC)
~ P(mammogram™ | no BC)P(no BC) + P(mammogram™ | has BC)P(has BC)

P(has BC | mammogram

Bayes’ Theorem: inverting probabilities
Consider the following conditional probability for variable 1 and variable 2:

P(outcome A; of variable 1 | outcome B of variable 2)

Bayes’ Theorem states that this conditional probability can be identified as the
following fraction:
P(B|A1)P(Ar)

P(B|Ay)P(Ay) + P(B|A3)P(A3) + - - - + P(B|Ay) P(Ay) (2.56)

where Ay, As, ..., and Ay represent all other possible outcomes of the first variable.

Bayes’ Theorem is just a generalization of what we have done using tree diagrams.
The numerator identifies the probability of getting both A; and B. The denominator is
the marginal probability of getting B. This bottom component of the fraction appears long
and complicated since we have to add up probabilities from all of the different ways to get
B. We always completed this step when using tree diagrams. However, we usually did it
in a separate step so it didn’t seem as complex.

To apply Bayes’ Theorem correctly, there are two preparatory steps:

(1) First identify the marginal probabilities of each possible outcome of the first variable:
P(Ay), P(As), ..., P(Ag).

(2) Then identify the probability of the outcome B, conditioned on each possible scenario
for the first variable: P(B|A1), P(B|As2), ..., P(B|Ay).

Once each of these probabilities are identified, they can be applied directly within the
formula.

TIP: Only use Bayes’ Theorem when tree diagrams are difficult
Drawing a tree diagram makes it easier to understand how two variables are con-
nected. Use Bayes’ Theorem only when there are so many scenarios that drawing
a tree diagram would be complex.
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Exercise 2.57 Jose visits campus every Thursday evening. However, some days
the parking garage is full, often due to college events. There are academic events
on 35% of evenings, sporting events on 20% of evenings, and no events on 45% of
evenings. When there is an academic event, the garage fills up about 25% of the time,
and it fills up 70% of evenings with sporting events. On evenings when there are no
events, it only fills up about 5% of the time. If Jose comes to campus and finds the
garage full, what is the probability that there is a sporting event? Use a tree diagram
to solve this problem.*’

Example 2.58 Here we solve the same problem presented in Exercise 2.57, except
this time we use Bayes’ Theorem.

The outcome of interest is whether there is a sporting event (call this A;), and

the condition is that the lot is full (B). Let As represent an academic event and
Aj represent there being no event on campus. Then the given probabilities can be
written as

P(A;) = 0.2 P(A3) = 0.35 P(As) = 0.45
P(B|A;) = 0.7 P(B|As) = 0.25 P(B|As) = 0.05

Bayes’ Theorem can be used to compute the probability of a sporting event (A;)
under the condition that the parking lot is full (B):

P(B|A;)P(A;)
(B|A1)P(A1) + P(B|A2) P(A2) + P(B|A3) P(A3)
(0.7)(0.2)
(0.7)(0.2) + (0.25)(0.35) + (0.05)(0.45)
—0.56

P(Ai|B) = 5

Based on the information that the garage is full, there is a 56% probability that a
sporting event is being held on campus that evening.

Exercise 2.59 Use the information in the previous exercise and example to verify
the probability that there is an academic event conditioned on the parking lot being
full is 0.35.%!

40The tree diagram, with three primary branches, Event Garage full
is shown to the right. Next, we identify two Ul 025
probabilities from the tree diagram. (1) The Academic, 0.35 I 0.3570.25 = 0.0875
probability that there is a sporting event and <ﬂ,ﬁl€?§5"5",”,"1",'?:,‘?:7,50_35*0_75:g_zezs
the garage is full: 0.14. (2) The probability the ~ ~ Ful, 07 0207 =014
garage is full: 0.0875 + 0.14 + 0.0225 = 0.25. ,5,9‘2’,",'193,9,-?9,< T
Then the solution is the ratio of these probabil- Spaces Avalatle. 030,203 =006
ities: % = 0.56. If the garage is full, there None. 045 _FullL 005 4 4540.05 = 0.0225
is a 56% probability that there is a sporting event. '”"717':””<Ra£%5,A‘{a,”ﬁti'?z,‘?;?f’o 15%0.95 < 0.4275

41Short answer:

P(B|A2)P(A1)
P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)
_ (0.25)(0.35)
B (0.7)(0.2) + (0.25)(0.35) + (0.05)(0.45)
=0.35

P(Az2|B) =
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() Exercise 2.60 In Exercise 2.57 and 2.59, you found that if the parking lot is full,
the probability a sporting event is 0.56 and the probability there is an academic event
is 0.35. Using this information, compute P(no event | the lot is full)."”

The last several exercises offered a way to update our belief about whether there is a
sporting event, academic event, or no event going on at the school based on the information
that the parking lot was full. This strategy of updating beliefs using Bayes’ Theorem is
actually the foundation of an entire section of statistics called Bayesian statistics. While
Bayesian statistics is very important and useful, we will not have time to cover much more
of it in this book.

2.3 Sampling from a small population (special topic)

@® Example 2.61 Professors sometimes select a student at random to answer a ques-
tion. If each student has an equal chance of being selected and there are 15 people
in your class, what is the chance that she will pick you for the next question?

If there are 15 people to ask and none are skipping class, then the probability is 1/15,
or about 0.067.

@® Example 2.62 If the professor asks 3 questions, what is the probability that you
will not be selected? Assume that she will not pick the same person twice in a given
lecture.

For the first question, she will pick someone else with probability 14/15. When she
asks the second question, she only has 14 people who have not yet been asked. Thus,
if you were not picked on the first question, the probability you are again not picked
is 13/14. Similarly, the probability you are again not picked on the third question is
12/13, and the probability of not being picked for any of the three questions is

P(not picked in 3 questions)
= P(Ql = not_picked, Q2 = not_picked, Q3 = not_picked.)
14 13 12 12

() Exercise 2.63 What rule permitted us to multiply the probabilities in Exam-
ple 2.62743

42Each probability is conditioned on the same information that the garage is full, so the complement
may be used: 1.00 — 0.56 — 0.35 = 0.09.

43The three probabilities we computed were actually one marginal probability, P(Q1=not_picked), and
two conditional probabilities:

P(Q2 = not_picked | Q1 = not_picked)
P(Q3 = not_picked | Q1 = not_picked, Q2 = not_picked)

Using the General Multiplication Rule, the product of these three probabilities is the probability of not
being picked in 3 questions.
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@® Example 2.64 Suppose the professor randomly picks without regard to who she
already selected, i.e. students can be picked more than once. What is the probability
that you will not be picked for any of the three questions?

Each pick is independent, and the probability of not being picked for any individual
question is 14/15. Thus, we can use the Multiplication Rule for independent processes.

P(not picked in 3 questions)
= P(Q1 = not_picked, Q2 = not_picked, Q3 = not_picked.)
14 14 14

s
15 <15 <15 0818

You have a slightly higher chance of not being picked compared to when she picked
a new person for each question. However, you now may be picked more than once.

() Exercise 2.65 Under the setup of Example 2.64, what is the probability of being
picked to answer all three questions?**

If we sample from a small population without replacement, we no longer have
independence between our observations. In Example 2.62, the probability of not being
picked for the second question was conditioned on the event that you were not picked for
the first question. In Example 2.64, the professor sampled her students with replacement:
she repeatedly sampled the entire class without regard to who she already picked.

() Exercise 2.66 Your department is holding a raffle. They sell 30 tickets and offer
seven prizes. (a) They place the tickets in a hat and draw one for each prize. The
tickets are sampled without replacement, i.e. the selected tickets are not placed back
in the hat. What is the probability of winning a prize if you buy one ticket? (b) What
if the tickets are sampled with replacement?*’

() Exercise 2.67 Compare your answers in Exercise 2.66. How much influence does
the sampling method have on your chances of winning a prize?*°

Had we repeated Exercise 2.66 with 300 tickets instead of 30, we would have found
something interesting: the results would be nearly identical. The probability would be
0.0233 without replacement and 0.0231 with replacement. When the sample size is only
a small fraction of the population (under 10%), observations are nearly independent even
when sampling without replacement.

44 P(not being picked on any of the three questions) = (%)3 = 0.00030.

45(a) First determine the probability of not winning. The tickets are sampled without replacement,
which means the probability you do not win on the first draw is 29/30, 28/29 for the second, ..., and
23/24 for the seventh. The probability you win no prize is the product of these separate probabilities:
23/30. That is, the probability of winning a prize is 1 — 23/30 = 7/30 = 0.233. (b) When the tickets are
sampled with replacement, there are seven independent draws. Again we first find the probability of not
winning a prize: (29/30)7 = 0.789. Thus, the probability of winning (at least) one prize when drawing
with replacement is 0.211.

46There is about a 10% larger chance of winning a prize when using sampling without replacement.
However, at most one prize may be won under this sampling procedure.



2.4. RANDOM VARIABLES (SPECIAL TOPIC) 95

2.4 Random variables (special topic)

® Example 2.68 Two books are assigned for a statistics class: a textbook and its
corresponding study guide. The university bookstore determined 20% of enrolled
students do not buy either book, 55% buy the textbook, and 25% buy both books,
and these percentages are relatively constant from one term to another. If there are
100 students enrolled, how many books should the bookstore expect to sell to this
class?

Around 20 students will not buy either book (0 books total), about 55 will buy one
book (55 books total), and approximately 25 will buy two books (totaling 50 books
for these 25 students). The bookstore should expect to sell about 105 books for this
class.

() Exercise 2.69 Would you be surprised if the bookstore sold slightly more or less
than 105 books?*”

@® Example 2.70 The textbook costs $137 and the study guide $33. How much rev-
enue should the bookstore expect from this class of 100 students?

About 55 students will just buy a textbook, providing revenue of
$137 x 55 = $7,535

The roughly 25 students who buy both the textbook and the study guide would pay
a total of

($137 + $33) x 25 = $170 x 25 = $4, 250

Thus, the bookstore should expect to generate about $7,535 + $4,250 = $11,785
from these 100 students for this one class. However, there might be some sampling
variability so the actual amount may differ by a little bit.

@® Example 2.71 What is the average revenue per student for this course?

The expected total revenue is $11,785, and there are 100 students. Therefore the
expected revenue per student is $11,785/100 = $117.85.

2.4.1 Expectation

We call a variable or process with a numerical outcome a random variable, and we usually
represent this random variable with a capital letter such as X, Y, or Z. The amount of
money a single student will spend on her statistics books is a random variable, and we
represent it by X.

Random variable
A random process or variable with a numerical outcome.

47If they sell a little more or a little less, this should not be a surprise. Hopefully Chapter 1 helped make
clear that there is natural variability in observed data. For example, if we would flip a coin 100 times, it
will not usually come up heads exactly half the time, but it will probably be close.
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Figure 2.20: Probability distribution for the bookstore’s revenue from a
single student. The distribution balances on a triangle representing the
average revenue per student.

) 1 2 3 Total
T; $0 $137 $170 -
P(X=z;) 020 0.55 025 1.00

Table 2.21: The probability distribution for the random variable X, repre-
senting the bookstore’s revenue from a single student.

The possible outcomes of X are labeled with a corresponding lower case letter x and
subscripts. For example, we write 1 = $0, o = $137, and xz3 = $170, which occur with
probabilities 0.20, 0.55, and 0.25. The distribution of X is summarized in Figure 2.20 and
Table 2.21.

We computed the average outcome of X as $117.85 in Example 2.71. We call this
average the expected value of X, denoted by E(X). The expected value of a random
variable is computed by adding each outcome weighted by its probability:

E(X)=0x P(X =0)+ 137 x P(X = 137) + 170 x P(X = 170)
— 0% 0.20 + 137 x 0.55 + 170 x 0.25 = 117.85

Expected value of a Discrete Random Variable

If X takes outcomes 1, ..., x with probabilities P(X = 1), ..., P(X = xy), the
expected value of X is the sum of each outcome multiplied by its corresponding
probability:

EX)=ax1 xP(X=x1)+ - +a5 x P(X =2ay)

k
= Z 2 P(X = ;) (2.72)

The Greek letter 1 may be used in place of the notation E(X).
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0 137 170
117.85

Figure 2.22: A weight system representing the probability distribution for
X. The string holds the distribution at the mean to keep the system bal-
anced.

u

Figure 2.23: A continuous distribution can also be balanced at its mean.

The expected value for a random variable represents the average outcome. For exam-
ple, E(X) = 117.85 represents the average amount the bookstore expects to make from a
single student, which we could also write as p = 117.85.

It is also possible to compute the expected value of a continuous random variable (see
Section 2.5). However, it requires a little calculus and we save it for a later class.”®

In physics, the expectation holds the same meaning as the center of gravity. The
distribution can be represented by a series of weights at each outcome, and the mean
represents the balancing point. This is represented in Figures 2.20 and 2.22. The idea of a
center of gravity also expands to continuous probability distributions. Figure 2.23 shows a
continuous probability distribution balanced atop a wedge placed at the mean.

48, = [z f(x)dz where f(z) represents a function for the density curve.
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2.4.2 Variability in random variables

Suppose you ran the university bookstore. Besides how much revenue you expect to gen-
erate, you might also want to know the volatility (variability) in your revenue.

The variance and standard deviation can be used to describe the variability of a
random variable. Section 1.6.4 introduced a method for finding the variance and standard
deviation for a data set. We first computed deviations from the mean (z; — 1), squared
those deviations, and took an average to get the variance. In the case of a random variable,
we again compute squared deviations. However, we take their sum weighted by their
corresponding probabilities, just like we did for the expectation. This weighted sum of
squared deviations equals the variance, and we calculate the standard deviation by taking
the square root of the variance, just as we did in Section 1.6.4.

General variance formula
If X takes outcomes 1, ..., x; with probabilities P(X = z1), ..., P(X = x}) and
expected value p = FE(X), then the variance of X, denoted by Var(X) or the
symbol o2, is
o =(x; —p)? xP(X =x1) +---
ot (o — ) X P(X = )

k
=3 ;- w)*P(X = ;) (2.73)

Jj=1

The standard deviation of X, labeled o, is the square root of the variance.

® Example 2.74 Compute the expected value, variance, and standard deviation of
X, the revenue of a single statistics student for the bookstore.

It is useful to construct a table that holds computations for each outcome separately,
then add up the results.

) 1 2 3 Total
T; $0 $137 $170
P(X =ux;) 0.20 0.55 0.25

x; X P(X = ;) 0 7535 42,50 117.85

Thus, the expected value is p = 117.85, which we computed earlier. The variance
can be constructed by extending this table:

7 1 2 3 Total
T; $0 $137 $170
P(X =) 0.20 0.55 0.25
x; X P(X = ;) 0 75.35 42.50 117.85
T;— b -117.85 19.15 52.15
(x; — p)? 13888.62 366.72 2719.62

(; —p)?x P(X =a;) 27777 2017  679.9 3659.3

The variance of X is o2

V3659.3 = $60.49.

= 3659.3, which means the standard deviation is ¢ =
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(O Exercise 2.75 The bookstore also offers a chemistry textbook for $159 and a
book supplement for $41. From past experience, they know about 25% of chemistry
students just buy the textbook while 60% buy both the textbook and supplement.*’

(a) What proportion of students don’t buy either book? Assume no students buy
the supplement without the textbook.

(b) Let Y represent the revenue from a single student. Write out the probability
distribution of Y, i.e. a table for each outcome and its associated probability.

(¢) Compute the expected revenue from a single chemistry student.

(d) Find the standard deviation to describe the variability associated with the rev-
enue from a single student.

2.4.3 Linear combinations of random variables

So far, we have thought of each variable as being a complete story in and of itself. Sometimes
it is more appropriate to use a combination of variables. For instance, the amount of time
a person spends commuting to work each week can be broken down into several daily
commutes. Similarly, the total gain or loss in a stock portfolio is the sum of the gains and
losses in its components.

@® Example 2.76 John travels to work five days a week. We will use X; to represent
his travel time on Monday, X5 to represent his travel time on Tuesday, and so on.
Write an equation using X7, ..., X5 that represents his travel time for the week,
denoted by W.

His total weekly travel time is the sum of the five daily values:
W=X1+Xo+ X5+ X4+ X5

Breaking the weekly travel time W into pieces provides a framework for understanding
each source of randomness and is useful for modeling W.

® Example 2.77 It takes John an average of 18 minutes each day to commute to
work. What would you expect his average commute time to be for the week?

We were told that the average (i.e. expected value) of the commute time is 18 minutes
per day: E(X;) = 18. To get the expected time for the sum of the five days, we can
add up the expected time for each individual day:
E(W)=E(X;+ Xo+ X3+ X4 + X5)
= E(X1) + E(X2) + E(X3) + E(X4) + E(X5)
=18 + 18 + 18 + 18 + 18 = 90 minutes

49(a) 100% - 25% - 60% = 15% of students do not buy any books for the class. Part (b) is represented
by the first two lines in the table below. The expectation for part (c) is given as the total on the line
yi X P(Y = y;). The result of part (d) is the square-root of the variance listed on in the total on the last

line: o0 = y/Var(Y) = $69.28.

i (scenario) 1 (noBook) 2 (textbook) 3 (both) Total
Yi 0.00 159.00 200.00
P(Y =) 0.15 0.25 0.60
i X P(Y =y) 0.00 39.75 12000 E(Y) = 159.75
E(Y) -159.75 0.75 40.25
(yz - E(Y))2 25520.06 0.56  1620.06

(yi — E(Y))2 x P(Y) 3828.0 0.1 972.0  Var(Y) = 4800
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The expectation of the total time is equal to the sum of the expected individual times.
More generally, the expectation of a sum of random variables is always the sum of
the expectation for each random variable.

() Exercise 2.78 Elena is selling a TV at a cash auction and also intends to buy
a toaster oven in the auction. If X represents the profit for selling the TV and Y
represents the cost of the toaster oven, write an equation that represents the net
change in Elena’s cash.”’

() Exercise 2.79 Based on past auctions, Elena figures she should expect to make
about $175 on the TV and pay about $23 for the toaster oven. In total, how much
should she expect to make or spend?”’

() Exercise 2.80 Would you be surprised if John’s weekly commute wasn’t exactly
90 minutes or if Elena didn’t make exactly $152? Explain.”?

Two important concepts concerning combinations of random variables have so far
been introduced. First, a final value can sometimes be described as the sum of its parts
in an equation. Second, intuition suggests that putting the individual average values into
this equation gives the average value we would expect in total. This second point needs
clarification — it is guaranteed to be true in what are called linear combinations of random
variables.

A linear combination of two random variables X and Y is a fancy phrase to describe
a combination

aX +bY

where a and b are some fixed and known numbers. For John’s commute time, there were
five random variables — one for each work day — and each random variable could be written
as having a fixed coefficient of 1:

1X1 +1Xo4+1X3+1X4 +1X5

For Elena’s net gain or loss, the X random variable had a coefficient of +1 and the Y
random variable had a coefficient of -1.

When considering the average of a linear combination of random variables, it is safe
to plug in the mean of each random variable and then compute the final result. For a few
examples of nonlinear combinations of random variables — cases where we cannot simply
plug in the means — see the footnote.”®

50She will make X dollars on the T'V but spend Y dollars on the toaster oven: X — Y.

SIE(X —Y) = BE(X) — E(Y) = 175 — 23 = $152. She should expect to make about $152.

52No, since there is probably some variability. For example, the traffic will vary from one day to next,
and auction prices will vary depending on the quality of the merchandise and the interest of the attendees.

53If X and Y are random variables, consider the following combinations: X1+Y, X x Y, X/Y. In such
cases, plugging in the average value for each random variable and computing the result will not generally
lead to an accurate average value for the end result.
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Linear combinations of random variables and the average result
If X and Y are random variables, then a linear combination of the random variables
is given by

aX +bY (2.81)

where a and b are some fixed numbers. To compute the average value of a linear
combination of random variables, plug in the average of each individual random
variable and compute the result:

ax E(X)+bx E(Y)

Recall that the expected value is the same as the mean, e.g. E(X) = ux.

® Example 2.82 Leonard has invested $6000 in Google Inc. (stock ticker: GOOG)
and $2000 in Exxon Mobil Corp. (XOM). If X represents the change in Google’s
stock next month and Y represents the change in Exxon Mobil stock next month,
write an equation that describes how much money will be made or lost in Leonard’s
stocks for the month.

For simplicity, we will suppose X and Y are not in percents but are in decimal form
(e.g. if Google’s stock increases 1%, then X = 0.01; or if it loses 1%, then X = —0.01).
Then we can write an equation for Leonard’s gain as

$6000 x X + $2000 x Y

If we plug in the change in the stock value for X and Y, this equation gives the change
in value of Leonard’s stock portfolio for the month. A positive value represents a gain,
and a negative value represents a loss.

() Exercise 2.83 Suppose Google and Exxon Mobil stocks have recently been rising
2.1% and 0.4% per month, respectively. Compute the expected change in Leonard’s
stock portfolio for next month.”

() Exercise 2.84 You should have found that Leonard expects a positive gain in
Exercise 2.83. However, would you be surprised if he actually had a loss this month?°°

2.4.4 Variability in linear combinations of random variables

Quantifying the average outcome from a linear combination of random variables is helpful,
but it is also important to have some sense of the uncertainty associated with the total out-
come of that combination of random variables. The expected net gain or loss of Leonard’s
stock portfolio was considered in Exercise 2.83. However, there was no quantitative discus-
sion of the volatility of this portfolio. For instance, while the average monthly gain might
be about $134 according to the data, that gain is not guaranteed. Figure 2.24 shows the
monthly changes in a portfolio like Leonard’s during the 36 months from 2009 to 2011.
The gains and losses vary widely, and quantifying these fluctuations is important when
investing in stocks.

54 F($6000 x X + $2000 x Y') = $6000 x 0.021 + $2000 x 0.004 = $134.
55No. While stocks tend to rise over time, they are often volatile in the short term.
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Figure 2.24: The change in a portfolio like Leonard’s for the 36 months
from 2008 to 2010, where $6000 is in Google’s stock and $2000 is in Exxon

Mobil’s.
Mean (Z) Standard deviation (s) Variance (s?)
GOOG 0.0210 0.0846 0.0072
XOM 0.0038 0.0519 0.0027

Table 2.25: The mean, standard deviation, and variance of the GOOG and
XOM stocks. These statistics were estimated from historical stock data, so
notation used for sample statistics has been used.

Just as we have done in many previous cases, we use the variance and standard
deviation to describe the uncertainty associated with Leonard’s monthly returns. To do
so, the variances of each stock’s monthly return will be useful, and these are shown in
Table 2.25. The stocks’ returns are nearly independent.

Here we use an equation from probability theory to describe the uncertainty of Leonard’s
monthly returns; we leave the proof of this method to a dedicated probability course. The
variance of a linear combination of random variables can be computed by plugging in the
variances of the individual random variables and squaring the coefficients of the random
variables:

Var(aX +bY) = a® x Var(X) + b* x Var(Y)

It is important to note that this equality assumes the random variables are independent; if
independence doesn’t hold, then more advanced methods are necessary. This equation can
be used to compute the variance of Leonard’s monthly return:

Var(6000 x X + 2000 x Y) = 6000? x Var(X) + 2000% x Var(Y)
= 36,000, 000 x 0.0072 + 4,000,000 x 0.0027
= 270,000

The standard deviation is computed as the square root of the variance: /270,000 = $520.
While an average monthly return of $134 on an $8000 investment is nothing to scoff at,
the monthly returns are so volatile that Leonard should not expect this income to be very
stable.
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Variability of linear combinations of random variables

The variance of a linear combination of random variables may be computed by
squaring the constants, substituting in the variances for the random variables, and
computing the result:

Var(aX +bY) = a* x Var(X) + b* x Var(Y)

This equation is valid as long as the random variables are independent of each
other. The standard deviation of the linear combination may be found by taking
the square root of the variance.

@® Example 2.85 Suppose John’s daily commute has a standard deviation of 4 min-
utes. What is the uncertainty in his total commute time for the week?

The expression for John’s commute time was
X1+ Xo+ X3+ Xy + X5

Each coefficient is 1, and the variance of each day’s time is 42 = 16. Thus, the
variance of the total weekly commute time is

variance = 12 x164+12x16+12x16+1°x 16+ 12 x 16 =5 x 16 = 80
standard deviation = v/ variance = V80 = 8.94

The standard deviation for John’s weekly work commute time is about 9 minutes.

() Exercise 2.86 The computation in Example 2.85 relied on an important assump-
tion: the commute time for each day is independent of the time on other days of that
week. Do you think this is valid? Explain.”®

() Exercise 2.87 Consider Elena’s two auctions from Exercise 2.78 on page 100. Sup-
pose these auctions are approximately independent and the variability in auction
prices associated with the TV and toaster oven can be described using standard
deviations of $25 and $8. Compute the standard deviation of Elena’s net gain.””

Consider again Exercise 2.87. The negative coefficient for Y in the linear combination
was eliminated when we squared the coefficients. This generally holds true: negatives in a
linear combination will have no impact on the variability computed for a linear combination,
but they do impact the expected value computations.

560One concern is whether traffic patterns tend to have a weekly cycle (e.g. Fridays may be worse than
other days). If that is the case, and John drives, then the assumption is probably not reasonable. However,
if John walks to work, then his commute is probably not affected by any weekly traffic cycle.

57The equation for Elena can be written as

I xX+(-1)xY
The variances of X and Y are 625 and 64. We square the coefficients and plug in the variances:
(1)2 x Var(X) + (=1)% x Var(Y) =1 x 625 + 1 x 64 = 689

The variance of the linear combination is 689, and the standard deviation is the square root of 689: about
$26.25.
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2.5 Continuous distributions (special topic)

® Example 2.88 Figure 2.26 shows a few different hollow histograms of the variable

height for 3 million US adults from the mid-90’s.”® How does changing the number
of bins allow you to make different interpretations of the data?

Adding more bins provides greater detail. This sample is extremely large, which
is why much smaller bins still work well. Usually we do not use so many bins with
smaller sample sizes since small counts per bin mean the bin heights are very volatile.

g —
—
r T T 1 r T T 1
140 160 180 200 140 160 180 200
height (cm) height (cm)
r T T 1 r T T 1
140 160 180 200 140 160 180 200
height (cm) height (cm)

Figure 2.26: Four hollow histograms of US adults heights with varying bin
widths.

@® Example 2.89 What proportion of the sample is between 180 cm and 185 cm tall

(about 5’117 to 6’'1”)?

We can add up the heights of the bins in the range 180 cm and 185 and divide by
the sample size. For instance, this can be done with the two shaded bins shown in
Figure 2.27. The two bins in this region have counts of 195,307 and 156,239 people,
resulting in the following estimate of the probability:

195307 + 156239

=0.1172
3,000,000 0-117

This fraction is the same as the proportion of the histogram’s area that falls in the
range 180 to 185 cm.

58 This sample can be considered a simple random sample from the US population. It relies on the USDA
Food Commodity Intake Database.
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height (cm)

Figure 2.27: A histogram with bin sizes of 2.5 cm. The shaded region
represents individuals with heights between 180 and 185 cm.

2.5.1 From histograms to continuous distributions

Examine the transition from a boxy hollow histogram in the top-left of Figure 2.26 to the
much smoother plot in the lower-right. In this last plot, the bins are so slim that the hollow
histogram is starting to resemble a smooth curve. This suggests the population height as
a continuous numerical variable might best be explained by a curve that represents the
outline of extremely slim bins.

This smooth curve represents a probability density function (also called a density
or distribution), and such a curve is shown in Figure 2.28 overlaid on a histogram of the
sample. A density has a special property: the total area under the density’s curve is 1.

[ I I |
140 160 180 200

height (cm)

Figure 2.28: The continuous probability distribution of heights for US
adults.
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Figure 2.29: Density for heights in the US adult population with the area
between 180 and 185 cm shaded. Compare this plot with Figure 2.27.

2.5.2 Probabilities from continuous distributions

We computed the proportion of individuals with heights 180 to 185 cm in Example 2.89
as a fraction:

number of people between 180 and 185

total sample size

We found the number of people with heights between 180 and 185 cm by determining the
fraction of the histogram’s area in this region. Similarly, we can use the area in the shaded
region under the curve to find a probability (with the help of a computer):

P(height between 180 and 185) = area between 180 and 185 = 0.1157

The probability that a randomly selected person is between 180 and 185 cm is 0.1157. This
is very close to the estimate from Example 2.89: 0.1172.

() Exercise 2.90 Three US adults are randomly selected. The probability a single
adult is between 180 and 185 cm is 0.1157."”
(a) What is the probability that all three are between 180 and 185 cm tall?
(b) What is the probability that none are between 180 and 185 cm?

@® Example 2.91 What is the probability that a randomly selected person is exactly
180 cm? Assume you can measure perfectly.

This probability is zero. A person might be close to 180 cm, but not exactly 180 cm
tall. This also makes sense with the definition of probability as area; there is no area
captured between 180 cm and 180 cm.

() Exercise 2.92 Suppose a person’s height is rounded to the nearest centimeter. Is
there a chance that a random person’s measured height will be 180 cm?""

59Brief answers: (a) 0.1157 x 0.1157 x 0.1157 = 0.0015. (b) (1 — 0.1157)3 = 0.692
60This has positive probability. Anyone between 179.5 cm and 180.5 cm will have a measured height
of 180 cm. This is probably a more realistic scenario to encounter in practice versus Example 2.91.
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2.6 Exercises

2.6.1 Defining probability

2.1 True or false. Determine if the statements below are true or false, and explain your
reasoning.

(a) If a fair coin is tossed many times and the last eight tosses are all heads, then the chance that
the next toss will be heads is somewhat less than 50%.

(b) Drawing a face card (jack, queen, or king) and drawing a red card from a full deck of playing
cards are mutually exclusive events.

(¢) Drawing a face card and drawing an ace from a full deck of playing cards are mutually exclusive
events.

2.2 Roulette wheel. The game of roulette involves spinning a wheel with 38 slots: 18 red, 18
black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each
slot has an equal chance of capturing the ball.®!

(a) You watch a roulette wheel spin 3 consecutive times and the ball
lands on a red slot each time. What is the probability that the ball
will land on a red slot on the next spin?

(b) You watch a roulette wheel spin 300 consecutive times and the ball
lands on a red slot each time. What is the probability that the ball
will land on a red slot on the next spin?

(c) Are you equally confident of your answers to parts (a) and (b)?
Why or why not?

2.3 Four games, one winner. Below are four versions of the same game. Your archnemisis
gets to pick the version of the game, and then you get to choose how many times to flip a coin: 10
times or 100 times. Identify how many coin flips you should choose for each version of the game.
Explain your reasoning.

(a) If the proportion of heads is larger than 0.60, you win $1.

(b) If the proportion of heads is larger than 0.40, you win $1.
(c) If the proportion of heads is between 0.40 and 0.60, you win $1.
(d) If the proportion of heads is smaller than 0.30, you win $1.

2.4 Backgammon. Backgammon is a board game for two players in which the playing pieces
are moved according to the roll of two dice. Players win by removing all of their pieces from the
board, so it is usually good to roll high numbers. You are playing backgammon with a friend and
you roll two 6s in your first roll and two 6s in your second roll. Your friend rolls two 3s in his first
roll and again in his second row. Your friend claims that you are cheating, because rolling double
6s twice in a row is very unlikely. Using probability, show that your rolls were just as likely as
his.

2.5 Coin flips. If you flip a fair coin 10 times, what is the probability of

(a) getting all tails? (b) getting all heads? (c) getting at least one tails?

2.6 Dice rolls. If you roll a pair of fair dice, what is the probability of

(a) getting a sum of 17 (b) getting a sum of 57 (c) getting a sum of 127

61Photo by Hakan Dahlstrém on Flickr, Roulette wheel.


http://www.flickr.com/photos/dahlstroms/5276348473
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2.7 Swing voters. A 2012 Pew Research survey asked 2,373 randomly sampled registered voters
their political affiliation (Republican, Democrat, or Independent) and whether or not they identify
as swing voters. 35% of respondents identified as Independent, 23% identified as swing voters, and
11% identified as both."?

Are being Independent and being a swing voter disjoint, i.e. mutually exclusive?

(b) Draw a Venn diagram summarizing the variables and their associated probabilities.
(c) What percent of voters are Independent but not swing voters?
(d) What percent of voters are Independent or swing voters?

What percent of voters are neither Independent nor swing voters?

Is the event that someone is a swing voter independent of the event that someone is a political
Independent?

2.8 Poverty and language. The American Community Survey is an ongoing survey that
provides data every year to give communities the current information they need to plan investments
and services. The 2010 American Community Survey estimates that 14.6% of Americans live below
the poverty line, 20.7% speak a language other that English at home, and 4.2% fall into both
categories."”

(a) Are living below the poverty line and speaking a language other than English at home disjoint?
(b
(c
(d

)
) Draw a Venn diagram summarizing the variables and their associated probabilities.

) What percent of Americans live below the poverty line and only speak English at home?

) What percent of Americans live below the poverty line or speak a language other than English
at home?

—
@)
~

What percent of Americans live above the poverty line and only speak English at home?

—~
)
—

Is the event that someone lives below the poverty line independent of the event that the person
speaks a language other than English at home?

2.9 Disjoint vs. independent. In parts (a) and (b), identify whether the events are disjoint,
independent, or neither (events cannot be both disjoint and independent).

a) You and a randomly selected student from your class both earn A’s in this course.
Y d domly selected student f lass both A’s in thi
(b) You and your class study partner both earn A’s in this course.

(c) If two events can occur at the same time, must they be dependent?

2.10 Guessing on an exam. In a multiple choice exam, there are 5 questions and 4 choices
for each question (a, b, ¢, d). Nancy has not studied for the exam at all and decides to randomly
guess the answers. What is the probability that:

(a) the first question she gets right is the 5" question?
(b) she gets all of the questions right?

(c) she gets at least one question right?

62Pew Research Center, With Voters Focused on Economy, Obama Lead Narrows, data collected between
April 4-15, 2012.
63U.S. Census Bureau, 2010 American Community Survey 1-Year Estimates, Characteristics of People

by Language Spoken at Home.


http://www.people-press.org/files/legacy-pdf/4-17-12%20Political%20Release%20.pdf
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_1YR_S1603&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_1YR_S1603&prodType=table
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2.11 Educational attainment of couples. The table below shows the distribution of educa-
tion level attained by US residents by gender based on data collected during the 2010 American
Community Survey."”*

Gender
Male Female
Less than 9th grade 0.06 0.06
9th to 12th grade, no diploma 0.10 0.09
Highest High school graduate, GED, or alternative 0.30 0.20
education  Some college, no degree 0.22 0.24
attained Associate’s degree 0.06 0.08
Bachelor’s degree 0.16 0.17
Graduate or professional degree 0.09 0.09
Total 1.00 1.00

(a) What is the probability that a randomly chosen man has at least a Bachelor’s degree?
(b) What is the probability that a randomly chosen woman has at least a Bachelor’s degree?

(c) What is the probability that a man and a woman getting married both have at least a Bach-
elor’s degree? Note any assumptions you must make to answer this question.

(d) If you made an assumption in part (c), do you think it was reasonable? If you didn’t make an
assumption, double check your earlier answer and then return to this part.

2.12  School absences. Data collected at elementary schools in DeKalb County, GA suggest
that each year roughly 25% of students miss exactly one day of school, 15% miss 2 days, and 28%
miss 3 or more days due to sickness.’”

(a) What is the probability that a student chosen at random doesn’t miss any days of school due
to sickness this year?

(b) What is the probability that a student chosen at random misses no more than one day?

(c) What is the probability that a student chosen at random misses at least one day?

(d) If a parent has two kids at a DeKalb County elementary school, what is the probability that
neither kid will miss any school? Note any assumption you must make to answer this question.

(e) If a parent has two kids at a DeKalb County elementary school, what is the probability that
that both kids will miss some school, i.e. at least one day? Note any assumption you make.

(f) If you made an assumption in part (d) or (e), do you think it was reasonable? If you didn’t
make any assumptions, double check your earlier answers.

2.13 Grade distributions. Each row in the table below is a proposed grade distribution for a
class. Identify each as a valid or invalid probability distribution, and explain your reasoning.

Grades
A B C D F
03 03 03 02 0.1
0 0 1 0 0
03 03 0.3 0 0

e N =
o &

d 03 05 02 01 -01

e) 02 04 02 01 01

f) 0 -0.1 1.1 0 0
64U.S. Census Bureau, 2010 American Community Survey 1-Year Estimates, Educational Attainment.
653.S. Mizan et al. “Absence, Extended Absence, and Repeat Tardiness Related to Asthma Status among

Elementary School Children”. In: Journal of Asthma 48.3 (2011), pp. 228-234.


http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_1YR_S1501&prodType=table
http://www.ncbi.nlm.nih.gov/pubmed/21338252
http://www.ncbi.nlm.nih.gov/pubmed/21338252
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2.14 Weight and health coverage, Part 1. The Behavioral Risk Factor Surveillance System
(BRFSS) is an annual telephone survey designed to identify risk factors in the adult population and
report emerging health trends. The following table summarizes two variables for the respondents:
weight status using body mass index (BMI) and health coverage, which describes whether each
respondent had health insurance.’®

Weight Status

Neither overweight Overweight Obese
nor obese (BMI < 25) (25 < BMI < 30) (BMI > 30) Total
Health Yes 134,801 141,699 107,301 383,801
Coverage  No 15,098 15,327 14,412 44,837
Total 149,899 157,026 121,713 428,638

(a) If we draw one individual at random, what is the probability that the respondent is overweight
and doesn’t have health coverage?

(b) If we draw one individual at random, what is the probability that the respondent is overweight
or doesn’t have health coverage?

2.6.2 Conditional probability

2.15 Joint and conditional probabilities. P(A) = 0.3, P(B) = 0.7

1
a) Can you compute P(A and B) if you only know P(A) and P(B)?
)

(b) Assuming that events A and B arise from independent random processes,

i. what is P(A and B)?
ii. what is P(A or B)?
iii. what is P(A|B)?
(c) If we are given that P(A and B) = 0.1, are the random variables giving rise to events A and

B independent?
(d) If we are given that P(A and B) = 0.1, what is P(A|B)?

2.16 PB & J. Suppose 80% of people like peanut butter, 89% like jelly, and 78% like both.
Given that a randomly sampled person likes peanut butter, what’s the probability that he also
likes jelly?

2.17 Global warming. A 2010 Pew Research poll asked 1,306 Americans “From what you’ve
read and heard, is there solid evidence that the average temperature on earth has been getting
warmer over the past few decades, or not?”. The table below shows the distribution of responses
by party and ideology, where the counts have been replaced with relative frequencies.®”

Response

Earth is Not Don’t Know
warming warming Refuse Total
Conservative Republican 0.11 0.20 0.02 0.33
Party and  Mod/Lib Republican 0.06 0.06 0.01 0.13
Ideology Mod/Cons Democrat 0.25 0.07 0.02 0.34
Liberal Democrat 0.18 0.01 0.01 0.20
Total 0.60 0.34 0.06 1.00

66Office of Surveillance, Epidemiology, and Laboratory Services Behavioral Risk Factor Surveillance
System, BRFSS 2010 Survey Data.

67Pew Research Center, Majority of Republicans No Longer See Evidence of Global Warming, data
collected on October 27, 2010.


http://www.cdc.gov/brfss/technical_infodata/surveydata/2010.htm
http://people-press.org/reports/questionnaires/669.pdf
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What is the probability that a randomly chosen respondent believes the earth is warming or
is a liberal Democrat?

What is the probability that a randomly chosen respondent believes the earth is warming given
that he is a liberal Democrat?

What is the probability that a randomly chosen respondent believes the earth is warming given
that he is a conservative Republican?

Does it appear that whether or not a respondent believes the earth is warming is independent
of their party and ideology? Explain your reasoning.

What is the probability that a randomly chosen respondent is a moderate/liberal Republican
given that he does not believe that the earth is warming?

2.18 Weight and health coverage, Part Il. Exercise 2.14 introduced a contingency table
summarizing the relationship between weight status, which is determined based on body mass
index (BMI), and health coverage for a sample of 428,638 Americans. In the table below, the
counts have been replaced by relative frequencies (probability estimates).

Weight Status

Neither overweight Overweight Obese
nor obese (BMI < 25) (25 < BMI < 30) (BMI > 30) Total
Health Yes 0.3145 0.3306 0.2503 0.8954
Coverage No 0.0352 0.0358 0.0336 0.1046
Total 0.3497 0.3664 0.2839 1.0000

What is the probability that a randomly chosen individual is obese?
What is the probability that a randomly chosen individual is obese given that he has health
coverage?

What is the probability that a randomly chosen individual is obese given that he doesn’t have
health coverage?

(d) Do being overweight and having health coverage appear to be independent?

2.19 Burger preferences. A 2010 SurveyUSA poll asked 500 Los Angeles residents, “What

is

the best hamburger place in Southern California? Five Guys Burgers? In-N-Out Burger?

Fat Burger? Tommy’s Hamburgers? Umami Burger? Or somewhere else?” The distribution of
responses by gender is shown below.”

~ o~
T
=

—~
o
~

Gender

Male Female Total

Five Guys Burgers 5 6 11

In-N-Out Burger 162 181 343

Best Fat Burger 10 12 22
hamburger  Tommy’s Hamburgers 27 27 54
place Umami Burger 5 1 6
Other 26 20 46

Not Sure 13 5 18

Total 248 252 500

What is the probability that a randomly chosen male likes In-N-Out the best?
What is the probability that a randomly chosen female likes In-N-Out the best?

What is the probability that a man and a woman who are dating both like In-N-Out the best?
Note any assumption you make and evaluate whether you think that assumption is reasonable.

(d) What is the probability that a randomly chosen person likes Umami best or that person is

female?

68SurveyUSA, Results of SurveyUSA News Poll #17718, data collected on December 2, 2010.


http://www.surveyusa.com/client/PollPrint.aspx?g=3f69bdaa-a964-4b39-b34a-cab2112e3e31&d=0
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2.20 Assortative mating. Assortative mating is a nonrandom mating pattern where individuals
with similar genotypes and/or phenotypes mate with one another more frequently than what would
be expected under a random mating pattern. Researchers studying this topic collected data on
eye colors of 204 Scandinavian men and their female partners. The table below summarizes the
results. For simplicity, we only include heterosexual relationships in this exercise."’

Partner (female)
Blue Brown Green Total

Blue 78 23 13 114
Brown 19 23 12 54
Self (male) ¢ cen 11 9 16 36
Total 108 55 a1 204

(a) What is the probability that a randomly chosen male respondent or his partner has blue eyes?

(b) What is the probability that a randomly chosen male respondent with blue eyes has a partner
with blue eyes?

(c) What is the probability that a randomly chosen male respondent with brown eyes has a partner
with blue eyes? What about the probability of a randomly chosen male respondent with green
eyes having a partner with blue eyes?

(d) Does it appear that the eye colors of male respondents and their partners are independent?
Explain your reasoning.

2.21 Drawing box plots. After an introductory statistics course, 80% of students can success-
fully construct box plots. Of those who can construct box plots, 86% passed, while only 65% of
those students who could not construct box plots passed.

(a) Construct a tree diagram of this scenario.

(b) Calculate the probability that a student is able to construct a box plot if it is known that he
passed.

2.22 Predisposition for thrombosis. A genetic test is used to determine if people have a
predisposition for thrombosis, which is the formation of a blood clot inside a blood vessel that
obstructs the flow of blood through the circulatory system. It is believed that 3% of people
actually have this predisposition. The genetic test is 99% accurate if a person actually has the
predisposition, meaning that the probability of a positive test result when a person actually has
the predisposition is 0.99. The test is 98% accurate if a person does not have the predisposition.
What is the probability that a randomly selected person who tests positive for the predisposition
by the test actually has the predisposition?

2.23 HIV in Swaziland. Swaziland has the highest HIV prevalence in the world: 25.9% of this
country’s population is infected with HIV.™ The ELISA test is one of the first and most accurate
tests for HIV. For those who carry HIV, the ELISA test is 99.7% accurate. For those who do not
carry HIV, the test is 92.6% accurate. If an individual from Swaziland has tested positive, what
is the probability that he carries HIV?

2.24 Exit poll. Edison Research gathered exit poll results from several sources for the Wisconsin
recall election of Scott Walker. They found that 53% of the respondents voted in favor of Scott
Walker. Additionally, they estimated that of those who did vote in favor for Scott Walker, 37%
had a college degree, while 44% of those who voted against Scott Walker had a college degree.
Suppose we randomly sampled a person who participated in the exit poll and found that he had
a college degree. What is the probability that he voted in favor of Scott Walker?

69B. Laeng et al. “Why do blue-eyed men prefer women with the same eye color?” In: Behavioral Ecology

and Sociobiology 61.3 (2007), pp. 371-384.
70Source: CIA Factbook, Country Comparison: HIV/AIDS - Adult Prevalence Rate.
"1New York Times, Wisconsin recall exit polls.


http://brunoafonso.com/wp-content/uploads/2007/01/blues_eyes-5.pdf
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2155rank.html
http://www.nytimes.com/interactive/2012/06/05/us/politics/wisconsin-recall-exit-polls.html
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2.25 1It’s never lupus. Lupus is a medical phenomenon where antibodies that are supposed to
attack foreign cells to prevent infections instead see plasma proteins as foreign bodies, leading to
a high risk of blood clotting. It is believed that 2% of the population suffer from this disease. The
test is 98% accurate if a person actually has the disease. The test is 74% accurate if a person does
not have the disease.

There is a line from the Fox television show House that is often used after a patient tests pos-
itive for lupus: “It’s never lupus.” Do you think there is truth to this statement? Use appropriate
probabilities to support your answer.

2.26  Twins. About 30% of human twins are identical, and the rest are fraternal. Identical
twins are necessarily the same sex — half are males and the other half are females. One-quarter
of fraternal twins are both male, one-quarter both female, and one-half are mixes: one male, one
female. You have just become a parent of twins and are told they are both girls. Given this
information, what is the probability that they are identical?

2.6.3 Sampling from a small population

2.27 Urns and marbles, Part I. Imagine you have an urn containing 5 red, 3 blue, and 2
orange marbles in it.

(a) What is the probability that the first marble you draw is blue?

(b) Suppose you drew a blue marble in the first draw. If drawing with replacement, what is the
probability of drawing a blue marble in the second draw?

(c) Suppose you instead drew an orange marble in the first draw. If drawing with replacement,
what is the probability of drawing a blue marble in the second draw?

(d) If drawing with replacement, what is the probability of drawing two blue marbles in a row?

(e) When drawing with replacement, are the draws independent? Explain.

2.28 Socks in a drawer. In your sock drawer you have 4 blue, 5 gray, and 3 black socks. Half
asleep one morning you grab 2 socks at random and put them on. Find the probability you end
up wearing

a) 2 blue socks
b

(a)
(b)
(c) at least 1 black sock
(d)
)

no gray socks

d
(e

a green sock

matching socks

2.29 Urns and marbles, Part Il. Imagine you have an urn containing 5 red, 3 blue, and 2
orange marbles.

(a) Suppose you draw a marble and it is blue. If drawing without replacement, what is the
probability the next is also blue?

(b) Suppose you draw a marble and it is orange, and then you draw a second marble without
replacement. What is the probability this second marble is blue?

(c¢) If drawing without replacement, what is the probability of drawing two blue marbles in a row?

(d) When drawing without replacement, are the draws independent? Explain.
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2.30 Books on a bookshelf. The table below shows the distribution of books on a bookcase
based on whether they are nonfiction or fiction and hardcover or paperback.

Format
Hardcover Paperback Total
Type Fiction 13 59 72
Nonfiction 15 8 23
Total 28 67 95

(a) Find the probability of drawing a hardcover book first then a paperback fiction book second
when drawing without replacement.

(b) Determine the probability of drawing a fiction book first and then a hardcover book second,
when drawing without replacement.

(c) Calculate the probability of the scenario in part (b), except this time complete the calculations
under the scenario where the first book is placed back on the bookcase before randomly drawing
the second book.

(d) The final answers to parts (b) and (c) are very similar. Explain why this is the case.

2.31 Student outfits. In a classroom with 24 students, 7 students are wearing jeans, 4 are
wearing shorts, 8 are wearing skirts, and the rest are wearing leggings. If we randomly select 3
students without replacement, what is the probability that one of the selected students is wearing
leggings and the other two are wearing jeans? Note that these are mutually exclusive clothing
options.

2.32 The birthday problem. Suppose we pick three people at random. For each of the
following questions, ignore the special case where someone might be born on February 29th, and
assume that births are evenly distributed throughout the year.

(a) What is the probability that the first two people share a birthday?

(b) What is the probability that at least two people share a birthday?

2.6.4 Random variables

2.33 College smokers. At a university, 13% of students smoke.

(a) Calculate the expected number of smokers in a random sample of 100 students from this
university.

(b) The university gym opens at 9am on Saturday mornings. One Saturday morning at 8:55am
there are 27 students outside the gym waiting for it to open. Should you use the same approach
from part (a) to calculate the expected number of smokers among these 27 students?

2.34 Card game. Consider the following card game with a well-shuffled deck of cards. If you
draw a red card, you win nothing. If you get a spade, you win $5. For any club, you win $10 plus
an extra $20 for the ace of clubs.

(a) Create a probability model for the amount you win at this game. Also, find the expected
winnings for a single game and the standard deviation of the winnings.

(b) What is the maximum amount you would be willing to pay to play this game? Explain.

2.35 Another card game. In a new card game, you start with a well-shuffled full deck and

draw 3 cards without replacement. If you draw 3 hearts, you win $50. If you draw 3 black cards,

you win $25. For any other draws, you win nothing.

(a) Create a probability model for the amount you win at this game, and find the expected
winnings. Also compute the standard deviation of this distribution.

(b) If the game costs $5 to play, what would be the expected value and standard deviation of the
net profit (or loss)? (Hint: profit = winnings — cost; X —5)

(c) If the game costs $5 to play, should you play this game? Explain.
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2.36 Is it worth it? Andy is always looking for ways to make money fast. Lately, he has been
trying to make money by gambling. Here is the game he is considering playing: The game costs
$2 to play. He draws a card from a deck. If he gets a number card (2-10), he wins nothing. For
any face card (jack, queen or king), he wins $3. For any ace, he wins $5, and he wins an ezxtra $20
if he draws the ace of clubs.

(a) Create a probability model and find Andy’s expected profit per game.

(b) Would you recommend this game to Andy as a good way to make money? Explain.

2.37 Portfolio return. A portfolio’s value increases by 18% during a financial boom and by
9% during normal times. It decreases by 12% during a recession. What is the expected return on
this portfolio if each scenario is equally likely?

2.38 A game of roulette, Part I. The game of roulette involves spinning a wheel with 38
slots: 18 red, 18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a
slot, where each slot has an equal chance of capturing the ball. Gamblers can place bets on red or
black. If the ball lands on their color, they double their money. If it lands on another color, they
lose their money. Suppose you bet $1 on red. What’s the expected value and standard deviation
of your winnings?

2.39 A game of roulette, Part I1. Exercise 2.38 describes winnings on a game of roulette.

(a) Suppose you play roulette and bet $3 on a single round. What is the expected value and
standard deviation of your total winnings?

(b) Suppose you bet $1 in three different rounds. What is the expected value and standard
deviation of your total winnings?

(¢) How do your answers to parts (a) and (b) compare? What does this say about the riskiness
of the two games?

2.40 Baggage fees. An airline charges the following baggage fees: $25 for the first bag and
$35 for the second. Suppose 54% of passengers have no checked luggage, 34% have one piece of
checked luggage and 12% have two pieces. We suppose a negligible portion of people check more
than two bags.

(a) Build a probability model, compute the average revenue per passenger, and compute the
corresponding standard deviation.

(b) About how much revenue should the airline expect for a flight of 120 passengers? With what
standard deviation? Note any assumptions you make and if you think they are justified.

2.41 Dodgers vs. Padres. You and your friend decide to bet on the Major League Baseball
game happening one evening between the Los Angeles Dodgers and the San Diego Padres. Suppose
current statistics indicate that the Dodgers have a 0.46 probability of winning this game against
the Padres. If your friend bets you $5 that the Dodgers will win, how much would you need to
bet on the Padres to make this a fair game?

2.42  Selling on Ebay. Marcie has been tracking the following two items on Ebay:
e A textbook that sells for an average of $110 with a standard deviation of $4.

e Mario Kart for the Nintendo Wii, which sells for an average of $38 with a standard deviation
of $5.

(a) Marcie wants to sell the video game and buy the textbook. How much net money (profits -
losses) would she expect to make or spend? Also compute the standard deviation of how much
she would make or spend.

(b) Lucy is selling the textbook on Ebay for a friend, and her friend is giving her a 10% commission
(Lucy keeps 10% of the revenue). How much money should she expect to make? With what
standard deviation?
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2.43 Cost of breakfast. Sally gets a cup of coffee and a muffin every day for breakfast from
one of the many coffee shops in her neighborhood. She picks a coffee shop each morning at random
and independently of previous days. The average price of a cup of coffee is $1.40 with a standard
deviation of 30¢($0.30), the average price of a muffin is $2.50 with a standard deviation of 15¢,
and the two prices are independent of each other.

(a) What is the mean and standard deviation of the amount she spends on breakfast daily?

(b) What is the mean and standard deviation of the amount she spends on breakfast weekly
(7 days)?

2.44 TIce cream. Ice cream usually comes in 1.5 quart boxes (48 fluid ounces), and ice cream
scoops hold about 2 ounces. However, there is some variability in the amount of ice cream in a
box as well as the amount of ice cream scooped out. We represent the amount of ice cream in the
box as X and the amount scooped out as Y. Suppose these random variables have the following
means, standard deviations, and variances:

mean SD  variance
X 48 1 1
Y 2 0.25 0.0625

(a) An entire box of ice cream, plus 3 scoops from a second box is served at a party. How much
ice cream do you expect to have been served at this party? What is the standard deviation of
the amount of ice cream served?

(b) How much ice cream would you expect to be left in the box after scooping out one scoop of
ice cream? That is, find the expected value of X — Y. What is the standard deviation of the
amount left in the box?

(¢) Using the context of this exercise, explain why we add variances when we subtract one random
variable from another.

2.6.5 Continuous distributions

2.45 Cat weights. The histogram shown below represents the weights (in kg) of 47 female and
97 male cats.””

(a) What fraction of these cats weigh %7
less than 2.5 kg?
(b) What fraction of these cats weigh 25
between 2.5 and 2.75 kg?
(¢) What fraction of these cats weigh
between 2.75 and 3.5 kg? 15
5

I T T T 1
2.0 25 3.0 3.5 4.0

Body Weight

72W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition. http://www.sta
ts.ox.ac.uk/pub/MASS4. New York: Springer, 2002.
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2.46 Income and gender. The relative frequency table below displays the distribution of
annual total personal income (in 2009 inflation-adjusted dollars) for a representative sample of
96,420,486 Americans. These data come from the American Community Survey for 2005-2009.
This sample is comprised of 59% males and 41% females.”

(a) Describe the distribution of total personal income. Income Total
(b) What is the probability that a randomly chosen US $1 to $9,999 or loss  2.2%
resident makes less than $50,000 per year? $10,000 to $14,999 4.7%
(c) What is the probability that a randomly chosen US $15,000 to $24,999  15.8%
resident makes less than $50,000 per year and is female? $25,000 to $34,999 18.3%
Note any assumptions you make. $35,000 to $49,999 21.2%

$50,000 to $64,999  13.9%
$65,000 to $74,999 5.8%
$75,000 to $99,999 8.4%
$100,000 or more 9.7%

(d) The same data source indicates that 71.8% of females
make less than $50,000 per year. Use this value to
determine whether or not the assumption you made in
part (c) is valid.

73U.S. Census Bureau, 2005-2009 American Community Survey.


http://www.census.gov/acs/www/

Chapter 3

Distributions of random
variables

3.1 Normal distribution

Among all the distributions we see in practice, one is overwhelmingly the most common.
The symmetric, unimodal, bell curve is ubiquitous throughout statistics. Indeed it is so
common, that people often know it as the normal curve or normal distribution,' shown
in Figure 3.1. Variables such as SAT scores and heights of US adult males closely follow
the normal distribution.

Normal distribution facts

Many variables are nearly normal, but none are exactly normal. Thus the normal
distribution, while not perfect for any single problem, is very useful for a variety
of problems. We will use it in data exploration and to solve important problems
in statistics.

11t is also introduced as the Gaussian distribution after Frederic Gauss, the first person to formalize
its mathematical expression.

Figure 3.1: A normal curve.

118
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3.1.1 Normal distribution model

The normal distribution model always describes a symmetric, unimodal, bell shaped curve.
However, these curves can look different depending on the details of the model. Specifically,
the normal distribution model can be adjusted using two parameters: mean and standard
deviation. As you can probably guess, changing the mean shifts the bell curve to the left or
right, while changing the standard deviation stretches or constricts the curve. Figure 3.2
shows the normal distribution with mean 0 and standard deviation 1 in the left panel
and the normal distributions with mean 19 and standard deviation 4 in the right panel.
Figure 3.3 shows these distributions on the same axis.

\‘

T T 1
-3 -2 -1 0 1 2 3 7 11 15 19 23 27 31

Figure 3.2: Both curves represent the normal distribution, however, they
differ in their center and spread. The normal distribution with mean 0 and
standard deviation 1 is called the standard normal distribution.

I I I I
0 10 20 30

Figure 3.3: The normal models shown in Figure 3.2 but plotted together
and on the same scale.

If a normal distribution has mean p and standard deviation o, we may write the N, o)

distribution as N(u, o). The two distributions in Figure 3.3 can be written as )
Normal dist.

N(up=0,0=1) and N(p=19,0 =4) with mean p
& st. dev. o

Because the mean and standard deviation describe a normal distribution exactly, they are
called the distribution’s parameters.

() Exercise 3.1  Write down the short-hand for a normal distribution with (a) mean 5
and standard deviation 3, (b) mean -100 and standard deviation 10, and (c) mean 2
and standard deviation 9.

2(a) N(u=5,0 = 3). (b) N(u= —100,0 = 10). (c) N(u = 2,0 = 9).
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SAT ACT
Mean 1500 21
SD 300 )

Table 3.4: Mean and standard deviation for the SAT and ACT.

T T T T T
900 1200 1500 1800 2100

T T T T T
11 16 21 26 31

Figure 3.5: Ann’s and Tom’s scores shown with the distributions of SAT
and ACT scores.

3.1.2 Standardizing with Z scores

@® Example 3.2 Table 3.4 shows the mean and standard deviation for total scores on
the SAT and ACT. The distribution of SAT and ACT scores are both nearly normal.
Suppose Ann scored 1800 on her SAT and Tom scored 24 on his ACT. Who performed
better?

We use the standard deviation as a guide. Ann is 1 standard deviation above average
on the SAT: 1500 + 300 = 1800. Tom is 0.6 standard deviations above the mean on
the ACT: 21 4+ 0.6 x 5 = 24. In Figure 3.5, we can see that Ann tends to do better
with respect to everyone else than Tom did, so her score was better.

Example 3.2 used a standardization technique called a Z score, a method most com-
monly employed for nearly normal observations but that may be used with any distribution.
The Z score of an observation is defined as the number of standard deviations it falls above
or below the mean. If the observation is one standard deviation above the mean, its Z score
is 1. If it is 1.5 standard deviations below the mean, then its Z score is -1.5. If x is an
observation from a distribution N(u, o), we define the Z score mathematically as

T —f
g

7 —

Using psar = 1500, g4 = 300, and z 44, = 1800, we find Ann’s Z score:

Tann — psar 1800 — 1500

Z dom = _
Ann OSAT 300

1
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The Z score

The Z score of an observation is the number of standard deviations it falls above
or below the mean. We compute the Z score for an observation z that follows a
distribution with mean p and standard deviation o using

T —p
g

7 =

() Exercise 3.3 Use Tom’s ACT score, 24, along with the ACT mean and standard
deviation to compute his Z score.”

Observations above the mean always have positive Z scores while those below the
mean have negative Z scores. If an observation is equal to the mean (e.g. SAT score of
1500), then the Z score is 0.

() Exercise 3.4 Let X represent a random variable from N(u = 3,0 = 2), and
suppose we observe x = 5.19. (a) Find the Z score of z. (b) Use the Z score to
determine how many standard deviations above or below the mean x falls.*

() Exercise 3.5 Head lengths of brushtail possums follow a nearly normal distribution
with mean 92.6 mm and standard deviation 3.6 mm. Compute the Z scores for
possums with head lengths of 95.4 mm and 85.8 mm.’

We can use Z scores to roughly identify which observations are more unusual than
others. One observation z; is said to be more unusual than another observation x5 if the
absolute value of its Z score is larger than the absolute value of the other observation’s Z
score: |Z1| > |Zz|. This technique is especially insightful when a distribution is symmetric.

() Exercise 3.6  Which of the observations in Exercise 3.5 is more unusual?®

3.1.3 Normal probability table

® Example 3.7 Ann from Example 3.2 earned a score of 1800 on her SAT with a
corresponding Z = 1. She would like to know what percentile she falls in among all
SAT test-takers.

Ann’s percentile is the percentage of people who earned a lower SAT score than
Ann. We shade the area representing those individuals in Figure 3.6. The total area
under the normal curve is always equal to 1, and the proportion of people who scored
below Ann on the SAT is equal to the area shaded in Figure 3.6: 0.8413. In other
words, Ann is in the 84*" percentile of SAT takers.

We can use the normal model to find percentiles. A normal probability table,
which lists Z scores and corresponding percentiles, can be used to identify a percentile
based on the Z score (and vice versa). Statistical software can also be used.

3 _ =z — _24-—21 __
ZTom — TTom ACT _— = = 0.6

cacT
4(a) Its Z score is given by Z = =8 = %9_3 = 2.19/2 = 1.095. (b) The observation z is 1.095
standard deviations above the mean. We know it must be above the mean since Z is positive.
5For z1 = 95.4 mm: Z; = % = % = 0.78. For 2 = 85.8 mm: Zo = % = —1.89.
6Because the absolute value of Z score for the second observation is larger than that of the first, the
second observation has a more unusual head length.
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I T T T T T 1
600 900 1200 1500 1800 2100 2400

Figure 3.6: The normal model for SAT scores, shading the area of those
individuals who scored below Ann.

negative Z positive Z

Figure 3.7: The area to the left of Z represents the percentile of the obser-
vation.

A normal probability table is given in Appendix B.1 on page 407 and abbreviated
in Table 3.8. We use this table to identify the percentile corresponding to any particular
Z score. For instance, the percentile of Z = 0.43 is shown in row 0.4 and column 0.03
in Table 3.8: 0.6664, or the 66.64" percentile. Generally, we round Z to two decimals,
identify the proper row in the normal probability table up through the first decimal, and
then determine the column representing the second decimal value. The intersection of this
row and column is the percentile of the observation.

We can also find the Z score associated with a percentile. For example, to identify Z
for the 80" percentile, we look for the value closest to 0.8000 in the middle portion of the
table: 0.7995. We determine the Z score for the 80" percentile by combining the row and
column Z values: 0.84.

() Exercise 3.8 Determine the proportion of SAT test takers who scored better than
Ann on the SAT.”

3.1.4 Normal probability examples
Cumulative SAT scores are approximated well by a normal model, N(u = 1500, 0 = 300).

@® Example 3.9 Shannon is a randomly selected SAT taker, and nothing is known
about Shannon’s SAT aptitude. What is the probability Shannon scores at least
1630 on her SATs?

First, always draw and label a picture of the normal distribution. (Drawings need
not be exact to be useful.) We are interested in the chance she scores above 1630, so
we shade this upper tail:

71f 84% had lower scores than Ann, the number of people who had better scores must be 16%. (Generally
ties are ignored when the normal model, or any other continuous distribution, is used.)
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Second decimal place of Z
A 0.00 0.01 0.02 003 0.04] 005 006 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080  0.5120  0.5160 | 0.5199 0.5239 0.5279  0.5319  0.5359
0.1 | 0.5398 0.5438 0.5478  0.5517  0.5557 | 0.5596 0.5636 0.5675 0.5714  0.5753
0.2 | 05793 0.5832 0.5871  0.5910  0.5948 | 0.5987  0.6026 0.6064 0.6103  0.6141
0.3 | 06179 0.6217 0.6255 0.6293  0.6331 | 0.6368 0.6406 0.6443 0.6480  0.6517
0.4 | 0.6554 0.6591 0.6628 0.666/  0.6700 | 0.6736 0.6772  0.6808 0.6844  0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019  0.7054 | 0.7088 0.7123 0.7157 0.7190  0.7224
0.6 | 0.7257 0.7291 0.7324  0.7357  0.7389 | 0.7422 0.7454 0.7486 0.7517  0.7549
0.7 | 0.7580 0.7611 0.7642  0.7673  0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939  0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 08159 0.8186 0.8212  0.8238  0.8264 | 0.8289 0.8315 0.8340 0.8365  0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485  0.8508 | 0.8531 0.8554 0.8577 0.8599  0.8621
1.1 | 0.8643 0.8665 0.8686  0.8708  0.8729 | 0.8749 0.8770 0.8790 0.8810  0.8830

Table 3.8: A section of the normal probability table. The percentile for
a normal random variable with Z = 0.43 has been highlighted, and the
percentile closest to 0.8000 has also been highlighted.

1 1
900 1500 2100

The picture shows the mean and the values at 2 standard deviations above and below
the mean. The simplest way to find the shaded area under the curve makes use of the
Z score of the cutoff value. With p = 1500, ¢ = 300, and the cutoff value x = 1630,
the Z score is computed as

— 4 1630—1500 130
B _ =2 043

7== 300 300

We look up the percentile of Z = 0.43 in the normal probability table shown in Ta-
ble 3.8 or in Appendix B.1 on page 407, which yields 0.6664. However, the percentile
describes those who had a Z score lower than 0.43. To find the area above Z = 0.43,
we compute one minus the area of the lower tail:

1.0000 - 0.6664 = 0.3336

The probability Shannon scores at least 1630 on the SAT is 0.3336.
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TIP: always draw a picture first, and find the Z score second

For any normal probability situation, always always always draw and label the
normal curve and shade the area of interest first. The picture will provide an
estimate of the probability.

After drawing a figure to represent the situation, identify the Z score for the obser-
vation of interest.

() Exercise 3.10 If the probability of Shannon scoring at least 1630 is 0.3336, then
what is the probability she scores less than 16307 Draw the normal curve representing
this exercise, shading the lower region instead of the upper one.®

® Example 3.11 Edward earned a 1400 on his SAT. What is his percentile?

First, a picture is needed. Edward’s percentile is the proportion of people who do not
get as high as a 1400. These are the scores to the left of 1400.

L |
900 1500 2100

Identifying the mean p = 1500, the standard deviation ¢ = 300, and the cutoff for
the tail area x = 1400 makes it easy to compute the Z score:

x —p 1400 — 1500
o 300

Z = =-0.33

Using the normal probability table, identify the row of —0.3 and column of 0.03,
which corresponds to the probability 0.3707. Edward is at the 37" percentile.

() Exercise 3.12  Use the results of Example 3.11 to compute the proportion of SAT
takers who did better than Edward. Also draw a new picture.’

TIP: areas to the right

The normal probability table in most books gives the area to the left. If you would
like the area to the right, first find the area to the left and then subtract this amount
from one.

() Exercise 3.13  Stuart earned an SAT score of 2100. Draw a picture for each part.
(a) What is his percentile? (b) What percent of SAT takers did better than Stuart?'"

8We found the probability in Example 3.9: 0.6664. A picture for this exercise is represented by the
shaded area below “0.6664” in Example 3.9.
9If Edward did better than 37% of SAT takers, then about 63% must have done better than him.

Y -

1
900 1500 2100

19Numerical answers: (a) 0.9772. (b) 0.0228.
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Based on a sample of 100 men,'' the heights of male adults between the ages 20 and
62 in the US is nearly normal with mean 70.0” and standard deviation 3.3”.

() Exercise 3.14 Mike is 5’77 and Jim is 6’4”. (a) What is Mike’s height percentile?
(b) What is Jim’s height percentile? Also draw one picture for each part.'”

The last several problems have focused on finding the probability or percentile for a
particular observation. What if you would like to know the observation corresponding to a
particular percentile?

® Example 3.15 Erik’s height is at the 40" percentile. How tall is he?

As always, first draw the picture.

40%
(0.40)
T 1
63.4 70 76.6

In this case, the lower tail probability is known (0.40), which can be shaded on the
diagram. We want to find the observation that corresponds to this value. As a first
step in this direction, we determine the Z score associated with the 40" percentile.

Because the percentile is below 50%, we know Z will be negative. Looking in the
negative part of the normal probability table, we search for the probability inside the
table closest to 0.4000. We find that 0.4000 falls in row —0.2 and between columns
0.05 and 0.06. Since it falls closer to 0.05, we take this one: Z = —0.25.

Knowing Zg,ix = —0.25 and the population parameters p = 70 and o = 3.3 inches,
the Z score formula can be set up to determine Erik’s unknown height, labeled x gpix:
Terik — K _ ZTErik — 70

o 3.3

—0.25 = Zppip =

Solving for x i yields the height 69.18 inches. That is, Erik is about 5°9” (this is
notation for 5-feet, 9-inches).

® Example 3.16 What is the adult male height at the 82"¢ percentile?

Again, we draw the figure first.

| |
63.4 70 76.6

1 This sample was taken from the USDA Food Commodity Intake Database.
12First put the heights into inches: 67 and 76 inches. Figures are shown below. (a) Zprike = 6770 —

3.3
—0.91 — 0.1814. (b) Zyim = 157% = 1.82 — 0.9656.

Mike | i Jim

67 70 70 76
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Next, we want to find the Z score at the 827¢ percentile, which will be a positive
value. Looking in the Z table, we find Z falls in row 0.9 and the nearest column is
0.02, i.e. Z =0.92. Finally, the height x is found using the Z score formula with the
known mean p, standard deviation o, and Z score Z = 0.92:
x—p x—="70

c 33
This yields 73.04 inches or about 6’17 as the height at the 82"¢ percentile.

() Exercise 3.17 (a) What is the 95" percentile for SAT scores? (b) What is the
97.5t" percentile of the male heights? As always with normal probability problems,
first draw a picture.'?

092=27=

(O Exercise 3.18 (a) What is the probability that a randomly selected male adult is
at least 6’27 (74 inches)? (b) What is the probability that a male adult is shorter
than 59” (69 inches)?**

@® Example 3.19 What is the probability that a random adult male is between 5'9”
and 62”7

These heights correspond to 69 inches and 74 inches. First, draw the figure. The area
of interest is no longer an upper or lower tail.

63.4 70 76.6

The total area under the curve is 1. If we find the area of the two tails that are not
shaded (from Exercise 3.18, these areas are 0.3821 and 0.1131), then we can find the
middle area:

1.0000 0.3821 0.1131 0.5048

That is, the probability of being between 5’9” and 6’2” is 0.5048.
() Exercise 3.20 What percent of SAT takers get between 1500 and 20007"”

() Exercise 3.21 What percent of adult males are between 5’5" and 5’77 ?'°

13Remember: draw a picture first, then find the Z score. (We leave the pictures to you.) The Z score
can be found by using the percentiles and the normal probability table. (a) We look for 0.95 in the
probability portion (middle part) of the normal probability table, which leads us to row 1.6 and (about)
column 0.05, i.e. Zgs = 1.65. Knowing Zgs = 1.65, u = 1500, and o = 300, we setup the Z score formula:
1.65 = @53%5500. We solve for xzgs: g5 = 1995. (b) Similarly, we find Zg7.5 = 1.96, again setup the Z
score formula for the heights, and calculate xg97.5 = 76.5.

4 Numerical answers: (a) 0.1131. (b) 0.3821.

15This is an abbreviated solution. (Be sure to draw a figure!) First find the percent who get below 1500
and the percent that get above 2000: Zi500 = 0.00 — 0.5000 (area below), Zagoo = 1.67 — 0.0475 (area
above). Final answer: 1.0000 — 0.5000 — 0.0475 = 0.4525.

165°5” is 65 inches. 5’7” is 67 inches. Numerical solution: 1.000 —0.0649 — 0.8183 = 0.1168, i.e. 11.68%.
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3.1.5 68-95-99.7 rule

Here, we present a useful rule of thumb for the probability of falling within 1, 2, and 3
standard deviations of the mean in the normal distribution. This will be useful in a wide
range of practical settings, especially when trying to make a quick estimate without a
calculator or Z table.

T T 1
u-30 pu-20 u-o U pu+o p+20 p+30

Figure 3.9: Probabilities for falling within 1, 2, and 3 standard deviations
of the mean in a normal distribution.

() Exercise 3.22 Use the Z table to confirm that about 68%, 95%, and 99.7% of
observations fall within 1, 2, and 3, standard deviations of the mean in the normal
distribution, respectively. For instance, first find the area that falls between Z = —1
and Z = 1, which should have an area of about 0.68. Similarly there should be an
area of about 0.95 between Z = —2 and Z = 2.'7

It is possible for a normal random variable to fall 4, 5, or even more standard deviations
from the mean. However, these occurrences are very rare if the data are nearly normal. The
probability of being further than 4 standard deviations from the mean is about 1-in-30,000.
For 5 and 6 standard deviations, it is about 1-in-3.5 million and 1-in-1 billion, respectively.

() Exercise 3.23  SAT scores closely follow the normal model with mean p = 1500
and standard deviation o = 300. (a) About what percent of test takers score 900 to
21007 (b) What percent score between 1500 and 21007

3.2 Evaluating the normal approximation

Many processes can be well approximated by the normal distribution. We have already seen
two good examples: SAT scores and the heights of US adult males. While using a normal
model can be extremely convenient and helpful, it is important to remember normality is

17First draw the pictures. To find the area between Z = —1 and Z = 1, use the normal probability
table to determine the areas below Z = —1 and above Z = 1. Next verify the area between Z = —1 and
Z =1 is about 0.68. Repeat this for Z = —2 to Z = 2 and also for Z = —3 to Z = 3.

18(a) 900 and 2100 represent two standard deviations above and below the mean, which means about
95% of test takers will score between 900 and 2100. (b) Since the normal model is symmetric, then half
of the test takers from part (a) (%% = 47.5% of all test takers) will score 900 to 1500 while 47.5% score
between 1500 and 2100.
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Figure 3.10: A sample of 100 male heights. The observations are rounded
to the nearest whole inch, explaining why the points appear to jump in
increments in the normal probability plot.

always an approximation. Testing the appropriateness of the normal assumption is a key
step in many data analyses.

3.2.1 Normal probability plot

Example 3.15 suggests the distribution of heights of US males is well approximated by the
normal model. We are interested in proceeding under the assumption that the data are
normally distributed, but first we must check to see if this is reasonable.

There are two visual methods for checking the assumption of normality, which can be
implemented and interpreted quickly. The first is a simple histogram with the best fitting
normal curve overlaid on the plot, as shown in the left panel of Figure 3.10. The sample
mean T and standard deviation s are used as the parameters of the best fitting normal
curve. The closer this curve fits the histogram, the more reasonable the normal model
assumption. Another more common method is examining a normal probability plot.'’,
shown in the right panel of Figure 3.10. The closer the points are to a perfect straight
line, the more confident we can be that the data follow the normal model. We outline the
construction of the normal probability plot in Section 3.2.2

@® Example 3.24 Three data sets of 40, 100, and 400 samples were simulated from
a normal distribution, and the histograms and normal probability plots of the data
sets are shown in Figure 3.11. These will provide a benchmark for what to look for
in plots of real data.

The left panels show the histogram (top) and normal probability plot (bottom) for
the simulated data set with 40 observations. The data set is too small to really see
clear structure in the histogram. The normal probability plot also reflects this, where
there are some deviations from the line. However, these deviations are not strong.

The middle panels show diagnostic plots for the data set with 100 simulated obser-
vations. The histogram shows more normality and the normal probability plot shows
a better fit. While there is one observation that deviates noticeably from the line, it
is not particularly extreme.

19 Also commonly called a quantile-quantile plot.
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Figure 3.11: Histograms and normal probability plots for three simulated
normal data sets; n =40 (left), n = 100 (middle), n = 400 (right).

The data set with 400 observations has a histogram that greatly resembles the normal
distribution, while the normal probability plot is nearly a perfect straight line. Again
in the normal probability plot there is one observation (the largest) that deviates
slightly from the line. If that observation had deviated 3 times further from the line,
it would be of much greater concern in a real data set. Apparent outliers can occur
in normally distributed data but they are rare.

Notice the histograms look more normal as the sample size increases, and the normal
probability plot becomes straighter and more stable.

Example 3.25 Are NBA player heights normally distributed? Consider all 435
NBA players from the 2008-9 season presented in Figure 3.12.2°

We first create a histogram and normal probability plot of the NBA player heights.
The histogram in the left panel is slightly left skewed, which contrasts with the
symmetric normal distribution. The points in the normal probability plot do not
appear to closely follow a straight line but show what appears to be a “wave”. We can
compare these characteristics to the sample of 400 normally distributed observations
in Example 3.24 and see that they represent much stronger deviations from the normal
model. NBA player heights do not appear to come from a normal distribution.

20These data were collected from http://www.nba.com.
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Height (inches) Theoretical quantiles

Figure 3.12: Histogram and normal probability plot for the NBA heights
from the 2008-9 season.
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Figure 3.13: A histogram of poker data with the best fitting normal plot
and a normal probability plot.

@® Example 3.26 Can we approximate poker winnings by a normal distribution? We
consider the poker winnings of an individual over 50 days. A histogram and normal
probability plot of these data are shown in Figure 3.13.

The data are very strongly right skewed in the histogram, which corresponds to the
very strong deviations on the upper right component of the normal probability plot.
If we compare these results to the sample of 40 normal observations in Example 3.24,
it is apparent that these data show very strong deviations from the normal model.
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Figure 3.14: Four normal probability plots for Exercise 3.27.

() Exercise 3.27 Determine which data sets represented in Figure 3.14 plausibly come
from a nearly normal distribution. Are you confident in all of your conclusions? There
are 100 (top left), 50 (top right), 500 (bottom left), and 15 points (bottom right) in
the four plots.?!

() Exercise 3.28 Figure 3.15 shows normal probability plots for two distributions
that are skewed. One distribution is skewed to the low end (left skewed) and the
other to the high end (right skewed). Which is which??*

21 Answers may vary a little. The top-left plot shows some deviations in the smallest values in the data
set; specifically, the left tail of the data set has some outliers we should be wary of. The top-right and
bottom-left plots do not show any obvious or extreme deviations from the lines for their respective sample
sizes, so a normal model would be reasonable for these data sets. The bottom-right plot has a consistent
curvature that suggests it is not from the normal distribution. If we examine just the vertical coordinates
of these observations, we see that there is a lot of data between -20 and 0, and then about five observations
scattered between 0 and 70. This describes a distribution that has a strong right skew.

22Examine where the points fall along the vertical axis. In the first plot, most points are near the low
end with fewer observations scattered along the high end; this describes a distribution that is skewed to
the high end. The second plot shows the opposite features, and this distribution is skewed to the low end.
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Figure 3.15: Normal probability plots for Exercise 3.28.

3.2.2 Constructing a normal probability plot (special topic)

We construct a normal probability plot for the heights of a sample of 100 men as follows:

1) Order the observations.
2

3

Determine the percentile of each observation in the ordered data set.

(1)
(2)
(3) Identify the Z score corresponding to each percentile.

(4) Create a scatterplot of the observations (vertical) against the Z scores (horizontal).
If the observations are normally distributed, then their Z scores will approximately corre-

spond to their percentiles and thus to the z; in Table 3.16.

Observation 14 1 2 3 .- 100
x; 61 63 63 .- 78
Percentile 0.99% 1.98% 297% --- 99.01%
Zi -233 —-2.06 -—-189 --- 2.33

Table 3.16: Construction details for a normal probability plot of 100 men’s
heights. The first observation is assumed to be at the 0.99t" percentile, and
the z; corresponding to a lower tail of 0.0099 is —2.33. To create the plot
based on this table, plot each pair of points, (z;, ;).

Caution: z; correspond to percentiles
The z; in Table 3.16 are not the Z scores of the observations but only correspond
to the percentiles of the observations.

Because of the complexity of these calculations, normal probability plots are generally
created using statistical software.
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3.3 Geometric distribution (special topic)

How long should we expect to flip a coin until it turns up heads? Or how many times
should we expect to roll a die until we get a 17 These questions can be answered using the
geometric distribution. We first formalize each trial — such as a single coin flip or die toss —
using the Bernoulli distribution, and then we combine these with our tools from probability
(Chapter 2) to construct the geometric distribution.

3.3.1 Bernoulli distribution

Stanley Milgram began a series of experiments in 1963 to estimate what proportion of
people would willingly obey an authority and give severe shocks to a stranger. Milgram
found that about 65% of people would obey the authority and give such shocks. Over
the years, additional research suggested this number is approximately consistent across
communities and time.”’

Each person in Milgram’s experiment can be thought of as a trial. We label a person
a success if she refuses to administer the worst shock. A person is labeled a failure if she
administers the worst shock. Because only 35% of individuals refused to administer the
most severe shock, we denote the probability of a success with p = 0.35. The probability
of a failure is sometimes denoted with ¢ =1 — p.

Thus, success or failure is recorded for each person in the study. When an indi-
vidual trial only has two possible outcomes, it is called a Bernoulli random variable.

Bernoulli random variable, descriptive

A Bernoulli random variable has exactly two possible outcomes. We typically label
one of these outcomes a “success” and the other outcome a “failure”. We may also
denote a success by 1 and a failure by 0.

TIP: “success” need not be something positive

We chose to label a person who refuses to administer the worst shock a “success” and
all others as “failures”. However, we could just as easily have reversed these labels.
The mathematical framework we will build does not depend on which outcome is
labeled a success and which a failure, as long as we are consistent.

Bernoulli random variables are often denoted as 1 for a success and 0 for a failure. In
addition to being convenient in entering data, it is also mathematically handy. Suppose we
observe ten trials:

0111101100
Then the sample proportion, p, is the sample mean of these observations:

.  Fofsuccesses O0+1+14+14+14+0+1+140+0
p: pry pry

# of trials 10 06

23Find further information on Milgram’s experiment at
www.cnr.berkeley.edu/ucce50/ag-labor/7article/article35.htm.
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This mathematical inquiry of Bernoulli random variables can be extended even further.
Because 0 and 1 are numerical outcomes, we can define the mean and standard deviation
of a Bernoulli random variable.?*

Bernoulli random variable, mathematical

If X is a random variable that takes value 1 with probability of success p and
0 with probability 1 — p, then X is a Bernoulli random variable with mean and
standard deviation

p=p o =/p(1-p)

In general, it is useful to think about a Bernoulli random variable as a random process
with only two outcomes: a success or failure. Then we build our mathematical framework
using the numerical labels 1 and 0 for successes and failures, respectively.

3.3.2 Geometric distribution

® Example 3.29 Dr. Smith wants to repeat Milgram’s experiments but she only
wants to sample people until she finds someone who will not inflict the worst shock.>”
If the probability a person will not give the most severe shock is still 0.35 and the
subjects are independent, what are the chances that she will stop the study after
the first person? The second person? The third? What about if it takes her n — 1
individuals who will administer the worst shock before finding her first success, i.e.
the first success is on the n*" person? (If the first success is the fifth person, then we
say n =5.)

The probability of stopping after the first person is just the chance the first person
will not administer the worst shock: 1 — 0.65 = 0.35. The probability it will be the
second person is

P(second person is the first to not administer the worst shock)
= P(the first will, the second won’t) = (0.65)(0.35) = 0.228

Likewise, the probability it will be the third person is (0.65)(0.65)(0.35) = 0.148.

If the first success is on the n!” person, then there are n — 1 failures and finally 1
success, which corresponds to the probability (0.65)"~1(0.35). This is the same as
(1 —0.35)"71(0.35).

241f p is the true probability of a success, then the mean of a Bernoulli random variable X is given by
p=FEX]|=P(X=0x0+PX=1)x1
=(1-p)x0+px1=0+p=p
Similarly, the variance of X can be computed:
o? =P(X =0)(0-p)?+ P(X =1)(1-p)*
=1 —p)p* +p(1 —p)* =p(1 - p)

The standard deviation is o = /p(1 — p).
25This is hypothetical since, in reality, this sort of study probably would not be permitted any longer
under current ethical standards.
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Probability

2 4 6 8 10 12 14
Number of trials

Figure 3.17: The geometric distribution when the probability of success is
p = 0.35.

Example 3.29 illustrates what is called the geometric distribution, which describes
the waiting time until a success for independent and identically distributed (iid)
Bernoulli random variables. In this case, the independence aspect just means the individuals
in the example don’t affect each other, and identical means they each have the same
probability of success.

The geometric distribution from Example 3.29 is shown in Figure 3.17. In general,
the probabilities for a geometric distribution decrease exponentially fast.

While this text will not derive the formulas for the mean (expected) number of trials
needed to find the first success or the standard deviation or variance of this distribution,
we present general formulas for each.

Geometric Distribution
If the probability of a success in one trial is p and the probability of a failure is
1 — p, then the probability of finding the first success in the n'" trial is given by

(1-p)"'p (3.30)

The mean (i.e. expected value), variance, and standard deviation of this wait time
are given by

1 1-— 1-—
p=- o= P o= P (3.31)

P p? p?

It is no accident that we use the symbol p for both the mean and expected value. The
mean and the expected value are one and the same.

The left side of Equation (3.31) says that, on average, it takes 1/p trials to get a
success. This mathematical result is consistent with what we would expect intuitively. If
the probability of a success is high (e.g. 0.8), then we don’t usually wait very long for a
success: 1/0.8 = 1.25 trials on average. If the probability of a success is low (e.g. 0.1),
then we would expect to view many trials before we see a success: 1/0.1 = 10 trials.
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() Exercise 3.32 The probability that an individual would refuse to administer the
worst shock is said to be about 0.35. If we were to examine individuals until we found
one that did not administer the shock, how many people should we expect to check?
The first expression in Equation (3.31) may be useful.””

@® Example 3.33 What is the chance that Dr. Smith will find the first success within
the first 4 people?

This is the chance it is the first (n = 1), second (n = 2), third (n = 3), or fourth
(n = 4) person as the first success, which are four disjoint outcomes. Because the
individuals in the sample are randomly sampled from a large population, they are
independent. We compute the probability of each case and add the separate results:

P(n=1,2,3, or 4)
=Pn=1)+Pn=2)+P(n=3)+Pn=4)
= (0.65)'71(0.35) + (0.65)271(0.35) + (0.65)>71(0.35) + (0.65)*~*(0.35)
=0.82

There is an 82% chance that she will end the study within 4 people.

() Exercise 3.34 Determine a more clever way to solve Example 3.33. Show that you
get the same result.””

@® Example 3.35 Suppose in one region it was found that the proportion of people who
would administer the worst shock was “only” 55%. If people were randomly selected
from this region, what is the expected number of people who must be checked before
one was found that would be deemed a success? What is the standard deviation of
this waiting time?

A success is when someone will not inflict the worst shock, which has probability
p=1-—0.55 = 0.45 for this region. The expected number of people to be checked is

1/p =1/0.45 = 2.22 and the standard deviation is /(1 — p)/p? = 1.65.

() Exercise 3.36  Using the results from Example 3.35, u = 2.22 and o = 1.65, would
it be appropriate to use the normal model to find what proportion of experiments
would end in 3 or fewer trials?*®

The independence assumption is crucial to the geometric distribution’s accurate de-
scription of a scenario. Mathematically, we can see that to construct the probability of the
success on the n'” trial, we had to use the Multiplication Rule for Independent Processes.
It is no simple task to generalize the geometric model for dependent trials.

26We would expect to see about 1/0.35 = 2.86 individuals to find the first success.

27First find the probability of the complement: P(no success in first 4 trials) = 0.65% = 0.18. Next,
compute one minus this probability: 1 — P(no success in 4 trials) =1 —0.18 = 0.82.

28No. The geometric distribution is always right skewed and can never be well-approximated by the
normal model.
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3.4 Binomial distribution (special topic)

@® Example 3.37 Suppose we randomly selected four individuals to participate in the
“shock” study. What is the chance exactly one of them will be a success? Let’s call the
four people Allen (A), Brittany (B), Caroline (C'), and Damian (D) for convenience.
Also, suppose 35% of people are successes as in the previous version of this example.

Let’s consider a scenario where one person refuses:

P(A = refuse, B = shock, C = shock, D = shock)
= P(A = refuse) P(B = shock) P(C = shock) P(D = shock)
= (0.35)(0.65)(0.65)(0.65) = (0.35)'(0.65)> = 0.096

But there are three other scenarios: Brittany, Caroline, or Damian could have been
the one to refuse. In each of these cases, the probability is again (0.35)%(0.65)3.
These four scenarios exhaust all the possible ways that exactly one of these four
people could refuse to administer the most severe shock, so the total probability is
4 % (0.35)1(0.65)% = 0.38.

() Exercise 3.38 Verify that the scenario where Brittany is the only one to refuse to
give the most severe shock has probability (0.35)*(0.65)3.%”

3.4.1 The binomial distribution

The scenario outlined in Example 3.37 is a special case of what is called the binomial
distribution. The binomial distribution describes the probability of having exactly k
successes in n independent Bernoulli trials with probability of a success p (in Example 3.37,
n=4,k=1,p=0.35). We would like to determine the probabilities associated with the
binomial distribution more generally, i.e. we want a formula where we can use n, k, and p
to obtain the probability. To do this, we reexamine each part of the example.

There were four individuals who could have been the one to refuse, and each of these
four scenarios had the same probability. Thus, we could identify the final probability as

[# of scenarios] x P(single scenario) (3.39)

The first component of this equation is the number of ways to arrange the k = 1 successes
among the n = 4 trials. The second component is the probability of any of the four (equally
probable) scenarios.

Consider P(single scenario) under the general case of k successes and n — k failures in
the n trials. In any such scenario, we apply the Multiplication Rule for independent events:

pr(1—p)F

This is our general formula for P(single scenario).

29 P(A = shock, B = refuse, C = shock, D = shock) = (0.65)(0.35)(0.65)(0.65) = (0.35)1(0.65)3.
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Secondly, we introduce a general formula for the number of ways to choose k successes
in n trials, i.e. arrange k successes and n — k failures:

(1) = m

The quantity (}) is read n choose k.”’ The exclamation point notation (e.g. k!) denotes
a factorial expression.

or=1
=1
20=2x1=2

31=3x2x1=6
4l =4x3x2x1=24

nl=nxn-1)x..x3x2x1

Using the formula, we can compute the number of ways to choose k = 1 successes in n = 4
trials:

4\ 4! _47!_4><3><2><1_4
1) Ua-1)r 13 (1)(3x2x1)

This result is exactly what we found by carefully thinking of each possible scenario in
Example 3.37.

Substituting n choose k for the number of scenarios and p¥(1 — p)»~* for the single
scenario probability in Equation (3.39) yields the general binomial formula.

Binomial distribution
Suppose the probability of a single trial being a success is p. Then the probability
of observing exactly k successes in n independent trials is given by

(Z)pk(l —p) = k!(nni IOl (3.40)

Additionally, the mean, variance, and standard deviation of the number of observed
successes are

w=mnp o? = np(1 —p) o =+/np(l —p) (3.41)

TIP: Is it binomial? Four conditions to check.

(1) The trials independent.

(2) The number of trials, n, is fixed.

(3) Each trial outcome can be classified as a success or failure.
(4) The probability of a success, p, is the same for each trial.

300ther notation for n choose k includes ,,C, C¥, and C(n, k).
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@® Example 3.42 What is the probability that 3 of 8 randomly selected students will
refuse to administer the worst shock, i.e. 5 of 8 will?

We would like to apply the binomial model, so we check our conditions. The number
of trials is fixed (n = 8) (condition 2) and each trial outcome can be classified as
a success or failure (condition 3). Because the sample is random, the trials are
independent (condition 1) and the probability of a success is the same for each trial
(condition 4).

In the outcome of interest, there are k = 3 successes in n = 8 trials, and the probability
of a success is p = 0.35. So the probability that 3 of 8 will refuse is given by

@) (0.35)3(1 — 0.35)%3 = 3!(;313)!(0.35)3(1 —0.35)%73
= 8—!(0 35)3(0.65)°
31510 '

Dealing with the factorial part:

8! 8XTXx6Xx5x4x3x2x1 8xT7Tx6

ﬁ:(3><2><1)(5><4><3><2><1)_3><2><1_56

Using (0.35)3(0.65)% ~ 0.005, the final probability is about 56 * 0.005 = 0.28.

TIP: computing binomial probabilities

The first step in using the binomial model is to check that the model is appropriate.
The second step is to identify n, p, and k. The final step is to apply the formulas
and interpret the results.

TIP: computing n choose k

In general, it is useful to do some cancelation in the factorials immediately. Al-
ternatively, many computer programs and calculators have built in functions to
compute n choose k, factorials, and even entire binomial probabilities.

() Exercise 3.43 If you ran a study and randomly sampled 40 students, how many
would you expect to refuse to administer the worst shock? What is the standard
deviation of the number of people who would refuse? Equation (3.41) may be useful.”!

() Exercise 3.44 The probability that a random smoker will develop a severe lung
condition in his or her lifetime is about 0.3. If you have 4 friends who smoke, are the
conditions for the binomial model satisfied?*?

31We are asked to determine the expected number (the mean) and the standard deviation, both of
which can be directly computed from the formulas in Equation (3.41): pu = np = 40 x 0.35 = 14 and
o = \/np(l —p) = /40 X 0.35 x 0.65 = 3.02. Because very roughly 95% of observations fall within 2
standard deviations of the mean (see Section 1.6.4), we would probably observe at least 8 but less than 20
individuals in our sample who would refuse to administer the shock.

320ne possible answer: if the friends know each other, then the independence assumption is probably
not satisfied. For example, acquaintances may have similar smoking habits.
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() Exercise 3.45 Suppose these four friends do not know each other and we can treat
them as if they were a random sample from the population. Is the binomial model
appropriate? What is the probability that (a) none of them will develop a severe lung
condition? (b) One will develop a severe lung condition? (c¢) That no more than one
will develop a severe lung condition???

() Exercise 3.46 What is the probability that at least 2 of your 4 smoking friends
will develop a severe lung condition in their lifetimes??*

() Exercise 3.47 Suppose you have 7 friends who are smokers and they can be treated
as a random sample of smokers. (a) How many would you expect to develop a severe
lung condition, i.e. what is the mean? (b) What is the probability that at most 2 of
your 7 friends will develop a severe lung condition.*”

Below we consider the first term in the binomial probability, n choose k under some
special scenarios.

Exercise 3.48 Why is it true that () = 1 and (”*) = 1 for any number n?°°
0 n

() Exercise 3.49 How many ways can you arrange one success and n — 1 failures in n
trials? How many ways can you arrange n — 1 successes and one failure in n trials??”

33To check if the binomial model is appropriate, we must verify the conditions. (i) Since we are supposing
we can treat the friends as a random sample, they are independent. (ii) We have a fixed number of trials
(n = 4). (iii) Each outcome is a success or failure. (iv) The probability of a success is the same for each
trials since the individuals are like a random sample (p = 0.3 if we say a “success” is someone getting a
lung condition, a morbid choice). Compute parts (a) and (b) from the binomial formula in Equation (3.40):
P(0) = ($)(0.3)°(0.7)* = 1x1x0.7* = 0.2401, P(1) = (1)(0.3)*(0.7) = 0.4116. Note: 0! = 1, as shown on
page 138. Part (c) can be computed as the sum of parts (a) and (b): P(0)+P(1) = 0.2401+0.4116 = 0.6517.
That is, there is about a 65% chance that no more than one of your four smoking friends will develop a
severe lung condition.

34The complement (no more than one will develop a severe lung condition) as computed in Exercise 3.45
as 0.6517, so we compute one minus this value: 0.3483.

35(a) p=0.3x 7 =2.1. (b) P(0, 1, or 2 develop severe lung condition) = P(k = 0) + P(k = 1) + P(k =
2) = 0.6471.

36Frame these expressions into words. How many different ways are there to arrange 0 successes and n
failures in n trials? (1 way.) How many different ways are there to arrange n successes and 0 failures in n
trials? (1 way.)

370ne success and n — 1 failures: there are exactly n unique places we can put the success, so there
are n ways to arrange one success and n — 1 failures. A similar argument is used for the second question.
Mathematically, we show these results by verifying the following two equations:

(D=r (I)=r
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3.4.2 Normal approximation to the binomial distribution

The binomial formula is cumbersome when the sample size (n) is large, particularly when
we consider a range of observations. In some cases we may use the normal distribution as
an easier and faster way to estimate binomial probabilities.

@® Example 3.50 Approximately 20% of the US population smokes cigarettes. A local
government believed their community had a lower smoker rate and commissioned a
survey of 400 randomly selected individuals. The survey found that only 59 of the 400
participants smoke cigarettes. If the true proportion of smokers in the community
was really 20%, what is the probability of observing 59 or fewer smokers in a sample
of 400 people?

We leave the usual verification that the four conditions for the binomial model are
valid as an exercise.

The question posed is equivalent to asking, what is the probability of observing k = 0,
1, ..., 58, or 59 smokers in a sample of n = 400 when p = 0.207 We can compute
these 60 different probabilities and add them together to find the answer:

Pl(k=0ork=1or --- or k=59)
=Pk=0)+Pk=1)+---+P(k=59)
= 0.0041

If the true proportion of smokers in the community is p = 0.20, then the probability
of observing 59 or fewer smokers in a sample of n = 400 is less than 0.0041.

The computations in Example 3.50 are tedious and long. In general, we should avoid
such work if an alternative method exists that is faster, easier, and still accurate. Recall
that calculating probabilities of a range of values is much easier in the normal model. We
might wonder, is it reasonable to use the normal model in place of the binomial distribution?
Surprisingly, yes, if certain conditions are met.

() Exercise 3.51 Here we consider the binomial model when the probability of a
success is p = 0.10. Figure 3.18 shows four hollow histograms for simulated samples
from the binomial distribution using four different sample sizes: n = 10, 30, 100, 300.
What happens to the shape of the distributions as the sample size increases? What
distribution does the last hollow histogram resemble?*®

Normal approximation of the binomial distribution

The binomial distribution with probability of success p is nearly normal when the
sample size n is sufficiently large that np and n(1 — p) are both at least 10. The
approximate normal distribution has parameters corresponding to the mean and
standard deviation of the binomial distribution:

p=mnp o= +/np(l—p)

The normal approximation may be used when computing the range of many possible
successes. For instance, we may apply the normal distribution to the setting of Exam-
ple 3.50.

38The distribution is transformed from a blocky and skewed distribution into one that rather resembles
the normal distribution in last hollow histogram
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Figure 3.18: Hollow histograms of samples from the binomial model when
p = 0.10. The sample sizes for the four plots are n = 10, 30, 100, and 300,
respectively.

@® Example 3.52 How can we use the normal approximation to estimate the proba-
bility of observing 59 or fewer smokers in a sample of 400, if the true proportion of
smokers is p = 0.207

Showing that the binomial model is reasonable was a suggested exercise in Exam-
ple 3.50. We also verify that both np and n(1 — p) are at least 10:

np = 400 x 0.20 = 80 n(1 —p) =400 x 0.8 = 320

With these conditions checked, we may use the normal approximation in place of
the binomial distribution using the mean and standard deviation from the binomial
model:

uw=mnp=280 oc=+np(l—p)=38
We want to find the probability of observing fewer than 59 smokers using this model.
() Exercise 3.53 Use the normal model N(u = 80,0 = 8) to estimate the probability

of observing fewer than 59 smokers. Your answer should be approximately equal to
the solution of Example 3.50: 0.0041.%"

39Compute the Z score first: Z = w = —2.63. The corresponding left tail area is 0.0043.
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3.4.3 The normal approximation breaks down on small intervals

Caution: The normal approximation may fail on small intervals

The normal approximation to the binomial distribution tends to perform poorly
when estimating the probability of a small range of counts, even when the conditions
are met.

Suppose we wanted to compute the probability of observing 69, 70, or 71 smokers in
400 when p = 0.20. With such a large sample, we might be tempted to apply the normal
approximation and use the range 69 to 71. However, we would find that the binomial
solution and the normal approximation notably differ:

Binomial: 0.0703 Normal: 0.0476

We can identify the cause of this discrepancy using Figure 3.19, which shows the areas rep-
resenting the binomial probability (outlined) and normal approximation (shaded). Notice
that the width of the area under the normal distribution is 0.5 units too slim on both sides
of the interval.

60 70 80 90 100

Figure 3.19: A normal curve with the area between 69 and 71 shaded. The
outlined area represents the exact binomial probability.

TIP: Improving the accuracy of the normal approximation to the bino-
mial distribution

The normal approximation to the binomial distribution for intervals of values is
usually improved if cutoff values are modified slightly. The cutoff values for the
lower end of a shaded region should be reduced by 0.5, and the cutoff value for the
upper end should be increased by 0.5.

The tip to add extra area when applying the normal approximation is most often useful
when examining a range of observations. While it is possible to apply it when computing
a tail area, the benefit of the modification usually disappears since the total interval is
typically quite wide.
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3.5 More discrete distributions (special topic)

3.5.1 Negative binomial distribution

The geometric distribution describes the probability of observing the first success on the n'”
trial. The negative binomial distribution is more general: it describes the probability
of observing the k*" success on the n'" trial.

@® Example 3.54 Each day a high school football coach tells his star kicker, Brian,
that he can go home after he successfully kicks four 35 yard field goals. Suppose we
say each kick has a probability p of being successful. If p is small — e.g. close to 0.1 —
would we expect Brian to need many attempts before he successfully kicks his fourth
field goal?

We are waiting for the fourth success (k = 4). If the probability of a success (p)
is small, then the number of attempts (n) will probably be large. This means that
Brian is more likely to need many attempts before he gets k& = 4 successes. To put
this another way, the probability of n being small is low.

To identify a negative binomial case, we check 4 conditions. The first three are common
to the binomial distribution.*’

TIP: Is it negative binomial? Four conditions to check.
(1) The trials are independent.

(2) Each trial outcome can be classified as a success or failure.
(3) The probability of a success (p) is the same for each trial.
(4) The last trial must be a success.

() Exercise 3.55 Suppose Brian is very diligent in his attempts and he makes each
35 yard field goal with probability p = 0.8. Take a guess at how many attempts he
would need before making his fourth kick.*!

® Example 3.56 In yesterday’s practice, it took Brian only 6 tries to get his fourth
field goal. Write out each of the possible sequence of kicks.

Because it took Brian six tries to get the fourth success, we know the last kick must
have been a success. That leaves three successful kicks and two unsuccessful kicks (we
label these as failures) that make up the first five attempts. There are ten possible
sequences of these first five kicks, which are shown in Table 3.20. If Brian achieved
his fourth success (k = 4) on his sixth attempt (n = 6), then his order of successes
and failures must be one of these ten possible sequences.

() Exercise 3.57 Each sequence in Table 3.20 has exactly two failures and four suc-
cesses with the last attempt always being a success. If the probability of a success is
p = 0.8, find the probability of the first sequence.*’

40See a similar guide for the binomial distribution on page 138.

410ne possible answer: since he is likely to make each field goal attempt, it will take him at least 4
attempts but probably not more than 6 or 7.

42The first sequence: 0.2 X 0.2 x 0.8 x 0.8 x 0.8 x 0.8 = 0.0164.
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Kick Attempt

1 2 3 4 5 6
1| FF 5 & 515

1 2 3 4
2| F o5 F S 55
3| F 5 § F &5
4| F 5 5 5§ Fls
5| s F F & 58
6| 5 F 5 F §|5
7| s F 5 ¢ F|S
8| 5 5 F F 5|5
o| 5 5 F g F|s
0| s § & F F|S

Table 3.20: The ten possible sequences when the fourth successful kick is
on the sixth attempt.

If the probability Brian kicks a 35 yard field goal is p = 0.8, what is the probability it
takes Brian exactly six tries to get his fourth successful kick? We can write this as

P(it takes Brian six tries to make four field goals)

= P(Brian makes three of his first five field goals, and he makes the sixth one)

= P(1°" sequence OR 2"* sequence OR ... OR 10" sequence)
where the sequences are from Table 3.20. We can break down this last probability into the
sum of ten disjoint possibilities:

P(1°" sequence OR 2™ sequence OR. ... OR 10" sequence)
= P(1°" sequence) + P(2"* sequence) + - - - + P(10"" sequence)

The probability of the first sequence was identified in Exercise 3.57 as 0.0164, and each of
the other sequences have the same probability. Since each of the ten sequence has the same
probability, the total probability is ten times that of any individual sequence.

The way to compute this negative binomial probability is similar to how the binomial
problems were solved in Section 3.4. The probability is broken into two pieces:

P(it takes Brian six tries to make four field goals)

= [Number of possible sequences| x P(Single sequence)

Each part is examined separately, then we multiply to get the final result.
We first identify the probability of a single sequence. One particular case is to first
observe all the failures (n — k of them) followed by the k successes:

P(Single sequence)
= P(n — k failures and then k successes)

=(1—p)" Fp*
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We must also identify the number of sequences for the general case. Above, ten
sequences were identified where the fourth success came on the sixth attempt. These
sequences were identified by fixing the last observation as a success and looking for all the
ways to arrange the other observations. In other words, how many ways could we arrange
k — 1 successes in n — 1 trials? This can be found using the n choose k coefficient but for
n — 1 and k — 1 instead:

(n—l) (n —1)! (n—1)!

k—1) k-1 (n-1)—(k-1) (-Dl(n—k)

This is the number of different ways we can order k — 1 successes and n — k failures in n — 1
trials. If the factorial notation (the exclamation point) is unfamiliar, see page 138.

Negative binomial distribution
The negative binomial distribution describes the probability of observing the k"
success on the n'" trial:

-1
P(the k' success on the n'" trial) = (Z 1)pk(l —p)nF (3.58)

where p is the probability an individual trial is a success. All trials are assumed
to be independent.

® Example 3.59 Show using Equation (3.58) that the probability Brian kicks his
fourth successful field goal on the sixth attempt is 0.164.

The probability of a single success is p = 0.8, the number of successes is k = 4, and
the number of necessary attempts under this scenario is n = 6.

n—1\ 4 —k 5! 4 2
1—p)" %" = ——(0.8)%(0.2)> = 10 x 0.0164 = 0.164
<k_1)p( p) 231 (0-8)%(0-2) 0 % 0.016 0.16

() Exercise 3.60 The negative binomial distribution requires that each kick attempt
by Brian is independent. Do you think it is reasonable to suggest that each of Brian’s
kick attempts are independent?*”

() Exercise 3.61 Assume Brian’s kick attempts are independent. What is the prob-
ability that Brian will kick his fourth field goal within 5 attempts?**

43 Answers may vary. We cannot conclusively say they are or are not independent. However, many
statistical reviews of athletic performance suggests such attempts are very nearly independent.

441f his fourth field goal (k = 4) is within five attempts, it either took him four or five tries (n = 4 or
n =5). We have p = 0.8 from earlier. Use Equation (3.58) to compute the probability of n = 4 tries and
n =5 tries, then add those probabilities together:

Pn=40Rn=5)=P(n=4)+P(n=5)

A\ 51 . B B B
- (4 B 1)o.g + (4 B 1)(0.8) (1-0.8)=1x041+4 x 0.082 =0.41 + 0.33 = 0.74
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TIP: Binomial versus negative binomial

In the binomial case, we typically have a fixed number of trials and instead consider
the number of successes. In the negative binomial case, we examine how many trials
it takes to observe a fixed number of successes and require that the last observation
be a success.

() Exercise 3.62 On 70% of days, a hospital admits at least one heart attack patient.
On 30% of the days, no heart attack patients are admitted. Identify each case below
as a binomial or negative binomial case, and compute the probability.*”

(a) What is the probability the hospital will admit a heart attack patient on exactly
three days this week?

(b) What is the probability the second day with a heart attack patient will be the
fourth day of the week?

(c) What is the probability the fifth day of next month will be the first day with a
heart attack patient?

3.5.2 Poisson distribution

@® Example 3.63 There are about 8 million individuals in New York City. How many
individuals might we expect to be hospitalized for acute myocardial infarction (AMI),
i.e. a heart attack, each day? According to historical records, the average number is
about 4.4 individuals. However, we would also like to know the approximate distri-
bution of counts. What would a histogram of the number of AMI occurrences each
day look like if we recorded the daily counts over an entire year?

A histogram of the number of occurrences of AMI on 365 days*® for NYC is shown in
Figure 3.21. The sample mean (4.38) is similar to the historical average of 4.4. The
sample standard deviation is about 2, and the histogram indicates that about 70% of
the data fall between 2.4 and 6.4. The distribution’s shape is unimodal and skewed
to the right.

The Poisson distribution is often useful for estimating the number of rare events in
a large population over a unit of time. For instance, consider each of the following events,
which are rare for any given individual:
e having a heart attack,
e getting married, and
e getting struck by lightning.
The Poisson distribution helps us describe the number of such events that will occur in

a short unit of time for a fixed population if the individuals within the population are
independent.

45Tn each part, p = 0.7. (a) The number of days is fixed, so this is binomial. The parameters are k = 3
and n = 7: 0.097. (b) The last “success” (admitting a heart attack patient) is fixed to the last day, so we
should apply the negative binomial distribution. The parameters are k = 2, n = 4: 0.132. (c) This problem
is negative binomial with kK = 1 and n = 5: 0.006. Note that the negative binomial case when k =1 is the
same as using the geometric distribution.

46These data are simulated. In practice, we should check for an association between successive days.
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Figure 3.21: A histogram of the number of occurrences of AMI on 365
separate days in NYC.

The histogram in Figure 3.21 approximates a Poisson distribution with rate equal to
4.4. The rate for a Poisson distribution is the average number of occurrences in a mostly-
fixed population per unit of time. In Example 3.63, the time unit is a day, the population
is all New York City residents, and the historical rate is 4.4. The parameter in the Poisson
distribution is the rate — or how many rare events we expect to observe — and it is typically
denoted by A (the Greek letter lambda) or . Using the rate, we can describe the probability
of observing exactly k rare events in a single unit of time.

Poisson distribution
Suppose we are watching for rare events and the number of observed events follows
a Poisson distribution with rate A. Then

Aree—A

P(observe k rare events) = y

where k may take a value 0, 1, 2, and so on, and k! represents k-factorial, as
described on page 138. The letter e ~ 2.718 is the base of the natural logarithm.
The mean and standard deviation of this distribution are A and v/), respectively.

We will leave a rigorous set of conditions for the Poisson distribution to a later course.
However, we offer a few simple guidelines that can be used for an initial evaluation of
whether the Poisson model would be appropriate.

TIP: Is it Poisson?
A random variable may follow a Poisson distribution if the event being considered
is rare, the population is large, and the events occur independently of each other.

Even when rare events are not really independent — for instance, Saturdays and Sun-
days are especially popular for weddings — a Poisson model may sometimes still be reason-
able if we allow it to have a different rate for different times. In the wedding example, the
rate would be modeled as higher on weekends than on weekdays. The idea of modeling
rates for a Poisson distribution against a second variable such as day0fTheWeek forms the
foundation of some more advanced methods that fall in the realm of generalized linear
models. In Chapters 7 and 8, we will discuss a foundation of linear models.
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3.6 Exercises

3.6.1 Normal distribution

3.1 Area under the curve, I. What percent of a standard normal distribution N(u = 0,0 = 1)
is found in each region? Be sure to draw a graph.

(a) Z < —1.35 (b) Z >1.48 (c) —04< Z<15  (d) |Z]>2

3.2 Area under the curve, II. What percent of a standard normal distribution N(x = 0,0 = 1)
is found in each region? Be sure to draw a graph.

(a) Z > —1.13 (b) Z <0.18 (c) Z>8 d) 2] <05

3.3 Scores on the GRE, Part I. A college senior who took the Graduate Record Examination

exam scored 620 on the Verbal Reasoning section and 670 on the Quantitative Reasoning section.

The mean score for Verbal Reasoning section was 462 with a standard deviation of 119, and the

mean score for the Quantitative Reasoning was 584 with a standard deviation of 151. Suppose

that both distributions are nearly normal.

(a) Write down the short-hand for these two normal distributions.

(b) What is her Z score on the Verbal Reasoning section? On the Quantitative Reasoning section?

Draw a standard normal distribution curve and mark these two Z scores.

What do these Z scores tell you?

Relative to others, which section did she do better on?

Find her percentile scores for the two exams.

What percent of the test takers did better than her on the Verbal Reasoning section? On the

Quantitative Reasoning section?

(g) Explain why simply comparing her raw scores from the two sections would lead to the incorrect
conclusion that she did better on the Quantitative Reasoning section.

(h) If the distributions of the scores on these exams are not nearly normal, would your answers to
parts (b) - (f) change? Explain your reasoning.

3.4 Triathlon times, Part I. In triathlons, it is common for racers to be placed into age
and gender groups. Friends Leo and Mary both completed the Hermosa Beach Triathlon, where
Leo competed in the Men, Ages 30 - 34 group while Mary competed in the Women, Ages 25 -
29 group. Leo completed the race in 1:22:28 (4948 seconds), while Mary completed the race in
1:31:53 (5513 seconds). Obviously Leo finished faster, but they are curious about how they did
within their respective groups. Can you help them? Here is some information on the performance
of their groups:
e The finishing times of the Men, Ages 30 - 34 group has a mean of 4313 seconds with a
standard deviation of 583 seconds.
e The finishing times of the Women, Ages 25 - 29 group has a mean of 5261 seconds with a
standard deviation of 807 seconds.
e The distributions of finishing times for both groups are approximately Normal.
Remember: a better performance corresponds to a faster finish.
(a) Write down the short-hand for these two normal distributions.
) What are the Z scores for Leo’s and Mary’s finishing times? What do these Z scores tell you?
) Did Leo or Mary rank better in their respective groups? Explain your reasoning.
d) What percent of the triathletes did Leo finish faster than his group?
) What percent of the triathletes did Mary finish faster than her group?
)

If the distributions of finishing times are not nearly normal, would your answers to parts (b)
- (e) change? Explain your reasoning.
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3.5 GRE scores, Part II. In Exercise 3.3 we saw two distributions for GRE scores: N(u =
462, 0 = 119) for the verbal part of the exam and N(u = 584,00 = 151) for the quantitative part.
Use this information to compute each of the following:

(a) The score of a student who scored in the 80" percentile on the Quantitative Reasoning section.

(b) The score of a student who scored worse than 70% of the test takers in the Verbal Reasoning
section.

3.6 Triathlon times, Part II. In Exercise 3.4 we saw two distributions for triathlon times:
N(p = 4313,0 = 583) for Men, Ages 30 - 34 and N(u = 5261,0 = 807) for the Women, Ages 25
- 29 group. Times are listed in seconds. Use this information to compute each of the following:

(a) The cutoff time for the fastest 5% of athletes in the men’s group, i.e. those who took the
shortest 5% of time to finish.

(b) The cutoff time for the slowest 10% of athletes in the women’s group.

3.7 Temperatures in LA, Part I. The average daily high temperature in June in LA is 77°F
with a standard deviation of 5°F. Suppose that the temperatures in June closely follow a normal
distribution.

(a) What is the probability of observing an 83°F temperature or higher in LA during a randomly
chosen day in June?
(b) How cold are the coldest 10% of the days during June in LA?

3.8 Portfolio returns. The Capital Asset Pricing Model is a financial model that assumes
returns on a portfolio are normally distributed. Suppose a portfolio has an average annual return
of 14.7% (i.e. an average gain of 14.7%) with a standard deviation of 33%. A return of 0% means
the value of the portfolio doesn’t change, a negative return means that the portfolio loses money,
and a positive return means that the portfolio gains money.

(a) What percent of years does this portfolio lose money, i.e. have a return less than 0%?
(b) What is the cutoff for the highest 15% of annual returns with this portfolio?

3.9 Temperatures in LA, Part I1. Exercise 3.7 states that average daily high temperature in
June in LA is 77°F with a standard deviation of 5°F, and it can be assumed that they to follow a
normal distribution. We use the following equation to convert °F (Fahrenheit) to °C (Celsius):

C’:(F—32)><g.

(a) Write the probability model for the distribution of temperature in °C in June in LA.

(b) What is the probability of observing a 28°C (which roughly corresponds to 83°F) temperature
or higher in June in LA? Calculate using the °C model from part (a).

(c) Did you get the same answer or different answers in part (b) of this question and part (a) of
Exercise 3.77 Are you surprised? Explain.

3.10 Heights of 10 year olds. Heights of 10 year olds, regardless of gender, closely follow a

normal distribution with mean 55 inches and standard deviation 6 inches.

(a) What is the probability that a randomly chosen 10 year old is shorter than 48 inches?

(b) What is the probability that a randomly chosen 10 year old is between 60 and 65 inches?

(c) If the tallest 10% of the class is considered “very tall”, what is the height cutoff for “very
tall”?

(d) The height requirement for Batman the Ride at Six Flags Magic Mountain is 54 inches. What
percent of 10 year olds cannot go on this ride?

3.11 Auto insurance premiums. Suppose a newspaper article states that the distribution
of auto insurance premiums for residents of California is approximately normal with a mean of
$1,650. The article also states that 25% of California residents pay more than $1,800.



3.6. EXERCISES 151

(a) What is the Z score that corresponds to the top 25% (or the 75th percentile) of the standard
normal distribution?

(b) What is the mean insurance cost? What is the cutoff for the 75th percentile?

(c¢) Identify the standard deviation of insurance premiums in LA.

3.12 Speeding on the I-5, Part I. The distribution of passenger vehicle speeds traveling on
the Interstate 5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and
a standard deviation of 4.78 miles/hour."”

(a) What percent of passenger vehicles travel slower than 80 miles/hour?
(

)
b) What percent of passenger vehicles travel between 60 and 80 miles/hour?
(c) How fast to do the fastest 5% of passenger vehicles travel?

)

(d) The speed limit on this stretch of the I-5 is 70 miles/hour. Approximate what percentage of

the passenger vehicles travel above the speed limit on this stretch of the I-5.

3.13 Overweight baggage. Suppose weights of the checked baggage of airline passengers
follow a nearly normal distribution with mean 45 pounds and standard deviation 3.2 pounds.
Most airlines charge a fee for baggage that weigh in excess of 50 pounds. Determine what percent
of airline passengers incur this fee.

3.14 Find the SD. Find the standard deviation of the distribution in the following situations.

(a) MENSA is an organization whose members have IQs in the top 2% of the population. IQs
are normally distributed with mean 100, and the minimum IQ score required for admission to
MENSA is 132.

(b) Cholesterol levels for women aged 20 to 34 follow an approximately normal distribution with
mean 185 milligrams per deciliter (mg/dl). Women with cholesterol levels above 220 mg/dl
are considered to have high cholesterol and about 18.5% of women fall into this category.

3.15 Buying books on Ebay. The textbook you need to buy for your chemistry class is expen-
sive at the college bookstore, so you consider buying it on Ebay instead. A look at past auctions
suggest that the prices of that chemistry textbook have an approximately normal distribution with
mean $89 and standard deviation $15.

(a) What is the probability that a randomly selected auction for this book closes at more than
$1007

(b) Ebay allows you to set your maximum bid price so that if someone outbids you on an auction
you can automatically outbid them, up to the maximum bid price you set. If you are only
bidding on one auction, what are the advantages and disadvantages of setting a bid price too
high or too low? What if you are bidding on multiple auctions?

(¢) If you watched 10 auctions, roughly what percentile might you use for a maximum bid cutoff
to be somewhat sure that you will win one of these ten auctions? Is it possible to find a cutoff
point that will ensure that you win an auction?

(d) If you are willing to track up to ten auctions closely, about what price might you use as your
maximum bid price if you want to be somewhat sure that you will buy one of these ten books?

478, Johnson and D. Murray. “Empirical Analysis of Truck and Automobile Speeds on Rural Interstates:
Impact of Posted Speed Limits”. In: Transportation Research Board 89th Annual Meeting. 2010.


http://comp.uark.edu/~sjohnson/New%20Folder/SLJ%20Pub%20Paper%2010-0833.pdf
http://comp.uark.edu/~sjohnson/New%20Folder/SLJ%20Pub%20Paper%2010-0833.pdf
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3.16 SAT scores. SAT scores (out of 2400) are distributed normally with a mean of 1500 and
a standard deviation of 300. Suppose a school council awards a certificate of excellence to all
students who score at least 1900 on the SAT, and suppose we pick one of the recognized students
at random. What is the probability this student’s score will be at least 21007 (The material
covered in Section 2.2 would be useful for this question.)

3.17 Scores on stats final, Part I. Below are final exam scores of 20 Introductory Statistics
students.
10 11 12 13 14 15 16 17 18 19 20
57 66 69 71 72 73 74 77 78 78,79,79,81,81, 82, 83,83, 88, 89,94
The mean score is 77.7 points. with a standard deviation of 8.44 points. Use this information to
determine if the scores approximately follow the 68-95-99.7% Rule.

3.18 Heights of female college students, Part I. Below are heights of 25 female college
students.

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
54 55 56 56 57 58 58 59 60 60 60,61, 61,62,62,63,63, 63,64, 65,65,67,67,69, 73

The mean height is 61.52 inches with a standard deviation of 4.58 inches. Use this information to
determine if the heights approximately follow the 68-95-99.7% Rule.

3.6.2 Evaluating the Normal approximation

3.19 Scores on stats final, Part I1. Exercise 3.17 lists the final exam scores of 20 Introductory
Statistics students. Do these data appear to follow a normal distribution? Explain your reasoning
using the graphs provided below.
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3.20 Heights of female college students, Part I1. Exercise 3.18 lists the heights of 25 female
college students. Do these data appear to follow a normal distribution? Explain your reasoning
using the graphs provided below.
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3.6.3 Geometric distribution

3.21 1Is it Bernoulli? Determine if each trial can be considered an independent Bernouilli trial
for the following situations.

(a) Cards dealt in a hand of poker.

(b) Outcome of each roll of a die.

3.22 With and without replacement. In the following situations assume that half of the
specified population is male and the other half is female.

(a) Suppose you're sampling from a room with 10 people. What is the probability of sampling two
females in a row when sampling with replacement? What is the probability when sampling
without replacement?

(b) Now suppose you’re sampling from a stadium with 10,000 people. What is the probability
of sampling two females in a row when sampling with replacement? What is the probability
when sampling without replacement?

(c) We often treat individuals who are sampled from a large population as independent. Using
your findings from parts (a) and (b), explain whether or not this assumption is reasonable.

3.23 Married women. The 2010 American Community Survey estimates that 47.1% of women
ages 15 years and over are married."®

(a) We randomly select three women between these ages. What is the probability that the third
woman selected is the only one who is married?

(b) What is the probability that all three randomly selected women are married?

(¢) On average, how many women would you expect to sample before selecting a married woman?
What is the standard deviation?

(d) If the proportion of married women was actually 30%, how many women would you expect to
sample before selecting a married woman? What is the standard deviation?

(e) Based on your answers to parts (c) and (d), how does decreasing the probability of an event
affect the mean and standard deviation of the wait time until success?

3.24 Defective rate. A machine that produces a special type of transistor (a component of
computers) has a 2% defective rate. The production is considered a random process where each
transistor is independent of the others.

(a) What is the probability that the 10*" transistor produced is the first with a defect?
(b) What is the probability that the machine produces no defective transistors in a batch of 1007

(¢) On average, how many transistors would you expect to be produced before the first with a
defect? What is the standard deviation?

(d) Another machine that also produces transistors has a 5% defective rate where each transistor
is produced independent of the others. On average how many transistors would you expect to
be produced with this machine before the first with a defect? What is the standard deviation?

(e) Based on your answers to parts (c) and (d), how does increasing the probability of an event
affect the mean and standard deviation of the wait time until success?

481.S. Census Bureau, 2010 American Community Survey, Marital Status.


http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_1YR_S1201&prodType=table
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3.25 Eye color, Part I. A husband and wife both have brown eyes but carry genes that make

it possible for their children to have brown eyes (probability 0.75), blue eyes (0.125), or green eyes

(0.125).

(a) What is the probability the first blue-eyed child they have is their third child? Assume that
the eye colors of the children are independent of each other.

(b) On average, how many children would such a pair of parents have before having a blue-eyed
child? What is the standard deviation of the number of children they would expect to have
until the first blue-eyed child?

3.26 Speeding on the I-5, Part II. Exercise 3.12 states that the distribution of speeds of
cars traveling on the Interstate 5 Freeway (I-5) in California is nearly normal with a mean of 72.6
miles/hour and a standard deviation of 4.78 miles/hour. The speed limit on this stretch of the I-5
is 70 miles/hour.

(a) A highway patrol officer is hidden on the side of the freeway. What is the probability that
5 cars pass and none are speeding? Assume that the speeds of the cars are independent of
each other.

(b) On average, how many cars would the highway patrol officer expect to watch until the first
car that is speeding? What is the standard deviation of the number of cars he would expect
to watch?

3.6.4 Binomial distribution

3.27 Underage drinking, Part I. The Substance Abuse and Mental Health Services Admin-

istration estimated that 70% of 18-20 year olds consumed alcoholic beverages in 2008.*’

(a) Suppose a random sample of ten 18-20 year olds is taken. Is the use of the binomial distribution
appropriate for calculating the probability that exactly six consumed alcoholic beverages?
Explain.

(b) Calculate the probability that exactly 6 out of 10 randomly sampled 18-20 year olds consumed
an alcoholic drink.

(c) What is the probability that exactly four out of the ten 18-20 year olds have not consumed
an alcoholic beverage?

(d) What is the probability that at most 2 out of 5 randomly sampled 18-20 year olds have
consumed alcoholic beverages?

(e) What is the probability that at least 1 out of 5 randomly sampled 18-20 year olds have
consumed alcoholic beverages?

3.28 Chickenpox, Part I. The National Vaccine Information Center estimates that 90% of
Americans have had chickenpox by the time they reach adulthood.””

(a) Suppose we take a random sample of 100 American adults. Is the use of the binomial distri-
bution appropriate for calculating the probability that exactly 97 had chickenpox before they
reached adulthood? Explain.

(b) Calculate the probability that exactly 97 out of 100 randomly sampled American adults had
chickenpox during childhood.

(c) What is the probability that exactly 3 out of a new sample of 100 American adults have not
had chickenpox in their childhood?

(d) What is the probability that at least 1 out of 10 randomly sampled American adults have had
chickenpox?

(e) What is the probability that at most 3 out of 10 randomly sampled American adults have not
had chickenpox?

49SAMHSA, Office of Applied Studies, National Survey on Drug Use and Health, 2007 and 2008.
50National Vaccine Information Center, Chickenpox, The Disecase & The Vaccine Fact Sheet.


http://www.oas.samhsa.gov/NSDUH/2k8NSDUH/tabs/Sect2peTabs1to42.htm#Tab2.5B
http://www.nvic.org/vaccines-and-diseases/chickenpox/chickenpoxfacts.aspx
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3.29 Underage drinking, Part II. We learned in Exercise 3.27 that about 70% of 18-20 year
olds consumed alcoholic beverages in 2008. We now consider a random sample of fifty 18-20 year
olds.

(a) How many people would you expect to have consumed alcoholic beverages? And with what
standard deviation?

(b) Would you be surprised if there were 45 or more people who have consumed alcoholic bever-
ages?

(c) What is the probability that 45 or more people in this sample have consumed alcoholic bev-
erages? How does this probability relate to your answer to part (b)?

3.30 Chickenpox, Part II. We learned in Exercise 3.28 that about 90% of American adults
had chickenpox before adulthood. We now consider a random sample of 120 American adults.

(a) How many people in this sample would you expect to have had chickenpox in their childhood?
And with what standard deviation?

(b) Would you be surprised if there were 105 people who have had chickenpox in their childhood?

(¢) What is the probability that 105 or fewer people in this sample have had chickenpox in their
childhood? How does this probability relate to your answer to part (b)?

3.31 University admissions. Suppose a university announced that it admitted 2,500 students
for the following year’s freshman class. However, the university has dorm room spots for only 1,786
freshman students. If there is a 70% chance that an admitted student will decide to accept the
offer and attend this university, what is the what is the approximate probability that the university
will not have enough dormitory room spots for the freshman class?

3.32 Survey response rate. Pew Research reported in 2012 that the typical response rate to
their surveys is only 9%. If for a particular survey 15,000 households are contacted, what is the
probability that at least 1,500 will agree to respond?”’

3.33 Game of dreidel. A dreidel is a four-sided spinning top with the Hebrew letters nun,
gimel, hei, and shin, one on each side. Each side is equally likely to come up in a single spin of
the dreidel. Suppose you spin a dreidel three times. Calculate the probability of getting”?

a) at least one nun?

(
(b) exactly 2 nuns?

)
| 1
(c) exactly 1 hei?

(d) at most 2 gimels? _

3.34 Arachnophobia. A 2005 Gallup Poll found that that 7% of teenagers (ages 13 to 17)
suffer from arachnophobia and are extremely afraid of spiders. At a summer camp there are 10
teenagers sleeping in each tent. Assume that these 10 teenagers are independent of each other.””
(a) Calculate the probability that at least one of them suffers from arachnophobia.

(b)

(c) Calculate the probability that at most 1 of them suffers from arachnophobia?
(d)

Calculate the probability that exactly 2 of them suffer from arachnophobia?

If the camp counselor wants to make sure no more than 1 teenager in each tent is afraid of
spiders, does it seem reasonable for him to randomly assign teenagers to tents?

51The Pew Research Center for the People and the Press, Assessing the Representativeness of Public
Opinion Surveys, May 15, 2012.

52Photo by Staccabees on Flickr.

53Gallup Poll, What Frightens America’s Youth?, March 29, 2005.


http://www.people-press.org/files/legacy-pdf/Assessing%20the%20Representativeness%20of%20Public%20Opinion%20Surveys.pdf
http://www.people-press.org/files/legacy-pdf/Assessing%20the%20Representativeness%20of%20Public%20Opinion%20Surveys.pdf
http://www.flickr.com/photos/44689913@N04/4116667696
http://www.gallup.com/poll/15439/What-Frightens-Americas-Youth.aspx
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3.35 Eye color, Part II. Exercise 3.25 introduces a husband and wife with brown eyes who
have 0.75 probability of having children with brown eyes, 0.125 probability of having children with
blue eyes, and 0.125 probability of having children with green eyes.

(a) What is the probability that their first child will have green eyes and the second will not?
(b)
(c)
(d) If they have six children, what is the probability that at least one will have green eyes?
)
)

(e) What is the probability that the first green eyed child will be the 4" child?
(f

What is the probability that exactly one of their two children will have green eyes?
If they have six children, what is the probability that exactly two will have green eyes?

Would it be considered unusual if only 2 out of their 6 children had brown eyes?

3.36 Sickle cell anemia. Sickle cell anemia is a genetic blood disorder where red blood cells lose
their flexibility and assume an abnormal, rigid, “sickle” shape, which results in a risk of various
complications. If both parents are carriers of the disease, then a child has a 25% chance of having
the disease, 50% chance of being a carrier, and 25% chance of neither having the disease nor being
a carrier. If two parents who are carriers of the disease have 3 children, what is the probability
that
(a) two will have the disease?
(b) none will have the disease?
)
)

at least one will neither have the disease nor be a carrier?

(c
(d) the first child with the disease will the be 3"¢ child?

3.37 Roulette winnings. In the game of roulette, a wheel is spun and you place bets on where
it will stop. One popular bet is that it will stop on a red slot; such a bet has an 18/38 chance of
winning. If it stops on red, you double the money you bet. If not, you lose the money you bet.
Suppose you play 3 times, each time with a $1 bet. Let Y represent the total amount won or lost.
Write a probability model for Y.

3.38 Multiple choice quiz. In a multiple choice quiz there are 5 questions and 4 choices for
each question (a, b, ¢, d). Robin has not studied for the quiz at all, and decides to randomly guess
the answers. What is the probability that

(a) the first question she gets right is the 3¢ question?
(b) she gets exactly 3 or exactly 4 questions right?
(c) she gets the majority of the questions right?

3.39 Exploring combinations. The formula for the number of ways to arrange n objects is
nl=nx (n—1) x---x 2 x 1. This exercise walks you through the derivation of this formula for
a couple of special cases.

A small company has five employees: Anna, Ben, Carl, Damian, and Eddy. There are five
parking spots in a row at the company, none of which are assigned, and each day the employees
pull into a random parking spot. That is, all possible orderings of the cars in the row of spots are
equally likely.

(a) On a given day, what is the probability that the employees park in alphabetical order?

(b) If the alphabetical order has an equal chance of occurring relative to all other possible order-
ings, how many ways must there be to arrange the five cars?

(c) Now consider a sample of 8 employees instead. How many possible ways are there to order
these 8 employees’ cars?
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3.40 Male children. While it is often assumed that the probabilities of having a boy or a girl
are the same, the actual probability of having a boy is slightly higher at 0.51. Suppose a couple
plans to have 3 kids.

(a) Use the binomial model to calculate the probability that two of them will be boys.

(b) Write out all possible orderings of 3 children, 2 of whom are boys. Use these scenarios to
calculate the same probability from part (a) but using the Addition Rule for disjoint events.
Confirm that your answers from parts (a) and (b) match.

(¢) If we wanted to calculate the probability that a couple who plans to have 8 kids will have
3 boys, briefly describe why the approach from part (b) would be more tedious than the
approach from part (a).

3.6.5 More discrete distributions

3.41 Identify the distribution. Calculate the following probabilities and indicate which prob-
ability distribution model is appropriate in each case. You roll a fair die 5 times. What is the
probability of rolling

(a) the first 6 on the fifth roll?

(b) exactly three 6s?

(c) the third 6 on the fifth roll?

3.42 Darts. Calculate the following probabilities and indicate which probability distribution
model is appropriate in each case. A very good darts player can hit the bullseye (red circle in the
center of the dart board) 65% of the time. What is the probability that he

(a) hits the bullseye for the 10" time on the 15" try?

(b) hits the bullseye 10 times in 15 tries?

(c) hits the first bullseye on the third try?

3.43 Sampling at school. For a sociology class project you are asked to conduct a survey on
20 students at your school. You decide to stand outside of your dorm’s cafeteria and conduct the
survey on a random sample of 20 students leaving the cafeteria after dinner one evening. Your
dorm is comprised of 45% males and 55% females.

(a) Which probability model is most appropriate for calculating the probability that the 4" person
you survey is the 2"¢ female? Explain.

(b) Compute the probability from part (a).

(c) The three possible scenarios that lead to 4*" person you survey being the 2™¢ female are

{M,M,F,F},{M,F,M,F} {F,M,M, F}

One common feature among these scenarios is that the last trial is always female. In the first
three trials there are 2 males and 1 female. Use the binomial coefficient to confirm that there
are 3 ways of ordering 2 males and 1 female.

(d) Use the findings presented in part (c) to explain why the formula for the coefficient for the

negative binomial is (7~}) while the formula for the binomial coefficient is (}).

3.44 Serving in volleyball. A not-so-skilled volleyball player has a 15% chance of making the
serve, which involves hitting the ball so it passes over the net on a trajectory such that it will land
in the opposing team’s court. Suppose that her serves are independent of each other.

(a) What is the probability that on the 10" try she will make her 3" successful serve?

(b) Suppose she has made two successful serves in nine attempts. What is the probability that
her 10" serve will be successful?

(c) Even though parts (a) and (b) discuss the same scenario, the probabilities you calculated
should be different. Can you explain the reason for this discrepancy?
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3.45 Customers at a coffee shop, Part I. A coffee shop serves an average of 75 customers
per hour during the morning rush.

(a) Which distribution we have studied is most appropriate for calculating the probability of a
given number of customers arriving within one hour during this time of day?

(b) What are the mean and the standard deviation of the number of customers this coffee shop
serves in one hour during this time of day?

(c) Would it be considered unusually low if only 60 customers showed up to this coffee shop in
one hour during this time of day?

3.46 Stenographer’s typos, Part 1. A very skilled court stenographer makes one typographical
error (typo) per hour on average.

(a) What probability distribution is most appropriate for calculating the probability of a given
number of typos this stenographer makes in an hour?

(b) What are the mean and the standard deviation of the number of typos this stenographer
makes?

(c) Would it be considered unusual if this stenographer made 4 typos in a given hour?

3.47 Customers at a coffee shop, Part 11. Exercise 3.45 gives the average number of cus-
tomers visiting a particular coffee shop during the morning rush hour as 75. Calculate the proba-
bility that this coffee shop serves 70 customers in one hour during this time of day?

3.48 Stenographer’s typos, Part 11. Exercise 3.46 gives the average number of typos of a
very skilled court stenographer as 1 per hour. Calculate the probability that this stenographer
makes at most 2 typos in a given hour.



Chapter 4

Foundations for inference

Statistical inference is concerned primarily with understanding the quality of parameter
estimates. For example, a classic inferential question is, “How sure are we that the estimated
mean, Z, is near the true population mean, p?” While the equations and details change
depending on the setting, the foundations for inference are the same throughout all of
statistics. We introduce these common themes in Sections 4.1-4.4 by discussing inference
about the population mean, p, and set the stage for other parameters and scenarios in
Section 4.5. Some advanced considerations are discussed in Section 4.6. Understanding
this chapter will make the rest of this book, and indeed the rest of statistics, seem much
more familiar.

Throughout the next few sections we consider a data set called run10, which represents
all 16,924 runners who finished the 2012 Cherry Blossom 10 mile run in Washington, DC.!
Part of this data set is shown in Table 4.1, and the variables are described in Table 4.2.

ID time age gender state

1 9225 38.00 M MD

2 106.35 33.00 M DC

3 89.33 55.00 F VA

4 113.50 24.00 F VA
16923 122.87 37.00 F VA
16924  93.30 27.00 F DC

Table 4.1: Six observations from the run10 data set.

variable description

time Ten mile run time, in minutes

age Age, in years

gender Gender (M for male, F for female)

state Home state (or country if not from the US)

Table 4.2: Variables and their descriptions for the run10 data set.

Lhttp://www.cherryblossom.org
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ID time age gender state
1983  88.31 59 M MD
8192 100.67 32 M VA

11020 109.52 33 F VA
1287  89.49 26 M DC

Table 4.3: Four observations for the run10Samp data set, which represents a
simple random sample of 100 runners from the 2012 Cherry Blossom Run.

30
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Figure 4.4: Histograms of time and age for the sample Cherry Blossom
Run data. The average time is in the mid-90s, and the average age is in the
mid-to-upper 30s. The age distribution is moderately skewed to the right.

These data are special because they include the results for the entire population of
runners who finished the 2012 Cherry Blossom Run. We took a simple random sample of
this population, which is represented in Table 4.3. We will use this sample, which we refer
to as the run10Samp data set, to draw conclusions about the entire population. This is
the practice of statistical inference in the broadest sense. Two histograms summarizing the
time and age variables in the run10Samp data set are shown in Figure 4.4.

4.1 Variability in estimates

We would like to estimate two features of the Cherry Blossom runners using the sample.

(1) How long does it take a runner, on average, to complete the 10 miles?
(2) What is the average age of the runners?
These questions may be informative for planning the Cherry Blossom Run in future years.”

We will use 1, ...,z190 to represent the 10 mile time for each runner in our sample, and
Y1, .., Y100 Will represent the age of each of these participants.

2While we focus on the mean in this chapter, questions regarding variation are often just as important
in practice. For instance, we would plan an event very differently if the standard deviation of runner age
was 2 versus if it was 20.
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4.1.1 Point estimates

We want to estimate the population mean based on the sample. The most intuitive
way to go about doing this is to simply take the sample mean. That is, to estimate the
average 10 mile run time of all participants, take the average time for the sample:

88.22 + 100.58 4 - - - 4+ 89.40
T = + 10;_ i =95.61

The sample mean Z = 95.61 minutes is called a point estimate of the population mean:
if we can only choose one value to estimate the population mean, this is our best guess.
Suppose we take a new sample of 100 people and recompute the mean; we will probably not
get the exact same answer that we got using the run10Samp data set. Estimates generally
vary from one sample to another, and this sampling variation suggests our estimate may
be close, but it will not be exactly equal to the parameter.

We can also estimate the average age of participants by examining the sample mean
of age:

99 +32+---+26

j = — 35.05
4 100

What about generating point estimates of other population parameters, such as
the population median or population standard deviation? Once again we might estimate
parameters based on sample statistics, as shown in Table 4.5. For example, we estimate the
population standard deviation for the running time using the sample standard deviation,
15.78 minutes.

time estimate parameter
mean 95.61 94.52
median 95.37 94.03
st. dev. 15.78 15.93

Table 4.5: Point estimates and parameter values for the time variable.

() Exercise 4.1 Suppose we want to estimate the difference in run times for men and
women. If Z,,., = 87.65 and ZTyomen = 102.13, then what would be a good point
estimate for the population difference?”

() Exercise 4.2 If you had to provide a point estimate of the population IQR for the
run time of participants, how might you make such an estimate using a sample?”

4.1.2 Point estimates are not exact

Estimates are usually not exactly equal to the truth, but they get better as more data
become available. We can see this by plotting a running mean from our run10Samp sample.
A running mean is a sequence of means, where each mean uses one more observation in
its calculation than the mean directly before it in the sequence. For example, the second
mean in the sequence is the average of the first two observations and the third in the

3We could take the difference of the two sample means: 102.13 — 87.65 = 14.48. Men ran about 14.48
minutes faster on average in the 2012 Cherry Blossom Run.
4To obtain a point estimate of the IQR for the population, we could take the IQR of the sample.
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Figure 4.6: The mean computed after adding each individual to the sample.
The mean tends to approach the true population average as more data
become available.

sequence is the average of the first three. The running mean for the 10 mile run time in the
run10Samp data set is shown in Figure 4.6, and it approaches the true population average,
94.52 minutes, as more data become available.

Sample point estimates only approximate the population parameter, and they vary
from one sample to another. If we took another simple random sample of the Cherry
Blossom runners, we would find that the sample mean for the run time would be a little
different. It will be useful to quantify how variable an estimate is from one sample to
another. If this variability is small (i.e. the sample mean doesn’t change much from one
sample to another) then that estimate is probably very accurate. If it varies widely from
one sample to another, then we should not expect our estimate to be very good.

4.1.3 Standard error of the mean

From the random sample represented in run10Samp, we guessed the average time it takes to
run 10 miles is 95.61 minutes. Suppose we take another random sample of 100 individuals
and take its mean: 95.30 minutes. Suppose we took another (93.43 minutes) and another
(94.16 minutes), and so on. If we do this many many times — which we can do only because
we have the entire population data set — we can build up a sampling distribution for
the sample mean when the sample size is 100, shown in Figure 4.7.

Sampling distribution

The sampling distribution represents the distribution of the point estimates based
on samples of a fixed size from a certain population. It is useful to think of a par-
ticular point estimate as being drawn from such a distribution. Understanding the
concept of a sampling distribution is central to understanding statistical inference.

The sampling distribution shown in Figure 4.7 is unimodal and approximately sym-
metric. It is also centered exactly at the true population mean: p = 94.52. Intuitively, this
makes sense. The sample means should tend to “fall around” the population mean.

We can see that the sample mean has some variability around the population mean,
which can be quantified using the standard deviation of this distribution of sample means:
oz = 1.59. The standard deviation of the sample mean tells us how far the typical estimate



4.1. VARIABILITY IN ESTIMATES 163

> 100

Q

c

(O]

>

o

o

- 50
0_

[ I |
90 95 100

Sample mean

Figure 4.7: A histogram of 1000 sample means for run time, where the
samples are of size n = 100.

is away from the actual population mean, 94.52 minutes. It also describes the typical
error of the point estimate, and for this reason we usually call this standard deviation the
standard error (SE) of the estimate.

Standard error of an estimate
The standard deviation associated with an estimate is called the standard error.
It describes the typical error or uncertainty associated with the estimate.

When considering the case of the point estimate Z, there is one problem: there is
no obvious way to estimate its standard error from a single sample. However, statistical
theory provides a helpful tool to address this issue.

(O Exercise 4.3 (a) Would you rather use a small sample or a large sample when
estimating a parameter? Why? (b) Using your reasoning from (a), would you expect
a point estimate based on a small sample to have smaller or larger standard error
than a point estimate based on a larger sample?’

In the sample of 100 runners, the standard error of the sample mean is equal to one-
tenth of the population standard deviation: 1.59 = 15.93/10. In other words, the standard
error of the sample mean based on 100 observations is equal to

. 15.
Oz _ 1593 o

vn 100

where o, is the standard deviation of the individual observations. This is no coincidence.
We can show mathematically that this equation is correct when the observations are inde-
pendent using the probability tools of Section 2.4.

SEEZO'EZ

5(a) Consider two random samples: one of size 10 and one of size 1000. Individual observations in the
small sample are highly influential on the estimate while in larger samples these individual observations
would more often average each other out. The larger sample would tend to provide a more accurate
estimate. (b) If we think an estimate is better, we probably mean it typically has less error. Based on (a),
our intuition suggests that a larger sample size corresponds to a smaller standard error.

SE
standard
error
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Computing SE for the sample mean
Given n independent observations from a population with standard deviation o,

the standard error of the sample mean is equal to
o
SE=— 4.4
% (19

A reliable method to ensure sample observations are independent is to conduct a
simple random sample consisting of less than 10% of the population.

There is one subtle issue of Equation (4.4): the population standard deviation is
typically unknown. You might have already guessed how to resolve this problem: we can
use the point estimate of the standard deviation from the sample. This estimate tends to
be sufficiently good when the sample size is at least 30 and the population distribution
is not strongly skewed. Thus, we often just use the sample standard deviation s instead
of 0. When the sample size is smaller than 30, we will need to use a method to account for
extra uncertainty in the standard error. If the skew condition is not met, a larger sample is
needed to compensate for the extra skew. These topics are further discussed in Section 4.4.

() Exercise 4.5 In the sample of 100 runners, the standard deviation of the runners’
ages is s, = 8.97. Because the sample is simple random and consists of less than 10%
of the population, the observations are independent. (a) What is the standard error
of the sample mean, § = 35.05 years? (b) Would you be surprised if someone told
you the average age of all the runners was actually 36 years?®

() Exercise 4.6  (a) Would you be more trusting of a sample that has 100 observations
or 400 observations? (b) We want to show mathematically that our estimate tends to
be better when the sample size is larger. If the standard deviation of the individual
observations is 10, what is our estimate of the standard error when the sample size is
1007 What about when it is 4007 (c) Explain how your answer to (b) mathematically

justifies your intuition in part (a).”

4.1.4 Basic properties of point estimates

We achieved three goals in this section. First, we determined that point estimates from
a sample may be used to estimate population parameters. We also determined that these
point estimates are not exact: they vary from one sample to another. Lastly, we quantified
the uncertainty of the sample mean using what we call the standard error, mathematically
represented in Equation (4.4). While we could also quantify the standard error for other
estimates — such as the median, standard deviation, or any other number of statistics — we
will postpone these extensions until later chapters or courses.

6(a) Use Equation (4.4) with the sample standard deviation to compute the standard error: SEy =
8.97/v/100 = 0.90 years. (b) It would not be surprising. Our sample is about 1 standard error from 36
years. In other words, 36 years old does not seem to be implausible given that our sample was relatively
close to it. (We use the standard error to identify what is close.)

7(a) Extra observations are usually helpful in understanding the population, so a point estimate with
400 observations seems more trustworthy. (b) The standard error when the sample size is 100 is given by
SFE100 = 10/4/100 = 1. For 400: SE400 = 10/4/400 = 0.5. The larger sample has a smaller standard
error. (c) The standard error of the sample with 400 observations is lower than that of the sample with
100 observations. The standard error describes the typical error, and since it is lower for the larger sample,
this mathematically shows the estimate from the larger sample tends to be better — though it does not
guarantee that every large sample will provide a better estimate than a particular small sample.
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4.2 Confidence intervals

A point estimate provides a single plausible value for a parameter. However, a point
estimate is rarely perfect; usually there is some error in the estimate. Instead of supplying
just a point estimate of a parameter, a next logical step would be to provide a plausible
range of values for the parameter.

In this section and in Section 4.3, we will emphasize the special case where the point
estimate is a sample mean and the parameter is the population mean. In Section 4.5, we
generalize these methods for a variety of point estimates and population parameters that
we will encounter in Chapter 5 and beyond.

4.2.1 Capturing the population parameter

A plausible range of values for the population parameter is called a confidence interval.

Using only a point estimate is like fishing in a murky lake with a spear, and using a
confidence interval is like fishing with a net. We can throw a spear where we saw a fish,
but we will probably miss. On the other hand, if we toss a net in that area, we have a good
chance of catching the fish.

If we report a point estimate, we probably will not hit the exact population parameter.
On the other hand, if we report a range of plausible values — a confidence interval — we
have a good shot at capturing the parameter.

() Exercise 4.7 If we want to be very certain we capture the population parameter,
should we use a wider interval or a smaller interval?®

4.2.2 An approximate 95% confidence interval

Our point estimate is the most plausible value of the parameter, so it makes sense to build
the confidence interval around the point estimate. The standard error, which is a measure
of the uncertainty associated with the point estimate, provides a guide for how large we
should make the confidence interval.

The standard error represents the standard deviation associated with the estimate, and
roughly 95% of the time the estimate will be within 2 standard errors of the parameter.
If the interval spreads out 2 standard errors from the point estimate, we can be roughly
95% confident that we have captured the true parameter:

point estimate + 2 x SE (4.8)

But what does “95% confident” mean? Suppose we took many samples and built a confi-
dence interval from each sample using Equation (4.8). Then about 95% of those intervals
would contain the actual mean, . Figure 4.8 shows this process with 25 samples, where 24
of the resulting confidence intervals contain the average time for all the runners, y = 94.52
minutes, and one does not.

() Exercise 4.9 In Figure 4.8, one interval does not contain 94.52 minutes. Does this
imply that the mean cannot be 94.527

8If we want to be more certain we will capture the fish, we might use a wider net. Likewise, we use a
wider confidence interval if we want to be more certain that we capture the parameter.

9 Just as some observations occur more than 2 standard deviations from the mean, some point estimates
will be more than 2 standard errors from the parameter. A confidence interval only provides a plausible
range of values for a parameter. While we might say other values are implausible based on the data, this
does not mean they are impossible.
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Figure 4.8: Twenty-five samples of size n = 100 were taken from the run10
data set. For each sample, a confidence interval was created to try to
capture the average 10 mile time for the population. Only 1 of these 25
intervals did not capture the true mean, y = 94.52 minutes.

The rule where about 95% of observations are within 2 standard deviations of the
mean is only approximately true. However, it holds very well for the normal distribution.
As we will soon see, the mean tends to be normally distributed when the sample size is
sufficiently large.

@® Example 4.10 If the sample mean of times from run10Samp is 95.61 minutes and
the standard error, as estimated using the sample standard deviation, is 1.58 minutes,
what would be an approximate 95% confidence interval for the average 10 mile time
of all runners in the race? Apply the standard error calculated using the sample
standard deviation (SE = %18 = 1.58), which is how we usually proceed since the

/100
population standard deviation is generally unknown.

We apply Equation (4.8):
95.61 £ 2x1.58 — (92.45,98.77)

Based on these data, we are about 95% confident that the average 10 mile time for all
runners in the race was larger than 92.45 but less than 98.77 minutes. Our interval
extends out 2 standard errors from the point estimate, Z.

() Exercise 4.11 The sample data suggest the average runner’s age is about 35.05
years with a standard error of 0.90 years (estimated using the sample standard devi-
ation, 8.97). What is an approximate 95% confidence interval for the average age of
all of the runners?'’

10 Again apply Equation (4.8): 35.05 4 2 x 0.90 — (33.25,36.85). We interpret this interval as follows:
We are about 95% confident the average age of all participants in the 2012 Cherry Blossom Run was
between 33.25 and 36.85 years.
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4.2.3 A sampling distribution for the mean

In Section 4.1.3, we introduced a sampling distribution for Z, the average run time for
samples of size 100. We examined this distribution earlier in Figure 4.7. Now we’ll take
100,000 samples, calculate the mean of each, and plot them in a histogram to get an
especially accurate depiction of the sampling distribution. This histogram is shown in the
left panel of Figure 4.9.
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Figure 4.9: The left panel shows a histogram of the sample means for
100,000 different random samples. The right panel shows a normal proba-
bility plot of those sample means.

Does this distribution look familiar? Hopefully so! The distribution of sample means
closely resembles the normal distribution (see Section 3.1). A normal probability plot of
these sample means is shown in the right panel of Figure 4.9. Because all of the points
closely fall around a straight line, we can conclude the distribution of sample means is
nearly normal. This result can be explained by the Central Limit Theorem.

Central Limit Theorem, informal description

If a sample consists of at least 30 independent observations and the data are not
strongly skewed, then the distribution of the sample mean is well approximated by
a normal model.

We will apply this informal version of the Central Limit Theorem for now, and discuss
its details further in Section 4.4.

The choice of using 2 standard errors in Equation (4.8) was based on our general
guideline that roughly 95% of the time, observations are within two standard deviations
of the mean. Under the normal model, we can make this more accurate by using 1.96 in
place of 2.

point estimate £ 1.96 x SE (4.12)

If a point estimate, such as Z, is associated with a normal model and standard error SF,
then we use this more precise 95% confidence interval.
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4.2.4 Changing the confidence level

Suppose we want to consider confidence intervals where the confidence level is somewhat
higher than 95%: perhaps we would like a confidence level of 99%. Think back to the
analogy about trying to catch a fish: if we want to be more sure that we will catch the fish,
we should use a wider net. To create a 99% confidence level, we must also widen our 95%
interval. On the other hand, if we want an interval with lower confidence, such as 90%, we
could make our original 95% interval slightly slimmer.

The 95% confidence interval structure provides guidance in how to make intervals with
new confidence levels. Below is a general 95% confidence interval for a point estimate that
comes from a nearly normal distribution:

point estimate + 1.96 x SE (4.13)

There are three components to this interval: the point estimate, “1.96”, and the standard
error. The choice of 1.96 x SE was based on capturing 95% of the data since the estimate
is within 1.96 standard deviations of the parameter about 95% of the time. The choice of
1.96 corresponds to a 95% confidence level.

() Exercise 4.14 If X is a normally distributed random variable, how often will X
be within 2.58 standard deviations of the mean?'"

To create a 99% confidence interval, change 1.96 in the 95% confidence interval formula
to be 2.58. Exercise 4.14 highlights that 99% of the time a normal random variable will
be within 2.58 standard deviations of the mean. This approach — using the Z scores in
the normal model to compute confidence levels — is appropriate when Z is associated with
a normal distribution with mean p and standard deviation SFEz. Thus, the formula for a
99% confidence interval is

T + 2.58 x SE; (4.15)

The normal approximation is crucial to the precision of these confidence intervals.
Section 4.4 provides a more detailed discussion about when the normal model can safely
be applied. When the normal model is not a good fit, we will use alternative distributions
that better characterize the sampling distribution.

Conditions for ¥ being nearly normal and SFE being accurate
Important conditions to help ensure the sampling distribution of z is nearly normal
and the estimate of SE sufficiently accurate:

e The sample observations are independent.
e The sample size is large: n > 30 is a good rule of thumb.
e The distribution of sample observations is not strongly skewed.

Additionally, the larger the sample size, the more lenient we can be with the
sample’s skew.

11 This is equivalent to asking how often the Z score will be larger than -2.58 but less than 2.58. (For a
picture, see Figure 4.10.) To determine this probability, look up -2.58 and 2.58 in the normal probability
table (0.0049 and 0.9951). Thus, there is a 0.9951 — 0.0049 =~ 0.99 probability that the unobserved random
variable X will be within 2.58 standard deviations of u.
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Figure 4.10: The area between -z* and z* increases as |z*| becomes larger.
If the confidence level is 99%, we choose 2* such that 99% of the normal
curve is between -z* and z*, which corresponds to 0.5% in the lower tail
and 0.5% in the upper tail: z* = 2.58.

Verifying independence is often the most difficult of the conditions to check, and the
way to check for independence varies from one situation to another. However, we can
provide simple rules for the most common scenarios.

TIP: How to verify sample observations are independent
Observations in a simple random sample consisting of less than 10% of the popu-
lation are independent.

Caution: Independence for random processes and experiments

If a sample is from a random process or experiment, it is important to verify the
observations from the process or subjects in the experiment are nearly independent
and maintain their independence throughout the process or experiment. Usually
subjects are considered independent if they undergo random assignment in an ex-
periment.

() Exercise 4.16  Create a 99% confidence interval for the average age of all runners
in the 2012 Cherry Blossom Run. The point estimate is § = 35.05 and the standard
error is SE; = 0.90."7

12The observations are independent (simple random sample, < 10% of the population), the sample size
is at least 30 (n = 100), and the distribution is only slightly skewed (Figure 4.4); the normal approximation
and estimate of SE should be reasonable. Apply the 99% confidence interval formula: § + 2.58 x SEy —
(32.7,37.4). We are 99% confident that the average age of all runners is between 32.7 and 37.4 years.
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Confidence interval for any confidence level
If the point estimate follows the normal model with standard error SE, then a
confidence interval for the population parameter is

point estimate + z*SFE

where z* corresponds to the confidence level selected.

Figure 4.10 provides a picture of how to identify z* based on a confidence level. We
select z* so that the area between -z* and z* in the normal model corresponds to the
confidence level.

Margin of error
In a confidence interval, z* x SFE is called the margin of error.

() Exercise 4.17  Use the data in Exercise 4.16 to create a 90% confidence interval
for the average age of all runners in the 2012 Cherry Blossom Run.'?

4.2.5 Interpreting confidence intervals

A careful eye might have observed the somewhat awkward language used to describe con-
fidence intervals. Correct interpretation:

We are XX% confident that the population parameter is between...

Incorrect language might try to describe the confidence interval as capturing the population
parameter with a certain probability. This is one of the most common errors: while it might
be useful to think of it as a probability, the confidence level only quantifies how plausible
it is that the parameter is in the interval.

Another especially important consideration of confidence intervals is that they only
try to capture the population parameter. Our intervals say nothing about the confidence
of capturing individual observations, a proportion of the observations, or about capturing
point estimates. Confidence intervals only attempt to capture population parameters.

4.2.6 Nearly normal population with known SD (special topic)

In rare circumstances we know important characteristics of a population. For instance, we

might know a population is nearly normal and we may also know its parameter values.

Even so, we may still like to study characteristics of a random sample from the population.

Consider the conditions required for modeling a sample mean using the normal distribution:
(1) The observations are independent.

(2) The sample size n is at least 30.
(3) The data distribution is not strongly skewed.

13We first find z* such that 90% of the distribution falls between -z* and z* in the standard normal
model, N(u = 0,0 = 1). We can look up -z* in the normal probability table by looking for a lower tail of
5% (the other 5% is in the upper tail), thus z* = 1.65. The 90% confidence interval can then be computed
as § £ 1.65 x SE; — (33.6,36.5). (We had already verified conditions for normality and the standard
error.) That is, we are 90% confident the average age is larger than 33.6 but less than 36.5 years.
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These conditions are required so we can adequately estimate the standard deviation and
so we can ensure the distribution of sample means is nearly normal. However, if the
population is known to be nearly normal, the sample mean is always nearly normal (this
is a special case of the Central Limit Theorem). If the standard deviation is also known,
then conditions (2) and (3) are not necessary for those data.

@® Example 4.18 The heights of male seniors in high school closely follow a normal
distribution N(u = 70.43,0 = 2.73), where the units are inches.' If we randomly
sampled the heights of five male seniors, what distribution should the sample mean
follow?

The population is nearly normal, the population standard deviation is known, and
the heights represent a random sample from a much larger population, satisfying the
independence condition. Therefore the sample mean of the heights will follow a nearly
normal distribution with mean p = 70.43 inches and standard error SE = o/y/n =
2.73/+/5 = 1.22 inches.

Alternative conditions for applying the normal distribution to model
the sample mean

If the population of cases is known to be nearly normal and the population stan-
dard deviation o is known, then the sample mean Z will follow a nearly normal
distribution N (u,o/+/n) if the sampled observations are also independent.

Sometimes the mean changes over time but the standard deviation remains the same.
In such cases, a sample mean of small but nearly normal observations paired with a known
standard deviation can be used to produce a confidence interval for the current population
mean using the normal distribution.

@® Example 4.19 s there a connection between height and popularity in high school?
Many students may suspect as much, but what do the data say? Suppose the top 5
nominees for prom king at a high school have an average height of 71.8 inches. Does
this provide strong evidence that these seniors’ heights are not representative of all
male seniors at their high school?

If these five seniors are height-representative, then their heights should be like a
random sample from the distribution given in Example 4.18, N (u = 70.43, 0 = 2.73),
and the sample mean should follow N (u = 70.43,0/v/n =1.22). Formally we are
conducting what is called a hypothesis test, which we will discuss in greater detail
during the next section. We are weighing two possibilities:

Hy: The prom king nominee heights are representative;  will follow a normal dis-
tribution with mean 70.43 inches and standard error 1.22 inches.

H 4: The heights are not representative; we suspect the mean height is different from
70.43 inches.

If there is strong evidence that the sample mean is not from the normal distribution
provided in Hy, then that suggests the heights of prom king nominees are not a simple
random sample (i.e. Hy is true). We can look at the Z score of the sample mean to

14These values were computed using the USDA Food Commodity Intake Database.
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tell us how unusual our sample is. If Hy is true:
rT—p 71.8-70.43
o/vn 1.22

A 7Z score of just 1.12 is not very unusual (we typically use a threshold of £2 to decide
what is unusual), so there is not strong evidence against the claim that the heights
are representative. This does not mean the heights are actually representative, only
that this very small sample does not necessarily show otherwise.

TIP: Relaxing the nearly normal condition

As the sample size becomes larger, it is reasonable to slowly relax the nearly normal
assumption on the data when dealing with small samples. By the time the sample
size reaches 30, the data must show strong skew for us to be concerned about the
normality of the sampling distribution.

4.3 Hypothesis testing

Is the typical US runner getting faster or slower over time? We consider this question in the
context of the Cherry Blossom Run, comparing runners in 2006 and 2012. Technological
advances in shoes, training, and diet might suggest runners would be faster in 2012. An
opposing viewpoint might say that with the average body mass index on the rise, people
tend to run slower. In fact, all of these components might be influencing run time.

In addition to considering run times in this section, we consider a topic near and
dear to most students: sleep. A recent study found that college students average about 7
hours of sleep per night.'® However, researchers at a rural college are interested in showing
that their students sleep longer than seven hours on average. We investigate this topic in
Section 4.3.4.

4.3.1 Hypothesis testing framework

The average time for all runners who finished the Cherry Blossom Run in 2006 was 93.29
minutes (93 minutes and about 17 seconds). We want to determine if the run10Samp data
set provides strong evidence that the participants in 2012 were faster or slower than those
runners in 2006, versus the other possibility that there has been no change.'® We simplify
these three options into two competing hypotheses:

Hy: The average 10 mile run time was the same for 2006 and 2012.
H 4: The average 10 mile run time for 2012 was different than that of 2006.

We call Hy the null hypothesis and H4 the alternative hypothesis.

Null and alternative hypotheses

The null hypothesis (Hj) often represents a skeptical perspective or a claim to be
tested. The alternative hypothesis (H4) represents an alternative claim under
consideration and is often represented by a range of possible parameter values.

L5http:/ /theloquitur.com/?p=1161
16While we could answer this question by examining the entire population data (run10), we only consider
the sample data (run10Samp), which is more realistic since we rarely have access to population data.
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The null hypothesis often represents a skeptical position or a perspective of no differ-
ence. The alternative hypothesis often represents a new perspective, such as the possibility
that there has been a change.

TIP: Hypothesis testing framework
The skeptic will not reject the null hypothesis (Hp), unless the evidence in favor of
the alternative hypothesis (H4) is so strong that she rejects Hy in favor of H 4.

The hypothesis testing framework is a very general tool, and we often use it without a
second thought. If a person makes a somewhat unbelievable claim, we are initially skeptical.
However, if there is sufficient evidence that supports the claim, we set aside our skepticism
and reject the null hypothesis in favor of the alternative. The hallmarks of hypothesis
testing are also found in the US court system.

() Exercise 4.20 A US court considers two possible claims about a defendant: she is
either innocent or guilty. If we set these claims up in a hypothesis framework, which
would be the null hypothesis and which the alternative?'”

Jurors examine the evidence to see whether it convincingly shows a defendant is guilty.
Even if the jurors leave unconvinced of guilt beyond a reasonable doubt, this does not mean
they believe the defendant is innocent. This is also the case with hypothesis testing: even
if we fail to reject the null hypothesis, we typically do not accept the null hypothesis as true.
Failing to find strong evidence for the alternative hypothesis is not equivalent to accepting
the null hypothesis.

In the example with the Cherry Blossom Run, the null hypothesis represents no dif-
ference in the average time from 2006 to 2012. The alternative hypothesis represents
something new or more interesting: there was a difference, either an increase or a decrease.
These hypotheses can be described in mathematical notation using p12 as the average run
time for 2012:

H()Z H12 = 93.29
HAI H12 7& 9329

where 93.29 minutes (93 minutes and about 17 seconds) is the average 10 mile time for all
runners in the 2006 Cherry Blossom Run. Using this mathematical notation, the hypotheses
can now be evaluated using statistical tools. We call 93.29 the null value since it represents
the value of the parameter if the null hypothesis is true. We will use the run10Samp data
set to evaluate the hypothesis test.

4.3.2 Testing hypotheses using confidence intervals

We can start the evaluation of the hypothesis setup by comparing 2006 and 2012 run times
using a point estimate from the 2012 sample: Z12 = 95.61 minutes. This estimate suggests
the average time is actually longer than the 2006 time, 93.29 minutes. However, to evaluate
whether this provides strong evidence that there has been a change, we must consider the
uncertainty associated with Zio.

17The jury considers whether the evidence is so convincing (strong) that there is no reasonable doubt
regarding the person’s guilt; in such a case, the jury rejects innocence (the null hypothesis) and concludes
the defendant is guilty (alternative hypothesis).
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We learned in Section 4.1 that there is fluctuation from one sample to another, and
it is very unlikely that the sample mean will be exactly equal to our parameter; we should
not expect T1s to exactly equal py2. Given that T = 95.61, it might still be possible that
the population average in 2012 has remained unchanged from 2006. The difference between
Z12 and 93.29 could be due to sampling variation, i.e. the variability associated with the
point estimate when we take a random sample.

In Section 4.2, confidence intervals were introduced as a way to find a range of plausible
values for the population mean. Based on run10Samp, a 95% confidence interval for the
2012 population mean, p12, was calculated as

(92.45,98.77)

Because the 2006 mean, 93.29, falls in the range of plausible values, we cannot say the null
hypothesis is implausible. That is, we failed to reject the null hypothesis, Hy.

TIP: Double negatives can sometimes be used in statistics

In many statistical explanations, we use double negatives. For instance, we might
say that the null hypothesis is not implausible or we failed to reject the null hypoth-
esis. Double negatives are used to communicate that while we are not rejecting a
position, we are also not saying it is correct.

@® Example 4.21 Next consider whether there is strong evidence that the average age
of runners has changed from 2006 to 2012 in the Cherry Blossom Run. In 2006, the
average age was 36.13 years, and in the 2012 run10Samp data set, the average was
35.05 years with a standard deviation of 8.97 years for 100 runners.

First, set up the hypotheses:

Hy: The average age of runners has not change from 2006 to 2012, p4ge = 36.13.
H : The average age of runners has changed from 2006 to 2012, p4g. 7# 36.13.

We have previously verified conditions for this data set. The normal model may be
applied to y and the estimate of SE should be very accurate. Using the sample mean
and standard error, we can construct a 95% confidence interval for pqg. to determine
if there is sufficient evidence to reject Hy:

g + 1.96 x

S
—  35.06 £ 1.96 x0.90 — (33.29,36.81

+/100 ( )

This confidence interval contains the null value, 36.13. Because 36.13 is not implau-

sible, we cannot reject the null hypothesis. We have not found strong evidence that

the average age is different than 36.13 years.

() Exercise 4.22  Colleges frequently provide estimates of student expenses such as
housing. A consultant hired by a community college claimed that the average student
housing expense was $650 per month. What are the null and alternative hypotheses
to test whether this claim is accurate?'®

18 Hy: The average cost is $650 per month, p = $650.
H 4: The average cost is different than $650 per month, p # $650.
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Figure 4.11: Sample distribution of student housing expense. These data
are moderately skewed, roughly determined using the outliers on the right.

() Exercise 4.23 The community college decides to collect data to evaluate the $650
per month claim. They take a random sample of 75 students at their school and
obtain the data represented in Figure 4.11. Can we apply the normal model to the
sample mean?'’

@® Example 4.24 The sample mean for student housing is $611.63 and the sample
standard deviation is $132.85. Construct a 95% confidence interval for the population
mean and evaluate the hypotheses of Exercise 4.22.

The standard error associated with the mean may be estimated using the sample
standard deviation divided by the square root of the sample size. Recall that n =75
students were sampled.

S 132.85

You showed in Exercise 4.23 that the normal model may be applied to the sample
mean. This ensures a 95% confidence interval may be accurately constructed:
Z + z*SE — 611.63 + 1.96 x 15.34 —  (581.56,641.70)

Because the null value $650 is not in the confidence interval, a true mean of $650 is im-
plausible and we reject the null hypothesis. The data provide statistically significant
evidence that the actual average housing expense is less than $650 per month.

19 Applying the normal model requires that certain conditions are met. Because the data are a simple
random sample and the sample (presumably) represents no more than 10% of all students at the college,
the observations are independent. The sample size is also sufficiently large (n = 75) and the data exhibit
only moderate skew. Thus, the normal model may be applied to the sample mean.
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4.3.3 Decision errors

Hypothesis tests are not flawless. Just think of the court system: innocent people are
sometimes wrongly convicted and the guilty sometimes walk free. Similarly, we can make
a wrong decision in statistical hypothesis tests. However, the difference is that we have the
tools necessary to quantify how often we make such errors.

There are two competing hypotheses: the null and the alternative. In a hypothesis
test, we make a statement about which one might be true, but we might choose incorrectly.
There are four possible scenarios in a hypothesis test, which are summarized in Table 4.12.

Test conclusion

do not reject Hy reject Hy in favor of H4

Hy true okay Type 1 Error

Truth
v H 4 true Type 2 Error okay

Table 4.12: Four different scenarios for hypothesis tests.

A Type 1 Error is rejecting the null hypothesis when Hy is actually true. A Type 2
Error is failing to reject the null hypothesis when the alternative is actually true.

(O Exercise 4.25 In a US court, the defendant is either innocent (Hy) or guilty (Hg4).
What does a Type 1 Error represent in this context? What does a Type 2 Error
represent? Table 4.12 may be useful.?’

() Exercise 4.26 How could we reduce the Type 1 Error rate in US courts? What
influence would this have on the Type 2 Error rate?”!

() Exercise 4.27 How could we reduce the Type 2 Error rate in US courts? What
influence would this have on the Type 1 Error rate??

Exercises 4.25-4.27 provide an important lesson: if we reduce how often we make one
type of error, we generally make more of the other type.

Hypothesis testing is built around rejecting or failing to reject the null hypothesis.
That is, we do not reject Hp unless we have strong evidence. But what precisely does strong
evidence mean? As a general rule of thumb, for those cases where the null hypothesis is
actually true, we do not want to incorrectly reject Hy more than 5% of the time. This
corresponds to a significance level of 0.05. We often write the significance level using «a
(the Greek letter alpha): o = 0.05. We discuss the appropriateness of different significance
levels in Section 4.3.6.

If we use a 95% confidence interval to test a hypothesis where the null hypothesis is
true, we will make an error whenever the point estimate is at least 1.96 standard errors

201f the court makes a Type 1 Error, this means the defendant is innocent (Ho true) but wrongly
convicted. A Type 2 Error means the court failed to reject Hp (i.e. failed to convict the person) when she
was in fact guilty (H4 true).

21To lower the Type 1 Error rate, we might raise our standard for conviction from “beyond a reasonable
doubt” to “beyond a conceivable doubt” so fewer people would be wrongly convicted. However, this would
also make it more difficult to convict the people who are actually guilty, so we would make more Type 2
Errors.

22To lower the Type 2 Error rate, we want to convict more guilty people. We could lower the standards
for conviction from “beyond a reasonable doubt” to “beyond a little doubt”. Lowering the bar for guilt
will also result in more wrongful convictions, raising the Type 1 Error rate.
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away from the population parameter. This happens about 5% of the time (2.5% in each
tail). Similarly, using a 99% confidence interval to evaluate a hypothesis is equivalent to a
significance level of a = 0.01.

A confidence interval is, in one sense, simplistic in the world of hypothesis tests.
Consider the following two scenarios:

e The null value (the parameter value under the null hypothesis) is in the 95% confi-
dence interval but just barely, so we would not reject Hy. However, we might like to
somehow say, quantitatively, that it was a close decision.

e The null value is very far outside of the interval, so we reject Hy. However, we want
to communicate that, not only did we reject the null hypothesis, but it wasn’t even
close. Such a case is depicted in Figure 4.13.

In Section 4.3.4, we introduce a tool called the p-value that will be helpful in these cases.
The p-value method also extends to hypothesis tests where confidence intervals cannot be
easily constructed or applied.

observed X Distribution of X
i if Hp was true
I T
null value —5*SE null value

Figure 4.13: It would be helpful to quantify the strength of the evidence
against the null hypothesis. In this case, the evidence is extremely strong.

4.3.4 Formal testing using p-values

The p-value is a way of quantifying the strength of the evidence against the null hypothesis
and in favor of the alternative. Formally the p-value is a conditional probability.

p-value

The p-value is the probability of observing data at least as favorable to the al-
ternative hypothesis as our current data set, if the null hypothesis is true. We
typically use a summary statistic of the data, in this chapter the sample mean, to
help compute the p-value and evaluate the hypotheses.

() Exercise 4.28 A poll by the National Sleep Foundation found that college students
average about 7 hours of sleep per night. Researchers at a rural school are interested
in showing that students at their school sleep longer than seven hours on average,
and they would like to demonstrate this using a sample of students. What would be
an appropriate skeptical position for this research???

23 A skeptic would have no reason to believe that sleep patterns at this school are different than the sleep
patterns at another school.
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We can set up the null hypothesis for this test as a skeptical perspective: the students
at this school average 7 hours of sleep per night. The alternative hypothesis takes a new
form reflecting the interests of the research: the students average more than 7 hours of
sleep. We can write these hypotheses as

Hy: p=717.
Hy: p>T.

Using p > 7 as the alternative is an example of a one-sided hypothesis test. In this inves-
tigation, there is no apparent interest in learning whether the mean is less than 7 hours.?*
Earlier we encountered a two-sided hypothesis where we looked for any clear difference,
greater than or less than the null value.

Always use a two-sided test unless it was made clear prior to data collection that the
test should be one-sided. Switching a two-sided test to a one-sided test after observing the
data is dangerous because it can inflate the Type 1 Error rate.

TIP: One-sided and two-sided tests

If the researchers are only interested in showing an increase or a decrease, but not
both, use a one-sided test. If the researchers would be interested in any difference
from the null value — an increase or decrease — then the test should be two-sided.

TIP: Always write the null hypothesis as an equality
We will find it most useful if we always list the null hypothesis as an equality (e.g.
w1 = 7) while the alternative always uses an inequality (e.g. pu # 7, u > 7, 0r pu < 7).

The researchers at the rural school conducted a simple random sample of n = 110
students on campus. They found that these students averaged 7.42 hours of sleep and the
standard deviation of the amount of sleep for the students was 1.75 hours. A histogram of
the sample is shown in Figure 4.14.

Before we can use a normal model for the sample mean or compute the standard error
of the sample mean, we must verify conditions. (1) Because this is a simple random sample
from less than 10% of the student body, the observations are independent. (2) The sample
size in the sleep study is sufficiently large since it is greater than 30. (3) The data show
moderate skew in Figure 4.14 and the presence of a couple of outliers. This skew and the
outliers (which are not too extreme) are acceptable for a sample size of n = 110. With
these conditions verified, the normal model can be safely applied to £ and the estimated
standard error will be very accurate.

() Exercise 4.29 What is the standard deviation associated with 7 That is, estimate
the standard error of z.%

The hypothesis test will be evaluated using a significance level of a = 0.05. We want
to consider the data under the scenario that the null hypothesis is true. In this case, the
sample mean is from a distribution that is nearly normal and has mean 7 and standard
deviation of about 0.17. Such a distribution is shown in Figure 4.15.

24This is entirely based on the interests of the researchers. Had they been only interested in the opposite
case — showing that their students were actually averaging fewer than seven hours of sleep but not interested
in showing more than 7 hours — then our setup would have set the alternative as pu < 7.

25The standard error can be estimated from the sample standard deviation and the sample size: SEz =

Sg . 1.75 __
Ve = Vito = 017
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Figure 4.14: Distribution of a night of sleep for 110 college students. These
data are moderately skewed.

T
Ho:pu=7 X=7.42

Figure 4.15: If the null hypothesis is true, then the sample mean T came
from this nearly normal distribution. The right tail describes the probabil-
ity of observing such a large sample mean if the null hypothesis is true.

The shaded tail in Figure 4.15 represents the chance of observing such a large mean,
conditional on the null hypothesis being true. That is, the shaded tail represents the p-
value. We shade all means larger than our sample mean, T = 7.42, because they are more
favorable to the alternative hypothesis than the observed mean.

We compute the p-value by finding the tail area of this normal distribution, which we
learned to do in Section 3.1. First compute the Z score of the sample mean, ¥ = 7.42:

T — null value _ 742 -7

= =24
SE; 0.17 7

Z:

Using the normal probability table, the lower unshaded area is found to be 0.993. Thus the
shaded area is 1 — 0.993 = 0.007. If the null hypothesis is true, the probability of observing
such a large sample mean for a sample of 110 students is only 0.007. That is, if the null
hypothesis is true, we would not often see such a large mean.

We evaluate the hypotheses by comparing the p-value to the significance level. Because
the p-value is less than the significance level (p-value = 0.007 < 0.05 = «), we reject the
null hypothesis. What we observed is so unusual with respect to the null hypothesis that
it casts serious doubt on Hy and provides strong evidence favoring H 4.
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p-value as a tool in hypothesis testing
The p-value quantifies how strongly the data favor H4 over Hy. A small p-value
(usually < 0.05) corresponds to sufficient evidence to reject Hy in favor of H 4.

TIP: It is useful to first draw a picture to find the p-value

It is useful to draw a picture of the distribution of Z as though Hy was true (i.e. p
equals the null value), and shade the region (or regions) of sample means that are
at least as favorable to the alternative hypothesis. These shaded regions represent
the p-value.

The ideas below review the process of evaluating hypothesis tests with p-values:

e The null hypothesis represents a skeptic’s position or a position of no difference. We
reject this position only if the evidence strongly favors H 4.

e A small p-value means that if the null hypothesis is true, there is a low probability
of seeing a point estimate at least as extreme as the one we saw. We interpret this
as strong evidence in favor of the alternative.

e We reject the null hypothesis if the p-value is smaller than the significance level, «,
which is usually 0.05. Otherwise, we fail to reject Hy.

e We should always state the conclusion of the hypothesis test in plain language so
non-statisticians can also understand the results.

The p-value is constructed in such a way that we can directly compare it to the
significance level (a) to determine whether or not to reject Hy. This method ensures that
the Type 1 Error rate does not exceed the significance level standard.

chance of observed X

or another X that is even
more favorable towards Hp,
if Hy is true

distribution of X
if Hy was true

N

T T
null value observed X

Figure 4.16: To identify the p-value, the distribution of the sample mean is
considered as if the null hypothesis was true. Then the p-value is defined
and computed as the probability of the observed T or an T even more
favorable to H 4 under this distribution.

() Exercise 4.30 If the null hypothesis is true, how often should the p-value be less
than 0.057%

26 About 5% of the time. If the null hypothesis is true, then the data only has a 5% chance of being in
the 5% of data most favorable to H 4.




4.3. HYPOTHESIS TESTING 181

=
o
|

Frequency
6]
1

35 40 45 50 55
Total price of auction (US$)

Figure 4.17: A histogram of the total auction prices for 52 Ebay auctions.

() Exercise 4.31  Suppose we had used a significance level of 0.01 in the sleep study.
Would the evidence have been strong enough to reject the null hypothesis? (The
p-value was 0.007.) What if the significance level was o = 0.001? °*

() Exercise 4.32  Ebay might be interested in showing that buyers on its site tend to
pay less than they would for the corresponding new item on Amazon. We’ll research
this topic for one particular product: a video game called Mario Kart for the Nintendo
Wii. During early October 2009, Amazon sold this game for $46.99. Set up an
appropriate (one-sided!) hypothesis test to check the claim that Ebay buyers pay less
during auctions at this same time.”"

() Exercise 4.33  During early October, 2009, 52 Ebay auctions were recorded for
Mario Kart.>® The total prices for the auctions are presented using a histogram
in Figure 4.17, and we may like to apply the normal model to the sample mean.
Check the three conditions required for applying the normal model: (1) independence,
(2) at least 30 observations, and (3) the data are not strongly skewed.""

@® Example 4.34 The average sale price of the 52 Ebay auctions for Wii Mario Kart
was $44.17 with a standard deviation of $4.15. Does this provide sufficient evidence
to reject the null hypothesis in Exercise 4.327 Use a significance level of o = 0.01.

The hypotheses were set up and the conditions were checked in Exercises 4.32 and 4.33.
The next step is to find the standard error of the sample mean and produce a sketch

2TWe reject the null hypothesis whenever p-value < o. Thus, we would still reject the null hypothesis if
a = 0.01 but not if the significance level had been a = 0.001.
28The skeptic would say the average is the same on Ebay, and we are interested in showing the average
price is lower.
Hp: The average auction price on Ebay is equal to (or more than) the price on Amazon. We write only
the equality in the statistical notation: piepqy = 46.99.
H 4: The average price on Ebay is less than the price on Amazon, piepqy < 46.99.

29These data were collected by OpenlIntro staff.

30(1) The independence condition is unclear. We will make the assumption that the observations are
independent, which we should report with any final results. (2) The sample size is sufficiently large:
n =52 > 30. (3) The data distribution is not strongly skewed; it is approximately symmetric.
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to help find the p-value.
SE; = s/v/n=4.15/v52 = 0.5755

The p-value is represented
by area to the left. The area is
so slim we cannot see it.

l ;

X =44.17 Ho = 46.99

Because the alternative hypothesis says we are looking for a smaller mean, we shade
the lower tail. We find this shaded area by using the Z score and normal probability
table: Z = % = —4.90, which has area less than 0.0002. The area is so small
we cannot really see it on the picture. This lower tail area corresponds to the p-value.
Because the p-value is so small — specifically, smaller than o = 0.01 — this provides
sufficiently strong evidence to reject the null hypothesis in favor of the alternative.
The data provide statistically significant evidence that the average price on Ebay is
lower than Amazon’s asking price.

4.3.5 Two-sided hypothesis testing with p-values

We now consider how to compute a p-value for a two-sided test. In one-sided tests, we
shade the single tail in the direction of the alternative hypothesis. For example, when
the alternative had the form p > 7, then the p-value was represented by the upper tail
(Figure 4.16). When the alternative was pu < 46.99, the p-value was the lower tail (Ex-
ercise 4.32). In a two-sided test, we shade two tails since evidence in either direction is
favorable to H 4.

() Exercise 4.35 FEarlier we talked about a research group investigating whether
the students at their school slept longer than 7 hours each night. Let’s consider a
second group of researchers who want to evaluate whether the students at their college
differ from the norm of 7 hours. Write the null and alternative hypotheses for this
investigation.®!

@® Example 4.36 The second college randomly samples 72 students and finds a mean
of £ = 6.83 hours and a standard deviation of s = 1.8 hours. Does this provide strong
evidence against Hy in Exercise 4.357 Use a significance level of a = 0.05.

First, we must verify assumptions. (1) A simple random sample of less than 10%
of the student body means the observations are independent. (2) The sample size
is 72, which is greater than 30. (3) Based on the earlier distribution and what we
already know about college student sleep habits, the distribution is probably not
strongly skewed.

Next we can compute the standard error (SEz; = ﬁ = 0.21) of the estimate and
create a picture to represent the p-value, shown in Figure 4.18. Both tails are shaded.

31Because the researchers are interested in any difference, they should use a two-sided setup: Ho : u = 7,
Hp:p#7.
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observations just as
unusual as X under H,

/

left talil

N\

I I
X=6.83 Hop=7

Figure 4.18: H,4 is two-sided, so both tails must be counted for the p-value.

An estimate of 7.17 or more provides at least as strong of evidence against the null
hypothesis and in favor of the alternative as the observed estimate, T = 6.83.

We can calculate the tail areas by first finding the lower tail corresponding to Z:

table

_ 683700 _ —0.81 "% left tail = 0.2090

0.21

Because the normal model is symmetric, the right tail will have the same area as the
left tail. The p-value is found as the sum of the two shaded tails:

p-value = left tail 4 right tail = 2 x (left tail) = 0.4180

This p-value is relatively large (larger than o = 0.05), so we should not reject Hy.
That is, if Hy is true, it would not be very unusual to see a sample mean this far from
7 hours simply due to sampling variation. Thus, we do not have sufficient evidence
to conclude that the mean is different than 7 hours.

@® Example 4.37 It is never okay to change two-sided tests to one-sided tests after
observing the data. In this example we explore the consequences of ignoring this
advice. Using a = 0.05, we show that freely switching from two-sided tests to one-
sided tests will cause us to make twice as many Type 1 Errors as intended.

Suppose the sample mean was larger than the null value, 1o (e.g. uo would represent 7
if Hy: p = 7). Then if we can flip to a one-sided test, we would use Ha: p > po.
Now if we obtain any observation with a Z score greater than 1.65, we would reject
Hy. If the null hypothesis is true, we incorrectly reject the null hypothesis about 5%
of the time when the sample mean is above the null value, as shown in Figure 4.19.

Suppose the sample mean was smaller than the null value. Then if we change to a
one-sided test, we would use Ha: pu < po. If T had a Z score smaller than -1.65, we
would reject Hy. If the null hypothesis is true, then we would observe such a case
about 5% of the time.

By examining these two scenarios, we can determine that we will make a Type 1
Error 5% + 5% = 10% of the time if we are allowed to swap to the “best” one-sided
test for the data. This is twice the error rate we prescribed with our significance level:
a=0.05 (!).
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5% 5%

H=Ho

Figure 4.19: The shaded regions represent areas where we would reject Hy
under the bad practices considered in Example 4.37 when o = 0.05.

Caution: One-sided hypotheses are allowed only before seeing data
After observing data, it is tempting to turn a two-sided test into a one-sided test.
Avoid this temptation. Hypotheses must be set up before observing the data.
If they are not, the test must be two-sided.

4.3.6 Choosing a significance level

Choosing a significance level for a test is important in many contexts, and the traditional
level is 0.05. However, it is often helpful to adjust the significance level based on the
application. We may select a level that is smaller or larger than 0.05 depending on the
consequences of any conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should choose a small
significance level (e.g. 0.01). Under this scenario we want to be very cautious about
rejecting the null hypothesis, so we demand very strong evidence favoring H 4 before we
would reject Hy.

If a Type 2 Error is relatively more dangerous or much more costly than a Type 1
Error, then we should choose a higher significance level (e.g. 0.10). Here we want to be
cautious about failing to reject Hy when the null is actually false. We will discuss this
particular case in greater detail in Section 4.6.

Significance levels should reflect consequences of errors
The significance level selected for a test should reflect the consequences associated
with Type 1 and Type 2 Errors.

@® Example 4.38 A car manufacturer is considering a higher quality but more expen-
sive supplier for window parts in its vehicles. They sample a number of parts from
their current supplier and also parts from the new supplier. They decide that if the
high quality parts will last more than 12% longer, it makes financial sense to switch
to this more expensive supplier. Is there good reason to modify the significance level
in such a hypothesis test?

The null hypothesis is that the more expensive parts last no more than 12% longer
while the alternative is that they do last more than 12% longer. This decision is just
one of the many regular factors that have a marginal impact on the car and company.
A significance level of 0.05 seems reasonable since neither a Type 1 or Type 2 error
should be dangerous or (relatively) much more expensive.
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@® Example 4.39 The same car manufacturer is considering a slightly more expensive
supplier for parts related to safety, not windows. If the durability of these safety
components is shown to be better than the current supplier, they will switch manu-
facturers. Is there good reason to modify the significance level in such an evaluation?

The null hypothesis would be that the suppliers’ parts are equally reliable. Because
safety is involved, the car company should be eager to switch to the slightly more
expensive manufacturer (reject Hp) even if the evidence of increased safety is only
moderately strong. A slightly larger significance level, such as o = 0.10, might be
appropriate.

() Exercise 4.40 A part inside of a machine is very expensive to replace. However,
the machine usually functions properly even if this part is broken, so the part is
replaced only if we are extremely certain it is broken based on a series of measure-
ments. Identify appropriate hypotheses for this test (in plain language) and suggest
an appropriate significance level.*”

4.4 Examining the Central Limit Theorem

The normal model for the sample mean tends to be very good when the sample consists
of at least 30 independent observations and the population data are not strongly skewed.
The Central Limit Theorem provides the theory that allows us to make this assumption.

Central Limit Theorem, informal definition
The distribution of Z is approximately normal. The approximation can be poor if
the sample size is small, but it improves with larger sample sizes.

The Central Limit Theorem states that when the sample size is small, the normal
approximation may not be very good. However, as the sample size becomes large, the
normal approximation improves. We will investigate three cases to see roughly when the
approximation is reasonable.

We consider three data sets: one from a uniform distribution, one from an exponential
distribution, and the other from a log-normal distribution. These distributions are shown
in the top panels of Figure 4.20. The uniform distribution is symmetric, the exponential
distribution may be considered as having moderate skew since its right tail is relatively
short (few outliers), and the log-normal distribution is strongly skewed and will tend to
produce more apparent outliers.

The left panel in the n = 2 row represents the sampling distribution of Z if it is the
sample mean of two observations from the uniform distribution shown. The dashed line
represents the closest approximation of the normal distribution. Similarly, the center and
right panels of the n = 2 row represent the respective distributions of Z for data from
exponential and log-normal distributions.

32Here the null hypothesis is that the part is not broken, and the alternative is that it is broken. If we
don’t have sufficient evidence to reject Hp, we would not replace the part. It sounds like failing to fix the
part if it is broken (Hyg false, H4 true) is not very problematic, and replacing the part is expensive. Thus,
we should require very strong evidence against Hy before we replace the part. Choose a small significance
level, such as a = 0.01.
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Figure 4.20: Sampling distributions for the mean at different sample sizes
and for three different distributions. The dashed red lines show normal
distributions.
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Exercise 4.41  Examine the distributions in each row of Figure 4.20. What do you
notice about the normal approximation for each sampling distribution as the sample
size becomes larger?*’

Example 4.42 Would the normal approximation be good in all applications where
the sample size is at least 307

Not necessarily. For example, the normal approximation for the log-normal example
is questionable for a sample size of 30. Generally, the more skewed a population
distribution or the more common the frequency of outliers, the larger the sample
required to guarantee the distribution of the sample mean is nearly normal.

TIP: With larger n, the sampling distribution of z becomes more normal
As the sample size increases, the normal model for T becomes more reasonable. We
can also relax our condition on skew when the sample size is very large.

We discussed in Section 4.1.3 that the sample standard deviation, s, could be used

as a substitute of the population standard deviation, o, when computing the standard
error. This estimate tends to be reasonable when n > 30. We will encounter alternative
distributions for smaller sample sizes in Chapters 5 and 6.

@® Example 4.43 Figure 4.21 shows a histogram of 50 observations. These represent

winnings and losses from 50 consecutive days of a professional poker player. Can the
normal approximation be applied to the sample mean, 90.697

We should consider each of the required conditions.

(1) These are referred to as time series data, because the data arrived in a par-
ticular sequence. If the player wins on one day, it may influence how she plays
the next. To make the assumption of independence we should perform careful
checks on such data. While the supporting analysis is not shown, no evidence
was found to indicate the observations are not independent.

(2) The sample size is 50, satisfying the sample size condition.

(3) There are two outliers, one very extreme, which suggests the data are very
strongly skewed or very distant outliers may be common for this type of data.
Outliers can play an important role and affect the distribution of the sample
mean and the estimate of the standard error.

Since we should be skeptical of the independence of observations and the very extreme
upper outlier poses a challenge, we should not use the normal model for the sample
mean of these 50 observations. If we can obtain a much larger sample, perhaps
several hundred observations, then the concerns about skew and outliers would no
longer apply.

Caution: Examine data structure when considering independence

Some data sets are collected in such a way that they have a natural underlying
structure between observations, e.g. when observations occur consecutively. Be
especially cautious about independence assumptions regarding such data sets.

33The normal approximation becomes better as larger samples are used.
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Figure 4.21: Sample distribution of poker winnings. These data include
some very clear outliers. These are problematic when considering the nor-
mality of the sample mean. For example, outliers are often an indicator of
very strong skew.

Caution: Watch out for strong skew and outliers

Strong skew is often identified by the presence of clear outliers. If a data set has
prominent outliers, or such observations are somewhat common for the type of
data under study, then it is useful to collect a sample with many more than 30
observations if the normal model will be used for Z. There are no simple guidelines
for what sample size is big enough for all situations, so proceed with caution when
working in the presence of strong skew or more extreme outliers.

4.5 Inference for other estimators

The sample mean is not the only point estimate for which the sampling distribution is nearly
normal. For example, the sampling distribution of sample proportions closely resembles the
normal distribution when the sample size is sufficiently large. In this section, we introduce
a number of examples where the normal approximation is reasonable for the point estimate.
Chapters 5 and 6 will revisit each of the point estimates you see in this section along with
some other new statistics.

We make another important assumption about each point estimate encountered in this
section: the estimate is unbiased. A point estimate is unbiased if the sampling distribution
of the estimate is centered at the parameter it estimates. That is, an unbiased estimate
does not naturally over or underestimate the parameter. Rather, it tends to provide a
“good” estimate. The sample mean is an example of an unbiased point estimate, as are
each of the examples we introduce in this section.

Finally, we will discuss the general case where a point estimate may follow some
distribution other than the normal distribution. We also provide guidance about how to
handle scenarios where the statistical techniques you are familiar with are insufficient for
the problem at hand.
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4.5.1 Confidence intervals for nearly normal point estimates

In Section 4.2, we used the point estimate T with a standard error SE; to create a 95%
confidence interval for the population mean:

z + 1.96 x SE; (4.44)

We constructed this interval by noting that the sample mean is within 1.96 standard errors
of the actual mean about 95% of the time. This same logic generalizes to any unbiased
point estimate that is nearly normal. We may also generalize the confidence level by using
a place-holder z*.

General confidence interval for the normal sampling distribution case
A confidence interval based on an unbiased and nearly normal point estimate is

point estimate + z*SE (4.45)

where z* is selected to correspond to the confidence level, and SFE represents the
standard error. The value 2*SF is called the margin of error.

Generally the standard error for a point estimate is estimated from the data and
computed using a formula. For example, the standard error for the sample mean is

s
Vn
In this section, we provide the computed standard error for each example and exercise

without detailing where the values came from. In future chapters, you will learn to fill in
these and other details for each situation.

SE;E ==

@® Example 4.46 In Exercise 4.1 on page 161, we computed a point estimate for the
average difference in run times between men and women: Zyomen — Tmen = 14.48
minutes. This point estimate is associated with a nearly normal distribution with
standard error SE = 2.78 minutes. What is a reasonable 95% confidence interval for
the difference in average run times?

The normal approximation is said to be valid, so we apply Equation (4.45):
point estimate + z*SE — 1448 £ 1.96 x2.78 —  (9.03,19.93)

Thus, we are 95% confident that the men were, on average, between 9.03 and 19.93
minutes faster than women in the 2012 Cherry Blossom Run. That is, the actual
average difference is plausibly between 9.03 and 19.93 minutes with 95% confidence.

® Example 4.47 Does Example 4.46 guarantee that if a husband and wife both ran
in the race, the husband would run between 9.03 and 19.93 minutes faster than the
wife?

Our confidence interval says absolutely nothing about individual observations. It
only makes a statement about a plausible range of values for the average difference
between all men and women who participated in the run.
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() Exercise 4.48 What 2* would be appropriate for a 99% confidence level? For help,
see Figure 4.10 on page 169.%*

() Exercise 4.49 The proportion of men in the run10Samp sample is p = 0.45. This
sample meets certain conditions that ensure p will be nearly normal, and the stan-
dard error of the estimate is SE; = 0.05. Create a 90% confidence interval for the
proportion of participants in the 2012 Cherry Blossom Run who are men.*’

4.5.2 Hypothesis testing for nearly normal point estimates

Just as the confidence interval method works with many other point estimates, we can
generalize our hypothesis testing methods to new point estimates. Here we only consider
the p-value approach, introduced in Section 4.3.4, since it is the most commonly used
technique and also extends to non-normal cases.

Hypothesis testing using the normal model

1. First write the hypotheses in plain language, then set them up in mathemat-
ical notation.

2. Identify an appropriate point estimate of the parameter of interest.

3. Verify conditions to ensure the standard error estimate is reasonable and the
point estimate is nearly normal and unbiased.

4. Compute the standard error. Draw a picture depicting the distribution of
the estimate under the idea that Hy is true. Shade areas representing the
p-value.

5. Using the picture and normal model, compute the test statistic (Z score) and
identify the p-value to evaluate the hypotheses. Write a conclusion in plain
language.

() Exercise 4.50 A drug called sulphinpyrazone was under consideration for use in
reducing the death rate in heart attack patients. To determine whether the drug was
effective, a set of 1,475 patients were recruited into an experiment and randomly split
into two groups: a control group that received a placebo and a treatment group that
received the new drug. What would be an appropriate null hypothesis? And the
alternative??%

We can formalize the hypotheses from Exercise 4.50 by letting peontror and Direatment
represent the proportion of patients who died in the control and treatment groups, respec-

34We seek z* such that 99% of the area under the normal curve will be between the Z scores -z* and z*.
Because the remaining 1% is found in the tails, each tail has area 0.5%, and we can identify -z* by looking
up 0.0050 in the normal probability table: z* = 2.58. See also Figure 4.10 on page 169.

35We use 2* = 1.65 (see Exercise 4.17 on page 170), and apply the general confidence interval formula:

p £ z2*SE; — 045 £ 1.65x0.06 — (0.3675,0.5325)

Thus, we are 90% confident that between 37% and 53% of the participants were men.
36The skeptic’s perspective is that the drug does not work at reducing deaths in heart attack patients
(Hop), while the alternative is that the drug does work (Hy).
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tively. Then the hypotheses can be written as

Ho : peontrot = Ptreatment (the drug doesn’t WOI‘k)
HA ! Peontrol > Ptreatment (the drug WOrkS)

or equivalently,

HO > Pcontrol — Ptreatment = 0 (the drug doesn’t WOI"k)
Hy - Pcontrol — Ptreatment > 0 (the drug WOI'kS)

Strong evidence against the null hypothesis and in favor of the alternative would correspond
to an observed difference in death rates,

point estimate = Peontrol — Ptreatment

being larger than we would expect from chance alone. This difference in sample proportions
represents a point estimate that is useful in evaluating the hypotheses.

@® Example 4.51 We want to evaluate the hypothesis setup from Exericse 4.50 using
data from the actual study.”” In the control group, 60 of 742 patients died. In the
treatment group, 41 of 733 patients died. The sample difference in death rates can
be summarized as

int estimat . . 60 41 0.025
oint estimate = Peontrol — Direatment = or — oos = 0.
p Pcontrol — Dtreatment 2 733

This point estimate is nearly normal and is an unbiased estimate of the actual dif-
ference in death rates. The standard error of this sample difference is SE = 0.013.
Evaluate the hypothesis test at a 5% significance level: o = 0.05.

We would like to identify the p-value to evaluate the hypotheses. If the null hypothesis
is true, then the point estimate would have come from a nearly normal distribution,
like the one shown in Figure 4.22. The distribution is centered at zero since peontror —
Ptreatment = 0 under the null hypothesis. Because a large positive difference provides
evidence against the null hypothesis and in favor of the alternative, the upper tail
has been shaded to represent the p-value. We need not shade the lower tail since this
is a one-sided test: an observation in the lower tail does not support the alternative
hypothesis.

The p-value can be computed by using the Z score of the point estimate and the
normal probability table.
__ point estimate — null value  0.025 -0

= =1.92 4.52
SEpoint estimate 0.013 ( )

Z

Examining Z in the normal probability table, we find that the lower unshaded tail is
about 0.973. Thus, the upper shaded tail representing the p-value is

p-value =1 —0.973 = 0.027

Because the p-value is less than the significance level (o = 0.05), we say the null
hypothesis is implausible. That is, we reject the null hypothesis in favor of the
alternative and conclude that the drug is effective at reducing deaths in heart attack
patients.

37 Anturane Reinfarction Trial Research Group. 1980. Sulfinpyrazone in the prevention of sudden death
after myocardial infarction. New England Journal of Medicine 302(5):250-256.
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I I
null diff. =0 obs. diff. = 0.025

Figure 4.22: The distribution of the sample difference if the null hypothesis
is true.

The Z score in Equation (4.52) is called a test statistic. In most hypothesis tests,
a test statistic is a particular data summary that is especially useful for computing the
p-value and evaluating the hypothesis test. In the case of point estimates that are nearly
normal, the test statistic is the Z score.

Test statistic

A test statistic is a special summary statistic that is particularly useful for evalu-
ating a hypothesis test or identifying the p-value. When a point estimate is nearly
normal, we use the Z score of the point estimate as the test statistic. In later
chapters we encounter situations where other test statistics are helpful.

4.5.3 Non-normal point estimates

We may apply the ideas of confidence intervals and hypothesis testing to cases where the
point estimate or test statistic is not necessarily normal. There are many reasons why such
a situation may arise:

e the sample size is too small for the normal approximation to be valid;

e the standard error estimate may be poor; or

e the point estimate tends towards some distribution that is not the normal distribution.
For each case where the normal approximation is not valid, our first task is always to
understand and characterize the sampling distribution of the point estimate or test statistic.

Next, we can apply the general frameworks for confidence intervals and hypothesis testing
to these alternative distributions.

4.5.4 When to retreat

Statistical tools rely on conditions. When the conditions are not met, these tools are
unreliable and drawing conclusions from them is treacherous. The conditions for these
tools typically come in two forms.

e The individual observations must be independent. A random sample from less
than 10% of the population ensures the observations are independent. In experiments,
we generally require that subjects are randomized into groups. If independence fails,
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then advanced techniques must be used, and in some such cases, inference may not
be possible.

e Other conditions focus on sample size and skew. For example, if the sample
size is too small, the skew too strong, or extreme outliers are present, then the normal
model for the sample mean will fail.

Verification of conditions for statistical tools is always necessary. Whenever conditions are
not satisfied for a statistical technique, there are three options. The first is to learn new
methods that are appropriate for the data. The second route is to consult a statistician.”®
The third route is to ignore the failure of conditions. This last option effectively invalidates
any analysis and may discredit novel and interesting findings.

Finally, we caution that there may be no inference tools helpful when considering data
that include unknown biases, such as convenience samples. For this reason, there are books,
courses, and researchers devoted to the techniques of sampling and experimental design.
See Sections 1.3-1.5 for basic principles of data collection.

4.6 Sample size and power (special topic)

The Type 2 Error rate and the magnitude of the error for a point estimate are controlled
by the sample size. Real differences from the null value, even large ones, may be difficult
to detect with small samples. If we take a very large sample, we might find a statistically
significant difference but the magnitude might be so small that it is of no practical value.
In this section we describe techniques for selecting an appropriate sample size based on
these considerations.

4.6.1 Finding a sample size for a certain margin of error

Many companies are concerned about rising healthcare costs. A company may estimate
certain health characteristics of its employees, such as blood pressure, to project its future
cost obligations. However, it might be too expensive to measure the blood pressure of every
employee at a large company, and the company may choose to take a sample instead.

® Example 4.53 Blood pressure oscillates with the beating of the heart, and the sys-
tolic pressure is defined as the peak pressure when a person is at rest. The average
systolic blood pressure for people in the U.S. is about 130 mmHg with a standard
deviation of about 25 mmHg. How large of a sample is necessary to estimate the aver-
age systolic blood pressure with a margin of error of 4 mmHg using a 95% confidence
level?

First, we frame the problem carefully. Recall that the margin of error is the part we
add and subtract from the point estimate when computing a confidence interval. The
margin of error for a 95% confidence interval estimating a mean can be written as

MFEgs9 =1.96 x SE =1.96 x %L\/lﬁoyee

38]f you work at a university, then there may be campus consulting services to assist you. Alternatively,
there are many private consulting firms that are also available for hire.
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The challenge in this case is to find the sample size n so that this margin of error is
less than or equal to 4, which we write as an inequality:

Oemployee
1.96 x —STP2YCC <y
vnoo T

In the above equation we wish to solve for the appropriate value of n, but we need
a value for oempioyee before we can proceed. However, we haven’t yet collected any
data, so we have no direct estimate! Instead, we use the best estimate available to us:
the approximate standard deviation for the U.S. population, 25. To proceed and solve
for n, we substitute 25 for oempioyee:

em oyee 2
1.96 x Zemplovee g6 5 25—y

Jn /n
1.96x%§\/ﬁ

2
25

150.06 <n

This suggests we should choose a sample size of at least 151 employees. We round up
because the sample size must be greater than or equal to 150.06.

A potentially controversial part of Example 4.53 is the use of the U.S. standard devi-
ation for the employee standard deviation. Usually the standard deviation is not known.
In such cases, it is reasonable to review scientific literature or market research to make an
educated guess about the standard deviation.

Identify a sample size for a particular margin of error
To estimate the necessary sample size for a maximum margin of error m, we set
up an equation to represent this relationship:

szE:z*%

where z* is chosen to correspond to the desired confidence level, and o is the
standard deviation associated with the population. Solve for the sample size, n.

Sample size computations are helpful in planning data collection, and they require
careful forethought. Next we consider another topic important in planning data collection
and setting a sample size: the Type 2 Error rate.

4.6.2 Power and the Type 2 Error rate
Consider the following two hypotheses:

Hjy: The average blood pressure of employees is the same as the national average, p = 130.

H 4: The average blood pressure of employees is different than the national average, p #
130.
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Suppose the alternative hypothesis is actually true. Then we might like to know, what is
the chance we make a Type 2 Error? That is, what is the chance we will fail to reject the
null hypothesis even though we should reject it? The answer is not obvious! If the average
blood pressure of the employees is 132 (just 2 mmHg from the null value), it might be very
difficult to detect the difference unless we use a large sample size. On the other hand, it
would be easier to detect a difference if the real average of employees was 140.

@® Example 4.54 Suppose the actual employee average is 132 and we take a sample of
100 individuals. Then the true sampling distribution of Z is approximately N (132, 2.5)
(since SE = \/% = 2.5). What is the probability of successfully rejecting the null

hypothesis?

This problem can be divided into two normal probability questions. First, we identify
what values of Z would represent sufficiently strong evidence to reject Hy. Second,
we use the hypothetical sampling distribution for that has center u = 132 to find the
probability of observing sample means in the areas we found in the first step.

Step 1. The null distribution could be represented by N (130, 2.5), the same standard
deviation as the true distribution but with the null value as its center. Then we can
find the two tail areas by identifying the Z score corresponding to the 2.5% tails
(+1.96), and solving for x in the Z score equation:
x1 — 130 x9 — 130
1.96 = Z1 = = +1.96 = Z =~
z; = 125.1 To = 134.9

(An equally valid approach is to recognize that x; is 1.96 x SE below the mean and
x9 is 1.96 x SE above the mean to compute the values.) Figure 4.23 shows the null
distribution on the left with these two dotted cutoffs.

Step 2. Next, we compute the probability of rejecting Hy if T actually came from
N(132,2.5). This is the same as finding the two shaded tails for the second distribu-
tion in Figure 4.23. We use the Z score method:

125.1 — 132 134.9 — 132
Zleft - 2.5 = —2.76 Z’M’ght = 725 =1.16
areaj.ft = 0.003 arearighy = 0.123

The probability of rejecting the null mean, if the true mean is 132, is the sum of these
areas: 0.003 4 0.123 = 0.126.

The probability of rejecting the null hypothesis is called the power. The power varies
depending on what we suppose the truth might be. In Example 4.54, the difference between
the null value and the supposed true mean was relatively small, so the power was also small:
only 0.126. However, when the truth is far from the null value, where we use the standard
error as a measure of what is far, the power tends to increase.

() Exercise 4.55 Suppose the true sampling distribution of Z is centered at 140. That
is, Z comes from N(140,2.5). What would the power be under this scenario? It may
be helpful to draw N (140, 2.5) and shade the area representing power on Figure 4.23;
use the same cutoff values identified in Example 4.54."

39Draw the distribution N(140,2.5), then find the area below 125.1 (about zero area) and above 134.9
(about 0.979). If the true mean is 140, the power is about 0.979.



196 CHAPTER 4. FOUNDATIONS FOR INFERENCE
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Figure 4.23: The sampling distribution of Z under two scenarios. Left:
N(125,2.5). Right: N(132,2.5), and the shaded areas in this distribution
represent the power of the test.

() Exercise 4.56 If the power of a test is 0.979 for a particular mean, what is the
Type 2 Error rate for this mean?*’

() Exercise 4.57 Provide an intuitive explanation for why we are more likely to reject
H, when the true mean is further from the null value.*!

4.6.3 Statistical significance versus practical significance

When the sample size becomes larger, point estimates become more precise and any real
differences in the mean and null value become easier to detect and recognize. Even a
very small difference would likely be detected if we took a large enough sample. Some-
times researchers will take such large samples that even the slightest difference is detected.
While we still say that difference is statistically significant, it might not be practically
significant.

Statistically significant differences are sometimes so minor that they are not practically
relevant. This is especially important to research: if we conduct a study, we want to focus
on finding a meaningful result. We don’t want to spend lots of money finding results that
hold no practical value.

The role of a statistician in conducting a study often includes planning the size of
the study. The statistician might first consult experts or scientific literature to learn what
would be the smallest meaningful difference from the null value. She also would obtain some
reasonable estimate for the standard deviation. With these important pieces of information,
she would choose a sufficiently large sample size so that the power for the meaningful
difference is perhaps 80% or 90%. While larger sample sizes may still be used, she might
advise against using them in some cases, especially in sensitive areas of research.

40The Type 2 Error rate represents the probability of failing to reject the null hypothesis. Since the
power is the probability we do reject, the Type 2 Error rate will be 1 — 0.979 = 0.021.

41 Answers may vary a little. When the truth is far from the null value, the point estimate also tends to
be far from the null value, making it easier to detect the difference and reject Hy.



4.7. EXERCISES 197

4.7 Exercises

4.7.1 Variability in estimates

4.1 Identify the parameter, Part I. For each of the following situations, state whether the
parameter of interest is a mean or a proportion. It may be helpful to examine whether individual
responses are numerical or categorical.

(a) In a survey, one hundred college students are asked how many hours per week they spend on
the Internet.

(b) In a survey, one hundred college students are asked: “What percentage of the time you spend
on the Internet is part of your course work?”

(¢) In a survey, one hundred college students are asked whether or not they cited information
from Wikipedia in their papers.

(d) In a survey, one hundred college students are asked what percentage of their total weekly
spending is on alcoholic beverages.

(e) In a sample of one hundred recent college graduates, it is found that 85 percent expect to get
a job within one year of their graduation date.

4.2 Identify the parameter, Part I1. For each of the following situations, state whether the
parameter of interest is a mean or a proportion.

(a) A poll shows that 64% of Americans personally worry a great deal about federal spending and
the budget deficit.

(b) A survey reports that local TV news has shown a 17% increase in revenue between 2009 and
2011 while newspaper revenues decreased by 6.4% during this time period.

(¢) In a survey, high school and college students are asked whether or not they use geolocation
services on their smart phones.

(d) In a survey, internet users are asked whether or not they purchased any Groupon coupons.

(e) In a survey, internet users are asked how many Groupon coupons they purchased over the last
year.

4.3 College credits. A college counselor is interested in estimating how many credits a stu-
dent typically enrolls in each semester. The counselor decides to randomly sample 100 students
by using the registrar’s database of students. The histogram below shows the distribution of the
number of credits taken by these students. Sample statistics for this distribution are also provided.

25—
20 Min 8
i Q1 13
15 Median 14
10 Mean 13.65
5 SD 1.91
Q3 15
0= | | | | | Max 18

8 10 12 14 16 18
Number of credits

(a) What is the point estimate for the average number of credits taken per semester by students
at this college? What about the median?
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(b) What is the point estimate for the standard deviation of the number of credits taken per
semester by students at this college? What about the IQR?

(c¢) Is a load of 16 credits unusually high for this college? What about 18 credits? Explain your
reasoning. Hint: Observations farther than two standard deviations from the mean are usually
considered to be unusual.

(d) The college counselor takes another random sample of 100 students and this time finds a
sample mean of 14.02 units. Should she be surprised that this sample statistic is slightly
different than the one from the original sample? Explain your reasoning.

(e) The sample means given above are point estimates for the mean number of credits taken by all
students at that college. What measures do we use to quantify the variability of this estimate?
Compute this quantity using the data from the original sample.

4.4 Heights of adults. Researchers studying anthropometry collected body girth measurements
and skeletal diameter measurements, as well as age, weight, height and gender, for 507 physically
active individuals. The histogram below shows the sample distribution of heights in centimeters."”

100
80 Min 147.2
60 Q1 163.8
Median | 170.3
40 Mean 171.1
20 SD 9.4
o Q3 177.8
T T T T T 1 Max 198.1
150 160 170 180 190 200
Height

(a) What is the point estimate for the average height of active individuals? What about the
median?

(b) What is the point estimate for the standard deviation of the heights of active individuals?
What about the IQR?

(c) Is a person who is 1m 80cm (180 cm) tall considered unusually tall? And is a person who is
1m 55c¢m (155c¢m) considered unusually short? Explain your reasoning.

(d) The researchers take another random sample of physically active individuals. Would you
expect the mean and the standard deviation of this new sample to be the ones given above.
Explain your reasoning.

(e) The samples means obtained are point estimates for the mean height of all active individuals,
if the sample of individuals is equivalent to a simple random sample. What measure do we use
to quantify the variability of such an estimate? Compute this quantity using the data from
the original sample under the condition that the data are a simple random sample.

4.5 Wireless routers. John is shopping for wireless routers and is overwhelmed by the number
of available options. In order to get a feel for the average price, he takes a random sample of 75
routers and finds that the average price for this sample is $75 and the standard deviation is $25.

(a) Based on this information, how much variability should he expect to see in the mean prices of
repeated samples, each containing 75 randomly selected wireless routers?

(b) A consumer website claims that the average price of routers is $80. Is a true average of $80
consistent with John’s sample?

42@G. Heinz et al. “Exploring relationships in body dimensions”. In: Journal of Statistics Education 11.2
(2003).


http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html
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4.6 Chocolate chip cookies. Students are asked to count the number of chocolate chips in 22
cookies for a class activity. They found that the cookies on average had 14.77 chocolate chips with
a standard deviation of 4.37 chocolate chips.

(a) Based on this information, about how much variability should they expect to see in the mean
number of chocolate chips in random samples of 22 chocolate chip cookies?

(b) The packaging for these cookies claims that there are at least 20 chocolate chips per cookie.
One student thinks this number is unreasonably high since the average they found is much
lower. Another student claims the difference might be due to chance. What do you think?

4.7.2 Confidence intervals

4.7 Relaxing after work. The General Social Survey (GSS) is a sociological survey used to
collect data on demographic characteristics and attitudes of residents of the United States. In
2010, the survey collected responses from 1,154 US residents. The survey is conducted face-to-face
with an in-person interview of a randomly-selected sample of adults. One of the questions on
the survey is “After an average work day, about how many hours do you have to relax or pursue
activities that you enjoy?” A 95% confidence interval from the 2010 GSS survey is 3.53 to 3.83
hours.*?

(a) Interpret this interval in the context of the data.
(b) What does a 95% confidence level mean in this context?

(c) Suppose the researchers think a 90% confidence level would be more appropriate for this
interval. Will this new interval be smaller or larger than the 95% confidence interval? Assume
the standard deviation has remained constant since 2010.

4.8 Mental health. Another question on the General Social Survey introduced in Exercise 4.7
is “For how many days during the past 30 days was your mental health, which includes stress,
depression, and problems with emotions, not good?” Based on responses from 1,151 US residents,
the survey reported a 95% confidence interval of 3.40 to 4.24 days in 2010.

(a) Interpret this interval in context of the data.
(b) What does a 90% confidence level mean in this context?

(c) Suppose the researchers think a 99% confidence level would be more appropriate for this
interval. Will this new interval be smaller or larger than the 95% confidence interval?

(d) If a new survey asking the same questions was to be done with 500 Americans, would the
standard error of the estimate be larger, smaller, or about the same. Assume the standard
deviation has remained constant since 2010.

4.9 Width of a confidence interval. Earlier in Chapter 4, we calculated the 99% confidence
interval for the average age of runners in the 2012 Cherry Blossom Run as (32.7, 37.4) based
on a sample of 100 runners. How could we decrease the width of this interval without losing
confidence?

4.10 Confidence levels. If a higher confidence level means that we are more confident about
the number we are reporting, why don’t we always report a confidence interval with the highest
possible confidence level?

43National Opinion Research Center, Geeneral Social Survey, 2010.


http://www3.norc.org/gss+website
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4.11 Waiting at an ER, Part I. A hospital administrator hoping to improve wait times decides
to estimate the average emergency room waiting time at her hospital. He collects a simple random
sample of 64 patients and determines the time (in minutes) between when they checked in to the
ER until they were first seen by a doctor. A 95% confidence interval based on this sample is (128
minutes, 147 minutes), which is based on the normal model for the mean. Determine whether the
following statements are true or false, and explain your reasoning for those statements you identify
as false.

(a) This confidence interval is not valid since we do not know if the population distribution of the
ER wait times is nearly normal.

(b) We are 95% confident that the average waiting time of these 64 emergency room patients is
between 128 and 147 minutes.

(c) We are 95% confident that the average waiting time of all patients at this hospital’s emergency
room is between 128 and 147 minutes.

(d) 95% of such random samples would have a sample mean between 128 and 147 minutes.

(e) A 99% confidence interval would be narrower than the 95% confidence interval since we need
to be more sure of our estimate.

(f) The margin of error is 9.5 and the sample mean is 137.5.

(g) In order to decrease the margin of error of a 95% confidence interval to half of what it is now,
we would need to double the sample size.

4.12 Thanksgiving spending, Part I. The 2009 holiday retail season, which kicked off on
November 27, 2009 (the day after Thanksgiving), had been marked by somewhat lower self-reported
consumer spending than was seen during the comparable period in 2008. To get an estimate
of consumer spending, 436 randomly sampled American adults were surveyed. Daily consumer
spending for the six-day period after Thanksgiving, spanning the Black Friday weekend and Cyber
Monday, averaged $84.71. A 95% confidence interval based on this sample is ($80.31, $89.11).
Determine whether the following statements are true or false, and explain your reasoning.
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(a) We are 95% confident that the average spending of these 436 American adults is between
$80.31 and $89.11.

(b) This confidence interval is not valid since the distribution of spending in the sample is right
skewed.

(¢) 95% of such random samples would have a sample mean between $80.31 and $89.11.

(d) We are 95% confident that the average spending of all American adults is between $80.31 and
$89.11.

(e) A 90% confidence interval would be narrower than the 95% confidence interval since we don’t
need to be as sure about capturing the parameter.

(f) In order to decrease the margin of error of a 95% confidence interval to a third of what it is
now, we would need to use a sample 3 times larger.

(g) The margin of error for the reported interval is 4.4.
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4.13 Exclusive relationships. A survey was conducted on 203 undergraduates from Duke
University who took an introductory statistics course in Spring 2012. Among many other questions,
this survey asked them about the number of exclusive relationships they have been in. The
histogram below shows the distribution of the data from this sample. The sample average is 3.2
with a standard deviation of 1.97.
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Number of exclusive relationships

Estimate the average number of exclusive relationships Duke students have been in using a 90%
confidence interval and interpret this interval in context. Check any conditions required for in-
ference, and note any assumptions you must make as you proceed with your calculations and
conclusions.

4.14 Age at first marriage, Part 1. The National Survey of Family Growth conducted by the
Centers for Disease Control gathers information on family life, marriage and divorce, pregnancy,
infertility, use of contraception, and men’s and women’s health. One of the variables collected on
this survey is the age at first marriage. The histogram below shows the distribution of ages at
first marriage of 5,534 randomly sampled women between 2006 and 2010. The average age at first
marriage among these women is 23.44 with a standard deviation of 4.72.%
000
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Age at first marriage

Estimate the average age at first marriage of women using a 95% confidence interval, and interpret
this interval in context. Discuss any relevant assumptions.

44National Survey of Family Growth, 2006-2010 Cycle.


http://www.cdc.gov/nchs/nsfg/nsfg_2006_2010_puf.htm
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4.7.3 Hypothesis testing

4.15 Identify hypotheses, Part I. Write the null and alternative hypotheses in words and
then symbols for each of the following situations.

(a) New York is known as “the city that never sleeps”. A random sample of 25 New Yorkers were
asked how much sleep they get per night. Do these data provide convincing evidence that
New Yorkers on average sleep less than 8 hours a night?

(b) Employers at a firm are worried about the effect of March Madness, a basketball championship
held each spring in the US, on employee productivity. They estimate that on a regular business
day employees spend on average 15 minutes of company time checking personal email, making
personal phone calls, etc. They also collect data on how much company time employees spend
on such non-business activities during March Madness. They want to determine if these data
provide convincing evidence that employee productivity decreases during March Madness.

4.16 Identify hypotheses, Part 11. Write the null and alternative hypotheses in words and
using symbols for each of the following situations.

(a) Since 2008, chain restaurants in California have been required to display calorie counts of
each menu item. Prior to menus displaying calorie counts, the average calorie intake of diners
at a restaurant was 1100 calories. After calorie counts started to be displayed on menus,
a nutritionist collected data on the number of calories consumed at this restaurant from a
random sample of diners. Do these data provide convincing evidence of a difference in the
average calorie intake of a diners at this restaurant?

(b) Based on the performance of those who took the GRE exam between July 1, 2004 and June
30, 2007, the average Verbal Reasoning score was calculated to be 462. In 2011 the average
verbal score was slightly higher. Do these data provide convincing evidence that the average
GRE Verbal Reasoning score has changed since 20047*°

4.17 Online communication. A study suggests that the average college student spends 2 hours
per week communicating with others online. You believe that this is an underestimate and decide
to collect your own sample for a hypothesis test. You randomly sample 60 students from your
dorm and find that on average they spent 3.5 hours a week communicating with others online. A
friend of yours, who offers to help you with the hypothesis test, comes up with the following set
of hypotheses. Indicate any errors you see.

Hy : 2 <2 hours

Ha :x > 3.5 hours

4.18 Age at first marriage, Part I1. Exercise 4.14 presents the results of a 2006 - 2010 survey
showing that the average age of women at first marriage is 23.44. Suppose a researcher believes
that this value has increased in 2012, but he would also be interested if he found a decrease. Below
is how he set up his hypotheses. Indicate any errors you see.

Ho : & = 23.44 years old

Hya : T > 23.44 year old

4.19 Waiting at an ER, Part II. Exercise 4.11 provides a 95% confidence interval for the
mean waiting time at an emergency room (ER) of (128 minutes, 147 minutes).

(a) A local newspaper claims that the average waiting time at this ER exceeds 3 hours. What do
you think of this claim?

(b) The Dean of Medicine at this hospital claims the average wait time is 2.2 hours. What do you
think of this claim?

(c) Without actually calculating the interval, determine if the claim of the Dean from part (b)
would be considered reasonable based on a 99% confidence interval?

45ETS, Interpreting your GRE Scores.


http://www.ets.org/Media/Tests/GRE/pdf/gre_0809_interpretingscores.pdf
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4.20 Thanksgiving spending, Part I1. Exercise 4.12 provides a 95% confidence interval for the
average spending by American adults during the six-day period after Thanksgiving 2009: ($80.31,
$89.11).

(a) A local news anchor claims that the average spending during this period in 2009 was $100.
What do you think of this claim?

(b) Would the news anchor’s claim be considered reasonable based on a 90% confidence interval?
Why or why not?

4.21 Ball bearings. A manufacturer claims that bearings produced by their machine last 7
hours on average under harsh conditions. A factory worker randomly samples 75 ball bearings,
and records their lifespans under harsh conditions. He calculates a sample mean of 6.85 hours,
and the standard deviation of the data is 1.25 working hours. The following histogram shows the
distribution of the lifespans of the ball bearings in this sample. Conduct a formal hypothesis test
of this claim. Make sure to check that relevant conditions are satisfied.

Number of hours

4.22 Gifted children, Part I. Researchers investigating characteristics of gifted children col-
lected data from schools in a large city on a random sample of thirty-six children who were identified
as gifted children soon after they reached the age of four. The following histogram shows the dis-
tribution of the ages (in months) at which these children first counted to 10 successfully. Also
provided are some sample statistics."’
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(a) Are conditions for inference satisfied?

(b) Suppose you read on a parenting website that children first count to 10 successfully when they
are 32 months old, on average. Perform a hypothesis test to evaluate if these data provide
convincing evidence that the average age at which gifted children first count to 10 successfully
is less than the general average of 32 months. Use a significance level of 0.10.

(c) Interpret the p-value in context of the hypothesis test and the data.

(d) Calculate a 90% confidence interval for the average age at which gifted children first count to
10 successfully.

(e) Do your results from the hypothesis test and the confidence interval agree? Explain.

46F A, Graybill and H.K. Iyer. Regression Analysis: Concepts and Applications. Duxbury Press, 1994,
pp. 511-516.
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4.23  Waiting at an ER, Part III. The hospital administrator mentioned in Exercise 4.11
randomly selected 64 patients and measured the time (in minutes) between when they checked in
to the ER and the time they were first seen by a doctor. The average time is 137.5 minutes and
the standard deviation is 39 minutes. He is getting grief from his supervisor on the basis that
the wait times in the ER increased greatly from last year’s average of 127 minutes. However, the
administrator claims that the increase is probably just due to chance.

(a) Are conditions for inference met? Note any assumptions you must make to proceed.

(b) Using a significance level of o = 0.05, is the change in wait times statistically significant? Use
a two-sided test since it seems the supervisor had to inspect the data before he suggested an
increase occurred.

(c) Would the conclusion of the hypothesis test change if the significance level was changed to
a =0.017

4.24 Gifted children, Part I1. Exercise 4.22 describes a study on gifted children. In this study,
along with variables on the children, the researchers also collected data on the mother’s and fa-
ther’s IQ of the 36 randomly sampled gifted children. The histogram below shows the distribution
of mother’s IQ. Also provided are some sample statistics.

n | 36
(a) Perform a hypothesis test to evaluate min | 101
if these data provide convincing evi- mean | 118.2
dence that the average IQ of mothers sd | 6.5
of gifted children is different than the max | 131

average 1Q for the population at large,
which is 100. Use a significance level 4,
of 0.10.

(b) Calculate a 90% confidence interval
for the average IQ of mothers of gifted
children. 4

(¢) Do your results from the hypothesis
test and the confidence interval agree?
Explain.
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4.25 Nutrition labels. The nutrition label on a bag of potato chips says that a one ounce (28
gram) serving of potato chips has 130 calories and contains ten grams of fat, with three grams of
saturated fat. A random sample of 35 bags yielded a sample mean of 134 calories with a standard
deviation of 17 calories. Is there evidence that the nutrition label does not provide an accurate
measure of calories in the bags of potato chips? We have verified the independence, sample size,
and skew conditions are satisfied.

4.26 Find the sample mean. You are given the following hypotheses: Ho: =34, Ha: p > 34.
We know that the sample standard deviation is 10 and the sample size is 65. For what sample
mean would the p-value be equal to 0.057 Assume that all conditions necessary for inference are
satisfied.

4.27 Testing for Fibromyalgia. A patient named Diana was diagnosed with Fibromyalgia, a
long-term syndrome of body pain, and was prescribed anti-depressants. Being the skeptic that she
is, Diana didn’t initially believe that anti-depressants would help her symptoms. However after
a couple months of being on the medication she decides that the anti-depressants are working,
because she feels like her symptoms are in fact getting better.

(a) Write the hypotheses in words for Diana’s skeptical position when she started taking the
anti-depressants.

(b) What is a Type 1 error in this context?

(c) What is a Type 2 error in this context?

(d) How would these errors affect the patient?
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4.28 Testing for food safety. A food safety inspector is called upon to investigate a restau-
rant with a few customer reports of poor sanitation practices. The food safety inspector uses a
hypothesis testing framework to evaluate whether regulations are not being met. If he decides the
restaurant is in gross violation, its license to serve food will be revoked.

(a) Write the hypotheses in words.
What is a Type 1 error in this context?
What is a Type 2 error in this context?

)
(c)
(d) Which error is more problematic for the restaurant owner? Why?
) Which error is more problematic for the diners? Why?

)

As a diner, would you prefer that the food safety inspector requires strong evidence or very
strong evidence of health concerns before revoking a restaurant’s license? Explain your rea-
soning.

4.29 Errors in drug testing. Suppose regulators monitored 403 drugs last year, each for
a particular adverse response. For each drug they conducted a single hypothesis test with a
significance level of 5% to determine if the adverse effect was higher in those taking the drug than
those who did not take the drug; the regulators ultimately rejected the null hypothesis for 42
drugs.

(a) Describe the error the regulators might have made for a drug where the null hypothesis was
rejected.

(b) Describe the error regulators might have made for a drug where the null hypothesis was not
rejected.

(¢) Suppose the vast majority of the 403 drugs do not have adverse effects. Then, if you picked
one of the 42 suspect drugs at random, about how sure would you be that the drug really has
an adverse effect?

(d) Can you also say how sure you are that a particular drug from the 361 where the null hypothesis
was not rejected does not have the corresponding adverse response?

4.30 Car insurance savings, Part I. A car insurance company advertises that customers
switching to their insurance save, on average, $432 on their yearly premiums. A market researcher
at a competing insurance discounter is interested in showing that this value is an overestimate
so he can provide evidence to government regulators that the company is falsely advertising their
prices. He randomly samples 82 customers who recently switched to this insurance and finds an
average savings of $395, with a standard deviation of $102.

(a) Are conditions for inference satisfied?
(b) Perform a hypothesis test and state your conclusion.

(c) Do you agree with the market researcher that the amount of savings advertised is an overes-
timate? Explain your reasoning.

(d) Calculate a 90% confidence interval for the average amount of savings of all customers who
switch their insurance.

(e) Do your results from the hypothesis test and the confidence interval agree? Explain.
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4.31 Happy hour. A restaurant owner is considering extending the happy hour at his restaurant
since he would like to see if it increases revenue. If it does, he will permanently extend happy
hour. He estimates that the current average revenue per customer is $18 during happy hour. He
runs the extended happy hour for a week and finds an average revenue of $19.25 with a standard
deviation $3.02 based on a simple random sample of 70 customers.

(a) Are conditions for inference satisfied?

(b) Perform a hypothesis test. Suppose the customers and their buying habits this week were no
different than in any other week for this particular bar. (This may not always be a reasonable
assumption.)

(c) Calculate a 90% confidence interval for the average revenue per customer.
(d) Do your results from the hypothesis test and the confidence interval agree? Explain.

(e) If your hypothesis test and confidence interval suggest a significant increase in revenue per
customer, why might you still not recommend that the restaurant owner extend the happy
hour based on this criterion? What may be a better measure to consider?

4.32 Speed reading, Part I. A company offering online speed reading courses claims that
students who take their courses show a 5 times (500%) increase in the number of words they can
read in a minute without losing comprehension. A random sample of 100 students yielded an
average increase of 415% with a standard deviation of 220%. Is there evidence that the company’s
claim is false?

(a) Are conditions for inference satisfied?

(b) Perform a hypothesis test evaluating if the company’s claim is reasonable or if the true aver-
age improvement is less than 500%. Make sure to interpret your response in context of the
hypothesis test and the data. Use a = 0.025.

(c) Calculate a 95% confidence interval for the average increase in the number of words students
can read in a minute without losing comprehension.

(d) Do your results from the hypothesis test and the confidence interval agree? Explain.

4.7.4 Examining the Central Limit Theorem

4.33 Ages of pennies, Part 1. The histogram below shows the distribution of ages of pennies
at a bank.

(a) Describe the distribution.

(b) Sampling distributions for means from simple
random samples of 5, 30, and 100 pennies is
shown in the histograms below. Describe the
shapes of these distributions and comment on
whether they look like what you would expect
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4.34 Ages of pennies, Part II. The mean age of the pennies from Exercise 4.33 is 10.44 years
with a standard deviation of 9.2 years. Using the Central Limit Theorem, calculate the means and
standard deviations of the distribution of the mean from random samples of size 5, 30, and 100.
Comment on whether the sampling distributions shown in Exercise 4.33 agree with the values you
compute.

4.35 ldentify distributions, Part I. Four plots are presented below. The plot at the top is a
distribution for a population. The mean is 10 and the standard deviation is 3. Also shown below is
a distribution of (1) a single random sample of 100 values from this population, (2) a distribution
of 100 sample means from random samples with size 5, and (3) a distribution of 100 sample means
from random samples with size 25. Determine which plot (A, B, or C) is which and explain your
reasoning.

Population
u=10
g=3

0 5 10 15 20

20 20
10 10
0 0
6 7 8 9 10 11 12 13
Plot A Plot B Plot C

4.36 Identify distributions, Part II. Four plots are presented below. The plot at the top is
a distribution for a population. The mean is 60 and the standard deviation is 18. Also shown
below is a distribution of (1) a single random sample of 500 values from this population, (2) a
distribution of 500 sample means from random samples of each size 18, and (3) a distribution of
500 sample means from random samples of each size 81. Determine which plot (A, B, or C) is
which and explain your reasoning.

Population
H =60
0=18

0 20 40 60 80 100

100 100 100
50 50 50
54 56 58 60 62 64 66 0 20 40 60 80 100 50 55 60 65 70

Plot A Plot B Plot C
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4.37 Housing prices, Part I. A housing survey was conducted to determine the price of a
typical home in Topanga, CA. The mean price of a house was roughly $1.3 million with a standard
deviation of $300,000. There were no houses listed below $600,000 but a few houses above $3

million.

(a) Is the distribution of housing prices in Topanga symmetric, right skewed, or left skewed? Hint:
Sketch the distribution.

(b) Would you expect most houses in Topanga to cost more or less than $1.3 million?

(c) Can we estimate the probability that a randomly chosen house in Topanga costs more than
$1.4 million using the normal distribution?

(d) What is the probability that the mean of 60 randomly chosen houses in Topanga is more than
$1.4 million?

(e) How would doubling the sample size affect the standard error of the mean?

4.38 Stats final scores. Each year about 1500 students take the introductory statistics course
at a large university. This year scores on the final exam are distributed with a median of 74 points,
a mean of 70 points, and a standard deviation of 10 points. There are no students who scored
above 100 (the maximum score attainable on the final) but a few students scored below 20 points.
(a) Is the distribution of scores on this final exam symmetric, right skewed, or left skewed?

(b) Would you expect most students to have scored above or below 70 points?

(c) Can we calculate the probability that a randomly chosen student scored above 75 using the
normal distribution?

(d) What is the probability that the average score for a random sample of 40 students is above
757

(e) How would cutting the sample size in half affect the standard error of the mean?

4.39 Weights of pennies. The distribution of weights of US pennies is approximately normal
with a mean of 2.5 grams and a standard deviation of 0.03 grams.

(a) What is the probability that a randomly chosen penny weighs less than 2.4 grams?

(b) Describe the sampling distribution of the mean weight of 10 randomly chosen pennies.

(¢) What is the probability that the mean weight of 10 pennies is less than 2.4 grams?

(d) Sketch the two distributions (population and sampling) on the same scale.

(e) Could you estimate the probabilities from (a) and (c) if the weights of pennies had a skewed
distribution?

4.40 CFLs. A manufacturer of compact fluorescent light bulbs advertises that the distribution
of the lifespans of these light bulbs is nearly normal with a mean of 9,000 hours and a standard
deviation of 1,000 hours.

(a) What is the probability that a randomly chosen light bulb lasts more than 10,500 hours?

(b) Describe the distribution of the mean lifespan of 15 light bulbs.

(¢) What is the probability that the mean lifespan of 15 randomly chosen light bulbs is more than
10,500 hours?

(d) Sketch the two distributions (population and sampling) on the same scale.

(e) Could you estimate the probabilities from parts (a) and (c) if the lifespans of light bulbs had
a skewed distribution?
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4.41 Songs on an iPod. Suppose an iPod has 3,000 songs. The histogram below shows the
distribution of the lengths of these songs. We also know that, for this iPod, the mean length is
3.45 minutes and the standard deviation is 1.63 minutes.

800

600 —

400

200

0_

I I I I 1
0 2 4 6 8 10

Length of song

(a) Calculate the probability that a randomly selected song lasts more than 5 minutes.

(b) You are about to go for an hour run and you make a random playlist of 15 songs. What is the
probability that your playlist lasts for the entire duration of your run? Hint: If you want the
playlist to last 60 minutes, what should be the minimum average length of a song?

(¢) You are about to take a trip to visit your parents and the drive is 6 hours. You make a random
playlist of 100 songs. What is the probability that your playlist lasts the entire drive?

4.42 Spray paint. Suppose the area that can be painted using a single can of spray paint is
slightly variable and follows a nearly normal distribution with a mean of 25 square feet and a
standard deviation of 3 square feet.

(a) What is the probability that the area covered by a can of spray paint is more than 27 square
feet?

(b) Suppose you want to spray paint an area of 540 square feet using 20 cans of spray paint. On
average, how many square feet must each can be able to cover to spray paint all 540 square
feet?

(c) What is the probability that you can cover a 540 square feet area using 20 cans of spray paint?

(d) If the area covered by a can of spray paint had a slightly skewed distribution, could you still
calculate the probabilities in parts (a) and (c) using the normal distribution?
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4.7.5 Inference for other estimators

4.43 Spam mail, Part I. The 2004 National Technology Readiness Survey sponsored by the
Smith School of Business at the University of Maryland surveyed 418 randomly sampled Americans,
asking them how many spam emails they receive per day. The survey was repeated on a new
random sample of 499 Americans in 2009.""

(a) What are the hypotheses for evaluating if the average spam emails per day has changed from
2004 to 2009.

(b) In 2004 the mean was 18.5 spam emails per day, and in 2009 this value was 14.9 emails per
day. What is the point estimate for the difference between the two population means?

(c) A report on the survey states that the observed difference between the sample means is not
statistically significant. Explain what this means in context of the hypothesis test and the
data.

(d) Would you expect a confidence interval for the difference between the two population means
to contain 07 Explain your reasoning.

4.44 Nearsightedness. It is believed that nearsightedness affects about 8% of all children. In
a random sample of 194 children, 21 are nearsighted.

(a) Construct hypotheses appropriate for the following question: do these data provide evidence
that the 8% value is inaccurate?

(b) What proportion of children in this sample are nearsighted?

(¢) Given that the standard error of the sample proportion is 0.0195 and the point estimate follows
a nearly normal distribution, calculate the test statistic (the Z statistic).

(d) What is the p-value for this hypothesis test?
(e) What is the conclusion of the hypothesis test?

4.45 Spam mail, Part II. The National Technology Readiness Survey from Exercise 4.43 also
asked Americans how often they delete spam emails. 23% of the respondents in 2004 said they
delete their spam mail once a month or less, and in 2009 this value was 16%.

(a) What are the hypotheses for evaluating if the proportion of those who delete their email once
a month or less (or never) has changed from 2004 to 2009?

(b) What is the point estimate for the difference between the two population proportions?

(c) A report on the survey states that the observed decrease from 2004 to 2009 is statistically
significant. Explain what this means in context of the hypothesis test and the data.

(d) Would you expect a confidence interval for the difference between the two population propor-
tions to contain 0?7 Explain your reasoning.

4.46 Unemployment and relationship problems. A USA Today/Gallup poll conducted
between 2010 and 2011 asked a group of unemployed and underemployed Americans if they have
had major problems in their relationships with their spouse or another close family member as a
result of not having a job (if unemployed) or not having a full-time job (if underemployed). 27%
of the 1,145 unemployed respondents and 25% of the 675 underemployed respondents said they
had major problems in relationships as a result of their employment status.

(a) What are the hypotheses for evaluating if the proportions of unemployed and underemployed
people who had relationship problems were different?

(b) The p-value for this hypothesis test is approximately 0.35. Explain what this means in context
of the hypothesis test and the data.

47Rockbridge, 2009 National Technology Readiness Survey SPAM Report.
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4.7.6 Sample size and power

4.47 Which is higher? In each part below, there is a value of interest and two scenarios (I and
IT). For each part, report if the value of interest is larger under scenario I, scenario II, or whether
the value is equal under the scenarios.

(a) The standard error of £ when s = 120 and (I) n = 25 or (II) n = 125.
) The margin of error of a confidence interval when the confidence level is (I) 90% or (II) 80%.
(c) The p-value for a Z statistic of 2.5 when (I) n = 500 or (II) n = 1000.
)

The probability of making a Type 2 error when the alternative hypothesis is true and the
significance level is (I) 0.05 or (II) 0.10.

4.48 'True or false. Determine if the following statements are true or false, and explain your
reasoning. If false, state how it could be corrected.

(a) If a given value (for example, the null hypothesized value of a parameter) is within a 95%
confidence interval, it will also be within a 99% confidence interval.

(b) Decreasing the significance level (a) will increase the probability of making a Type 1 error.

(c) Suppose the null hypothesis is 4 = 5 and we fail to reject Ho. Under this scenario, the true
population mean is 5.

(d) If the alternative hypothesis is true, then the probability of making a Type 2 error and the
power of a test add up to 1.

(e) With large sample sizes, even small differences between the null value and the true value of the
parameter, a difference often called the effect size, will be identified as statistically significant.

(f) A cutoff of @ = 0.05 is the ideal value for all hypothesis tests.

4.49 Car insurance savings, Part I1. The market researcher from Exercise 4.30 collected data
about the savings of 82 customers at a competing car insurance company. The mean and standard
deviation of this sample are $395 and $102, respectively. He would like to conduct another survey
but have a margin of error of no more than $10 at a 99% confidence level. How large of a sample
should he collect?

4.50 Speed reading, Part II. A random sample of 100 students who took online speed reading
courses from the company described in Exercise 4.32 yielded an average increase in reading speed
of 415% and a standard deviation of 220%. We would like to calculate a 95% confidence interval
for the average increase in reading speed with a margin of error of no more than 15%. How many
students should we sample?

4.51 Waiting at the ER, Part IV. Exercise 4.23 introduced us to a hospital where ER wait
times were being analyzed. The previous year’s average was 128 minutes. Suppose that this year’s
average wait time is 135 minutes.

(a) Provide the hypotheses for this situation in plain language.

(b) If we plan to collect a sample size of n = 64, what values could Z take so that we reject Ho?
Suppose the sample standard deviation from the earlier exercise (39 minutes) is the population
standard deviation. You may assume that the conditions for the nearly normal model for
are satisfied.

(c) Calculate the probability of a Type 2 error.



Chapter 5

Inference for numerical data

Chapter 4 introduced a framework for statistical inference based on confidence intervals
and hypotheses. In this chapter, we encounter several new point estimates and scenarios.
In each case, the inference ideas remain the same:

1. Determine which point estimate or test statistic is useful.

2. Identify an appropriate distribution for the point estimate or test statistic.

3. Apply the ideas from Chapter 4 using the distribution from step 2.
Each section in Chapter 5 explores a new situation: the difference of two means (5.1, 5.2);
a single mean or difference of means where we relax the minimum sample size condition

(5.3, 5.4); and the comparison of means across multiple groups (5.5). Chapter 6 will
introduce scenarios that highlight categorical data.

5.1 Paired data

Are textbooks actually cheaper online? Here we compare the price of textbooks at UCLA’s
bookstore and prices at Amazon.com. Seventy-three UCLA courses were randomly sampled
in Spring 2010, representing less than 10% of all UCLA courses." A portion of this data
set is shown in Table 5.1

dept course ucla amazon diff
Am Ind C170 27.67 27.95 -0.28
Anthro 9 40.59 31.14  9.45

Anthro 135T 31.68 32.00 -0.32
Anthro 191HB 16.00 1152  4.48

[ENEUCR NG

72 Wom Std M144  23.76 1872 5.04
73  Wom Std 285 27.70 18.22  9.48

Table 5.1: Six cases of the textbooks data set.

IWhen a class had multiple books, only the most expensive text was considered.

212
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Figure 5.2: Histogram of the difference in price for each book sampled.
These data are strongly skewed.

5.1.1 Paired observations and samples

Each textbook has two corresponding prices in the data set: one for the UCLA bookstore
and one for Amazon. Therefore, each textbook price from the UCLA bookstore has a
natural correspondence with a textbook price from Amazon. When two sets of observations
have this special correspondence, they are said to be paired.

Paired data
Two sets of observations are paired if each observation in one set has a special
correspondence or connection with exactly one observation in the other data set.

To analyze paired data, it is often useful to look at the difference in outcomes of each
pair of observations. In the textbook data set, we look at the difference in prices, which is
represented as the diff variable in the textbooks data. Here the differences are taken as

UCLA price — Amazon price

for each book. It is important that we always subtract using a consistent order; here
Amazon prices are always subtracted from UCLA prices. A histogram of these differences
is shown in Figure 5.2. Using differences between paired observations is a common and
useful way to analyze paired data.

() Exercise 5.1 The first difference shown in Table 5.1 is computed as 27.67—27.95 =
—0.28. Verify the differences are calculated correctly for observations 2 and 3.

5.1.2 Inference for paired data

To analyze a paired data set, we use the exact same tools that we developed in Chapter 4.
Now we apply them to the differences in the paired observations.

20bservation 2: 40.59 — 31.14 = 9.45. Observation 3: 31.68 — 32.00 = —0.32.
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diff Laiss Saiss

73 12.76 14.26

n

Table 5.3: Summary statistics for the price differences. There were 73
books, so there are 73 differences.

left tail right tail
T — 1
Mo =0 Xaiff = 12.76

Figure 5.4: Sampling distribution for the mean difference in book prices, if
the true average difference is zero.

@® Example 5.2 Set up and implement a hypothesis test to determine whether, on

average, there is a difference between Amazon’s price for a book and the UCLA
bookstore’s price.

There are two scenarios: there is no difference or there is some difference in average
prices. The no difference scenario is always the null hypothesis:

Hy: pgifs = 0. There is no difference in the average textbook price.
Ha: paigy # 0. There is a difference in average prices.

Can the normal model be used to describe the sampling distribution of Zg;rs? We
must check that the differences meet the conditions established in Chapter 4. The
observations are based on a simple random sample from less than 10% of all books sold
at the bookstore, so independence is reasonable; there are more than 30 differences;
and the distribution of differences, shown in Figure 5.2, is strongly skewed, but this
amount of skew is reasonable for this sized data set (n = 73). Because all three
conditions are reasonably satisfied, we can conclude the sampling distribution of
Zqifs is nearly normal and our estimate of the standard error will be reasonable.

We compute the standard error associated with Z4;¢¢ using the standard deviation

of the differences (s,,,, = 14.26) and the number of differences (n,,,, = 73):

diff diff

Sp, = Sarr 1426

SN E

To visualize the p-value, the sampling distribution of Z4s is drawn as though Hy
is true, which is shown in Figure 5.4. The p-value is represented by the two (very)
small tails.

To find the tail areas, we compute the test statistic, which is the Z score of Zg;fs
under the null condition that the actual mean difference is 0:
7 - Tdiff -0 . 12.76 — 0
- SE,,.. 167
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This Z score is so large it isn’t even in the table, which ensures the single tail area will
be 0.0002 or smaller. Since the p-value corresponds to both tails in this case and the
normal distribution is symmetric, the p-value can be estimated as twice the one-tail
area:

p-value = 2 x (one tail area) ~ 2 x 0.0002 = 0.0004

Because the p-value is less than 0.05, we reject the null hypothesis. We have found
convincing evidence that Amazon is, on average, cheaper than the UCLA bookstore
for UCLA course textbooks.

() Exercise 5.3 Create a 95% confidence interval for the average price difference
between books at the UCLA bookstore and books on Amazon.”

5.2 Difference of two means

In this section we consider a difference in two population means, 1 — o, under the condition
that the data are not paired. The methods are similar in theory but different in the details.
Just as with a single sample, we identify conditions to ensure a point estimate of the
difference 1 — T2 is nearly normal. Next we introduce a formula for the standard error,
which allows us to apply our general tools from Section 4.5.

We apply these methods to two examples: participants in the 2012 Cherry Blossom
Run and newborn infants. This section is motivated by questions like “Is there convincing
evidence that newborns from mothers who smoke have a different average birth weight than
newborns from mothers who don’t smoke?”

5.2.1 Point estimates and standard errors for differences of means

We would like to estimate the average difference in run times for men and women using the
run10Samp data set, which was a simple random sample of 45 men and 55 women from all
runners in the 2012 Cherry Blossom Run. Table 5.5 presents relevant summary statistics,
and box plots of each sample are shown in Figure 5.6.

men women

rz 87.65 102.13
s 12.5 15.2
n 45 95

Table 5.5: Summary statistics for the run time of 100 participants in the
2009 Cherry Blossom Run.

The two samples are independent of one-another, so the data are not paired. Instead
a point estimate of the difference in average 10 mile times for men and women, i, — i,
can be found using the two sample means:

To — T = 102.13 — 87.65 = 14.48

3Conditions have already verified and the standard error computed in Example 5.2. To find the interval,
identify 2* (1.96 for 95% confidence) and plug it, the point estimate, and the standard error into the
confidence interval formula:

point estimate + z*SE — 12.76 + 1.96 x 1.67 —  (9.49,16.03)

We are 95% confident that Amazon is, on average, between $9.49 and $16.03 cheaper than the UCLA
bookstore for UCLA course books.
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150 ~

100 { —

run time (minutes)

50 -
men women

Figure 5.6: Side-by-side box plots for the sample of 2009 Cherry Blossom
Run participants.

Because we are examining two simple random samples from less than 10% of the popu-
lation, each sample contains at least 30 observations, and neither distribution is strongly
skewed, we can safely conclude the sampling distribution of each sample mean is nearly
normal. Finally, because each sample is independent of the other (e.g. the data are not
paired), we can conclude that the difference in sample means can be modeled using a normal
distribution.”

Conditions for normality of z; — Z2

If the sample means, Z; and Zs, each meet the criteria for having nearly normal
sampling distributions and the observations in the two samples are independent,
then the difference in sample means, T; — T2, will have a sampling distribution
that is nearly normal.

We can quantify the variability in the point estimate, Z,, — Z,,, using the following
formula for its standard error:
s

Sij,jm - +

Ny Nm

2
Im

We usually estimate this standard error using standard deviation estimates based on the
samples:

2 2
9w |, Tm

+

Nw N

[s2, 2 1522 12.52
~y 24 = =277
om + Nyn, 55 + 45

Because each sample has at least 30 observations (n,, = 55 and n,, = 45), this substitution
using the sample standard deviation tends to be very good.

SEz -5, =

4Probability theory guarantees that the difference of two independent normal random variables is also
normal. Because each sample mean is nearly normal and observations in the samples are independent, we
are assured the difference is also nearly normal.



5.2. DIFFERENCE OF TWO MEANS 217

Distribution of a difference of sample means
The sample difference of two means, Z; — To, is nearly normal with mean g1 — po
and estimated standard error

SE‘@1752 =1/ % + % (54)

when each sample mean is nearly normal and all observations are independent.

5.2.2 Confidence interval for the difference

When the data indicate that the point estimate Z; — Zy comes from a nearly normal
distribution, we can construct a confidence interval for the difference in two means from
the framework built in Chapter 4. Here a point estimate, T,, — T,, = 14.48, is associated
with a normal model with standard error SE = 2.77. Using this information, the general
confidence interval formula may be applied in an attempt to capture the true difference in
means, in this case using a 95% confidence level:

point estimate + z*SE — 1448 £ 1.96 x2.77 — (9.05,19.91)

Based on the samples, we are 95% confident that men ran, on average, between 9.05 and
19.91 minutes faster than women in the 2012 Cherry Blossom Run.

() Exercise 5.5 What does 95% confidence mean?’

() Exercise 5.6 We may be interested in a different confidence level. Construct the
99% confidence interval for the population difference in average run times based on
the sample data.’

5.2.3 Hypothesis tests based on a difference in means

A data set called baby_smoke represents a random sample of 150 cases of mothers and their
newborns in North Carolina over a year. Four cases from this data set are represented in
Table 5.7. We are particularly interested in two variables: weight and smoke. The weight
variable represents the weights of the newborns and the smoke variable describes which
mothers smoked during pregnancy. We would like to know if there is convincing evidence
that newborns from mothers who smoke have a different average birth weight than newborns
from mothers who don’t smoke? We will use the North Carolina sample to try to answer
this question. The smoking group includes 50 cases and the nonsmoking group contains
100 cases, represented in Figure 5.8.

5If we were to collected many such samples and create 95% confidence intervals for each, then about
95% of these intervals would contain the population difference, piyy — fim-

6The only thing that changes is 2*: we use z* = 2.58 for a 99% confidence level. (If the selection of z*
is confusing, see Section 4.2.4 for an explanation.) The 99% confidence interval: 14.48 + 2.58 x 2.77 —
(7.33,21.63). We are 99% confident that the true difference in the average run times between men and
women is between 7.33 and 21.63 minutes.
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fAge mAge weeks weight sexBaby smoke

1 NA 13 37 5.00 female nonsmoker

2 NA 14 36 5.88 female nonsmoker

3 19 15 41 8.13 male smoker
150 45 50 36 9.25 female nonsmoker

Table 5.7: Four cases from the baby_smoke data set. The value “NA”,
shown for the first two entries of the first variable, indicates that piece of
data is missing.

[ I I I I I
0 2 4 6 8 10

Newborn weights (Ibs) from mothers who smoked

[ I I I I I
0 2 4 6 8 10

Newborn weights (Ibs) from mothers who did not smoke

Figure 5.8: The top panel represents birth weights for infants whose mothers
smoked. The bottom panel represents the birth weights for infants whose
mothers who did not smoke. Both distributions exhibit strong skew.
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@® Example 5.7 Set up appropriate hypotheses to evaluate whether there is a rela-
tionship between a mother smoking and average birth weight.

The null hypothesis represents the case of no difference between the groups.

Hy: There is no difference in average birth weight for newborns from mothers who
did and did not smoke. In statistical notation: u,, —us = 0, where u,, represents
non-smoking mothers and p; represents mothers who smoked.

H 4: There is some difference in average newborn weights from mothers who did and
did not smoke (u, — pus # 0).

Summary statistics are shown for each sample in Table 5.9. Because the data come
from a simple random sample and consist of less than 10% of all such cases, the observations
are independent. Additionally, each group’s sample size is at least 30 and the skew in each
sample distribution is strong (see Figure 5.8). The skew is reasonable for these sample sizes
of 50 and 100. Therefore, each sample mean is associated with a nearly normal distribution.

smoker nonsmoker

mean 6.78 7.18
st. dev. 1.43 1.60
samp. size 50 100

Table 5.9: Summary statistics for the baby_smoke data set.

() Exercise 5.8 (a) What is the point estimate of the population difference, u,, — ps?
(b) Can we use a normal distribution to model this difference? (c) Compute the
standard error of the point estimate from part (a).’

® Example 5.9 If the null hypothesis from Exercise 5.8 was true, what would be the
expected value of the point estimate? And the standard deviation associated with
this estimate? Draw a picture to represent the p-value.

If the null hypothesis was true, then we expect to see a difference near 0. The standard
error corresponds to the standard deviation of the point estimate: 0.26. To depict the
p-value, we draw the distribution of the point estimate as though Hy was true and
shade areas representing at least as much evidence against Hy as what was observed.
Both tails are shaded because it is a two-sided test.

7(a) The difference in sample means is an appropriate point estimate: Z, — Zs = 0.40. (b) Because
the samples are independent and each sample mean is nearly normal, their difference is also nearly normal.
(c) The standard error of the estimate can be estimated using Equation (5.4):

o2 o2 s2 82 1.602  1.432
Np  Ns Nn Mg 100 50

The standard error estimate should be sufficiently accurate since the conditions were reasonably satisfied.
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| |
Bn—Hs=0  obs. diff

@® Example 5.10 Compute the p-value of the hypothesis test using the figure in Ex-
ample 5.9, and evaluate the hypotheses using a significance level of o = 0.05.

Since the point estimate is nearly normal, we can find the upper tail using the Z score
and normal probability table:
ALl T VN upper tail = 1 — 0.938 = 0.062
0.26

Because this is a two-sided test and we want the area of both tails, we double this
single tail to get the p-value: 0.124. This p-value is larger than the significance value,
0.05, so we fail to reject the null hypothesis. There is insufficient evidence to say there
is a difference in average birth weight of newborns from North Carolina mothers who
did smoke during pregnancy and newborns from North Carolina mothers who did not
smoke during pregnancy.

() Exercise 5.11 Does the conclusion to Example 5.10 mean that smoking and aver-
age birth weight are unrelated?”

() Exercise 5.12 If we made a Type 2 Error and there is a difference, what could we
have done differently in data collection to be more likely to detect such a difference?”

5.2.4 Summary for inference of the difference of two means

When considering the difference of two means, there are two common cases: the two
samples are paired or they are independent. (There are instances where the data are neither
paired nor independent.) The paired case was treated in Section 5.1, where the one-sample
methods were applied to the differences from the paired observations. We examined the
second and more complex scenario in this section.

When applying the normal model to the point estimate Z; — Zo (corresponding to
unpaired data), it is important to verify conditions before applying the inference framework
using the normal model. First, each sample mean must meet the conditions for normality;
these conditions are described in Chapter 4 on page 168. Secondly, the samples must be
collected independently (e.g. not paired data). When these conditions are satisfied, the
general inference tools of Chapter 4 may be applied.

For example, a confidence interval may take the following form:

point estimate + z*SE

8 Absolutely not. It is possible that there is some difference but we did not detect it. If this is the case,
we made a Type 2 Error.

9We could have collected more data. If the sample sizes are larger, we tend to have a better shot at
finding a difference if one exists.
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When we compute the confidence interval for u; — po, the point estimate is the difference
in sample means, the value z* corresponds to the confidence level, and the standard error
is computed from Equation (5.4) on page 217. While the point estimate and standard error
formulas change a little, the framework for a confidence interval stays the same. This is
also true in hypothesis tests for differences of means.

In a hypothesis test, we apply the standard framework and use the specific formulas
for the point estimate and standard error of a difference in two means. The test statistic
represented by the Z score may be computed as

point estimate — null value

Z= SE

When assessing the difference in two means, the point estimate takes the form z; — Z5, and
the standard error again takes the form of Equation (5.4) on page 217. Finally, the null
value is the difference in sample means under the null hypothesis. Just as in Chapter 4,
the test statistic Z is used to identify the p-value.

5.2.5 Examining the standard error formula

The formula for the standard error of the difference in two means is similar to the formula
for other standard errors. Recall that the standard error of a single mean, Z;, can be
approximated by

S1
VAL

where s; and n; represent the sample standard deviation and sample size.
The standard error of the difference of two sample means can be constructed from the
standard errors of the separate sample means:

s2 2
SEz,_z, = \/SEZ + SEZ, = 771 + =2 (5.13)
1 N2

This special relationship follows from probability theory.

SEjl -

() Exercise 5.14 Prerequisite: Section 2.4. We can rewrite Equation (5.13) in a
different way:

SE?2

T1—T2

= SE; +SEZ,

Explain where this formula comes from using the ideas of probability theory.'’

5.3 One-sample means with the ¢ distribution

The motivation in Chapter 4 for requiring a large sample was two-fold. First, a large sample
ensures that the sampling distribution of Z is nearly normal. We will see in Section 5.3.1
that if the population data are nearly normal, then Z is also nearly normal regardless of the

10The standard error squared represents the variance of the estimate. If X and Y are two random vari-
ables with variances o2 and 05, then the variance of X —Y is 02 +a§. Likewise, the variance corresponding
to T1 — T2 is O':%l +U%2. Because U%l and 0’%2 are just another way of writing SE%1 and SE%2 , the variance

associated with Z1 — Zz may be written as SE2, + SEZ .
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sample size. The second motivation for a large sample was that we get a better estimate
of the standard error when using a large sample. The standard error estimate will not
generally be accurate for smaller sample sizes, and this motivates the introduction of the ¢
distribution, which we introduce in Section 5.3.2.

We will see that the t distribution is a helpful substitute for the normal distribution
when we model a sample mean Z that comes from a small sample. While we emphasize the
use of the t distribution for small samples, this distribution may also be used for means
from large samples.

5.3.1 The normality condition

We use a special case of the Central Limit Theorem to ensure the distribution of the sample
means will be nearly normal, regardless of sample size, provided the data come from a nearly
normal distribution.

Central Limit Theorem for normal data

The sampling distribution of the mean is nearly normal when the sample obser-
vations are independent and come from a nearly normal distribution. This is true
for any sample size.

While this seems like a very helpful special case, there is one small problem. It is
inherently difficult to verify normality in small data sets.

Caution: Checking the normality condition

We should exercise caution when verifying the normality condition for small sam-
ples. It is important to not only examine the data but also think about where
the data come from. For example, ask: would I expect this distribution to be
symmetric, and am I confident that outliers are rare?

You may relax the normality condition as the sample size goes up. If the sample size
is 10 or more, slight skew is not problematic. Once the sample size hits about 30, then
moderate skew is reasonable. Data with strong skew or outliers require a more cautious
analysis.

5.3.2 Introducing the t distribution

The second reason we previously required a large sample size was so that we could accurately
estimate the standard error using the sample data. In the cases where we will use a small
sample to calculate the standard error, it will be useful to rely on a new distribution
for inference calculations: the ¢ distribution. A ¢ distribution, shown as a solid line in
Figure 5.10, has a bell shape. However, its tails are thicker than the normal model’s. This
means observations are more likely to fall beyond two standard deviations from the mean
than under the normal distribution.'' These extra thick tails are exactly the correction we
need to resolve the problem of a poorly estimated standard error.

The t distribution, always centered at zero, has a single parameter: degrees of freedom.
The degrees of freedom (df) describe the precise form of the bell shaped t distribution.

11The standard deviation of the t distribution is actually a little more than 1. However, it is useful to
always think of the ¢ distribution as having a standard deviation of 1 in all of our applications.
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Figure 5.10: Comparison of a ¢ distribution (solid line) and a normal dis-
tribution (dotted line).

—— normal

-2 0 2 4 6 8

Figure 5.11: The larger the degrees of freedom, the more closely the ¢ dis-
tribution resembles the standard normal model.

Several t distributions are shown in Figure 5.11. When there are more degrees of freedom,
the ¢ distribution looks very much like the standard normal distribution.

Degrees of freedom (df)

The degrees of freedom describe the shape of the ¢ distribution. The larger the
degrees of freedom, the more closely the distribution approximates the normal
model.

When the degrees of freedom is about 30 or more, the ¢ distribution is nearly indis-
tinguishable from the normal distribution. In Section 5.3.3, we relate degrees of freedom
to sample size.

We will find it very useful to become familiar with the ¢ distribution, because it plays a
very similar role to the normal distribution during inference for small samples of numerical
data. We use a t table, partially shown in Table 5.12, in place of the normal probability
table for small sample numerical data. A larger table is presented in Appendix B.2 on
page 410.

Each row in the t table represents a t distribution with different degrees of freedom.
The columns correspond to tail probabilities. For instance, if we know we are working
with the ¢ distribution with df = 18, we can examine row 18, which is highlighted in
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one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
00 1.28 1.64 1.96 2.33 2.58

Table 5.12: An abbreviated look at the t table. Each row represents a
different t distribution. The columns describe the cutoffs for specific tail
areas. The row with df = 18 has been highlighted.

Figure 5.13: The ¢ distribution with 18 degrees of freedom. The area below
-2.10 has been shaded.

Table 5.12. If we want the value in this row that identifies the cutoff for an upper tail of
10%, we can look in the column where one tail is 0.100. This cutoff is 1.33. If we had
wanted the cutoff for the lower 10%, we would use -1.33. Just like the normal distribution,
all ¢ distributions are symmetric.

@® Example 5.15 What proportion of the ¢ distribution with 18 degrees of freedom
falls below -2.107

Just like a normal probability problem, we first draw the picture in Figure 5.13
and shade the area below -2.10. To find this area, we identify the appropriate row:
df = 18. Then we identify the column containing the absolute value of -2.10; it is the
third column. Because we are looking for just one tail, we examine the top line of
the table, which shows that a one tail area for a value in the third row corresponds
to 0.025. About 2.5% of the distribution falls below -2.10. In the next example we
encounter a case where the exact t value is not listed in the table.
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-4 -2 0 2 4 -4 -2 0 2 4

Figure 5.14: Left: The t distribution with 20 degrees of freedom, with
the area above 1.65 shaded. Right: The ¢ distribution with 2 degrees of
freedom, with the area further than 3 units from 0 shaded.

® Example 5.16 A t distribution with 20 degrees of freedom is shown in the left panel
of Figure 5.14. Estimate the proportion of the distribution falling above 1.65.

We identify the row in the ¢ table using the degrees of freedom: df = 20. Then we
look for 1.65; it is not listed. It falls between the first and second columns. Since
these values bound 1.65, their tail areas will bound the tail area corresponding to
1.65. We identify the one tail area of the first and second columns, 0.050 and 0.10,
and we conclude that between 5% and 10% of the distribution is more than 1.65
standard deviations above the mean. If we like, we can identify the precise area using
statistical software: 0.0573.

® Example 5.17 A t distribution with 2 degrees of freedom is shown in the right
panel of Figure 5.14. Estimate the proportion of the distribution falling more than 3
units from the mean (above or below).

As before, first identify the appropriate row: df = 2. Next, find the columns that
capture 3; because 2.92 < 3 < 4.30, we use the second and third columns. Finally,
we find bounds for the tail areas by looking at the two tail values: 0.05 and 0.10. We
use the two tail values because we are looking for two (symmetric) tails.

() Exercise 5.18 What proportion of the ¢ distribution with 19 degrees of freedom
falls above -1.79 units?'?

5.3.3 The t distribution as a solution to the standard error problem

When estimating the mean and standard error from a small sample, the ¢ distribution is a
more accurate tool than the normal model. This is true for both small and large samples.

TIP: When to use the t distribution

Use the t distribution for inference of the sample mean when observations are
independent and nearly normal. You may relax the nearly normal condition as
the sample size increases. For example, the data distribution may be moderately
skewed when the sample size is at least 30.

12We find the shaded area above -1.79 (we leave the picture to you). The small left tail is between 0.025
and 0.05, so the larger upper region must have an area between 0.95 and 0.975.
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To proceed with the t distribution for inference about a single mean, we must check
two conditions.

Independence of observations. We verify this condition just as we did before. We
collect a simple random sample from less than 10% of the population, or if it was an
experiment or random process, we carefully check to the best of our abilities that the
observations were independent.

Observations come from a nearly normal distribution. This second condition is dif-
ficult to verify with small data sets. We often (i) take a look at a plot of the data for
obvious departures from the normal model, and (ii) consider whether any previous
experiences alert us that the data may not be nearly normal.

When examining a sample mean and estimated standard error from a sample of n inde-
pendent and nearly normal observations, we use a ¢ distribution with n — 1 degrees of
freedom (df). For example, if the sample size was 19, then we would use the ¢ distribution
with df = 19 — 1 = 18 degrees of freedom and proceed exactly as we did in Chapter 4,
except that now we use the t table.

5.3.4 One sample t confidence intervals

Dolphins are at the top of the oceanic food chain, which causes dangerous substances such
as mercury to concentrate in their organs and muscles. This is an important problem for
both dolphins and other animals, like humans, who occasionally eat them. For instance,
this is particularly relevant in Japan where school meals have included dolphin at times.

Figure 5.15: A Risso’s dolphin.

Photo by Mike Baird (http://www.bairdphotos.com/).

Here we identify a confidence interval for the average mercury content in dolphin
muscle using a sample of 19 Risso’s dolphins from the Taiji area in Japan.'® The data are
summarized in Table 5.16. The minimum and maximum observed values can be used to
evaluate whether or not there are obvious outliers or skew.

13Taiji was featured in the movie The Cove, and it is a significant source of dolphin and whale meat in
Japan. Thousands of dolphins pass through the Taiji area annually, and we will assume these 19 dolphins
represent a simple random sample from those dolphins. Data reference: Endo T and Haraguchi K. 2009.
High mercury levels in hair samples from residents of Taiji, a Japanese whaling town. Marine Pollution
Bulletin 60(5):743-747.
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n T S minimum maximum
19 44 2.3 1.7 9.2

Table 5.16: Summary of mercury content in the muscle of 19 Risso’s dol-
phins from the Taiji area. Measurements are in pg/wet g (micrograms of
mercury per wet gram of muscle).

@® Example 5.19 Are the independence and normality conditions satisfied for this
data set?

The observations are a simple random sample and consist of less than 10% of the pop-
ulation, therefore independence is reasonable. The summary statistics in Table 5.16
do not suggest any skew or outliers; all observations are within 2.5 standard deviations
of the mean. Based on this evidence, the normality assumption seems reasonable.

In the normal model, we used z* and the standard error to determine the width of
a confidence interval. We revise the confidence interval formula slightly when using the ¢
distribution:

T+ tySE

The sample mean and estimated standard error are computed just as before (z = 4.4 and
SE = s//n=0.528). The value t}; is a cutoff we obtain based on the confidence level and
the t distribution with df degrees of freedom. Before determining this cutoff, we will first
need the degrees of freedom.

Degrees of freedom for a single sample
If the sample has n observations and we are examining a single mean, then we use
the t distribution with df = n — 1 degrees of freedom.

In our current example, we should use the ¢ distribution with df = 19—1 = 18 degrees
of freedom. Then identifying t7g is similar to how we found z*.

e For a 95% confidence interval, we want to find the cutoff ¢}g such that 95% of the ¢
distribution is between -tig and tjg.

e We look in the ¢ table on page 224, find the column with area totaling 0.05 in the
two tails (third column), and then the row with 18 degrees of freedom: t74 = 2.10.

Generally the value of ¢7; is slightly larger than what we would get under the normal model
with z*.

Finally, we can substitute all our values into the confidence interval equation to create
the 95% confidence interval for the average mercury content in muscles from Risso’s dolphins
that pass through the Taiji area:

T+ ,SE — 44 + 210x0.528 —  (3.87,4.93)

We are 95% confident the average mercury content of muscles in Risso’s dolphins is between
3.87 and 4.93 pg/wet gram. This is above the Japanese regulation level of 0.4 pg/wet gram.

*
df
Multiplication

factor for

t conf. interval



228 CHAPTER 5. INFERENCE FOR NUMERICAL DATA

Finding a t confidence interval for the mean
Based on a sample of n independent and nearly normal observations, a confidence
interval for the population mean is

T+ tySE

where Z is the sample mean, {7, corresponds to the confidence level and degrees of
freedom, and SF is the standard error as estimated by the sample.

() Exercise 5.20  The FDA’s webpage provides some data on mercury content of
fish.'* Based on a sample of 15 croaker white fish (Pacific), a sample mean and
standard deviation were computed as 0.287 and 0.069 ppm (parts per million), re-
spectively. The 15 observations ranged from 0.18 to 0.41 ppm. We will assume these
observations are independent. Based on the summary statistics of the data, do you
have any objections to the normality condition of the individual observations?'®

® Example 5.21 Estimate the standard error of £ = 0.287 ppm using the data sum-
maries in Exercise 5.20. If we are to use the ¢ distribution to create a 90% confidence
interval for the actual mean of the mercury content, identify the degrees of freedom
we should use and also find tjif.

The standard error: SE = %\/1%9 = 0.0178. Degrees of freedom: df =n —1 = 14.

Looking in the column where two tails is 0.100 (for a 90% confidence interval) and
row df = 14, we identify 7, = 1.76.

() Exercise 5.22  Using the results of Exercise 5.20 and Example 5.21, compute a 90%
confidence interval for the average mercury content of croaker white fish (Pacific).

5.3.5 One sample ¢ tests

An SAT preparation company claims that its students’ scores improve by over 100 points
on average after their course. A consumer group would like to evaluate this claim, and they
collect data on a random sample of 30 students who took the class. Each of these students
took the SAT before and after taking the company’s course, and so we have a difference in
scores for each student. We will examine these differences x1 = 57, zo = 133, ..., x39 = 140
as a sample to evaluate the company’s claim. (This is paired data, so we analyze the score
differences; for a review of the ideas of paired data, see Section 5.1.) The distribution of the
differences, shown in Figure 5.17, has mean 135.9 and standard deviation 82.2. Do these
data provide convincing evidence to back up the company’s claim?

() Exercise 5.23  Set up hypotheses to evaluate the company’s claim. Use p,,,, to
represent the true average difference in student scores.'”

Mhttp:/ /www.fda.gov/Food /FoodSafety /Product-SpecificInformation/Seafood/
FoodbornePathogensContaminants/Methylmercury /ucm115644.htm

15There are no obvious outliers; all observations are within 2 standard deviations of the mean. If there
is skew, it is not evident. There are no red flags for the normal model based on this (limited) information,
and we do not have reason to believe the mercury content is not nearly normal in this type of fish.

6z + ¢;,SE — 0.287 £ 1.76 x 0.0178 — (0.256,0.318). We are 90% confident that the average
mercury content of croaker white fish (Pacific) is between 0.256 and 0.318 ppm.

17This is a one-sided test. Ho: student scores do not improve by more than 100 after taking the
company’s course. Haipp = 100 (we always write the null hypothesis with an equality). Ha: students
scores improve by more than 100 points on average after taking the company’s course. Hg;pp > 100.



5.3. ONE-SAMPLE MEANS WITH THE T DISTRIBUTION 229

10+

0 .
I T T T 1
-100 0 100 200 300

Figure 5.17: Sample distribution of improvements in SAT scores after taking
the SAT course. The distribution is approximately symmetric.

Figure 5.18: The t distribution with 29 degrees of freedom.

() Exercise 5.24  Are the conditions to use the ¢ distribution method satisfied?'®

Just as we did for the normal case, we standardize the sample mean using the Z score
to identify the test statistic. However, we will write T instead of Z, because we have a T

small sample and are basing our inference on the ¢ distribution: T score
(like Z score)

T— 7 —null value 1359 — 100
SE 82.2/1/30

If the null hypothesis was true, the test statistic 7' would follow a ¢ distribution with
df = n—1 = 29 degrees of freedom. We can draw a picture of this distribution and
mark the observed T, as in Figure 5.18. The shaded right tail represents the p-value: the
probability of observing such strong evidence in favor of the SAT company’s claim, if the
average student improvement is really only 100.

18This is a random sample from less than 10% of the company’s students (assuming they have more
than 300 former students), so the independence condition is reasonable. The normality condition also seems
reasonable based on Figure 5.17. We can use the t distribution method. Note that we could use the normal
distribution. However, since the sample size (n = 30) just meets the threshold for reasonably estimating
the standard error, it is advisable to use the t distribution.
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() Exercise 5.25 Use the ¢ table in Appendix B.2 on page 410 to identify the p-value.
What do you conclude?'”

() Exercise 5.26 Because we rejected the null hypothesis, does this mean that taking
the company’s class improves student scores by more than 100 points on average??"

5.4 The t distribution for the difference of two means

It is also useful to be able to compare two means for small samples. For instance, a teacher
might like to test the notion that two versions of an exam were equally difficult. She could
do so by randomly assigning each version to students. If she found that the average scores
on the exams were so different that we cannot write it off as chance, then she may want to
award extra points to students who took the more difficult exam.

In a medical context, we might investigate whether embryonic stem cells can improve
heart pumping capacity in individuals who have suffered a heart attack. We could look for
evidence of greater heart health in the stem cell group against a control group.

In this section we use the ¢ distribution for the difference in sample means. We will
again drop the minimum sample size condition and instead impose a strong condition on
the distribution of the data.

5.4.1 Sampling distributions for the difference in two means

In the example of two exam versions, the teacher would like to evaluate whether there is
convincing evidence that the difference in average scores between the two exams is not due
to chance.

It will be useful to extend the ¢ distribution method from Section 5.3 to apply to a
difference of means:

T1 — X9 as a point estimate for W1 — 2

Our procedure for checking conditions mirrors what we did for large samples in Section 5.2.
First, we verify the small sample conditions (independence and nearly normal data) for each
sample separately, then we verify that the samples are also independent. For instance, if the
teacher believes students in her class are independent, the exam scores are nearly normal,
and the students taking each version of the exam were independent, then we can use the ¢
distribution for inference on the point estimate T; — Zs.

The formula for the standard error of T; — T2, introduced in Section 5.2, also applies
to small samples:

52 s2
SEz,_z, = /SEZ +SE2 =/ -+ +-2 (5.27)
nq N9

19We use the row with 29 degrees of freedom. The value T' = 2.39 falls between the third and fourth
columns. Because we are looking for a single tail, this corresponds to a p-value between 0.01 and 0.025. The
p-value is guaranteed to be less than 0.05 (the default significance level), so we reject the null hypothesis.
The data provide convincing evidence to support the company’s claim that student scores improve by more
than 100 points following the class.

20This is an observational study, so we cannot make this causal conclusion. For instance, maybe SAT
test takers tend to improve their score over time even if they don’t take a special SAT class, or perhaps
only the most motivated students take such SAT courses.
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Because we will use the t distribution, we will need to identify the appropriate degrees of
freedom. This can be done using computer software. An alternative technique is to use
the smaller of ny — 1 and ns — 1, which is the method we will apply in the examples and
exercises.”!

Using the t distribution for a difference in means

The ¢ distribution can be used for inference when working with the standardized
difference of two means if (1) each sample meets the conditions for using the ¢
distribution and (2) the samples are independent. We estimate the standard error
of the difference of two means using Equation (5.27).

5.4.2 Two sample t test

Summary statistics for each exam version are shown in Table 5.19. The teacher would like
to evaluate whether this difference is so large that it provides convincing evidence that
Version B was more difficult (on average) than Version A.

Version n T $§ min max
A 30 794 14 45 100
B 27 741 20 32 100

Table 5.19: Summary statistics of scores for each exam version.

() Exercise 5.28 Construct a two-sided hypothesis test to evaluate whether the ob-
served difference in sample means, Z4 — Tp = 5.3, might be due to chance.?”

() Exercise 5.29 To evaluate the hypotheses in Exercise 5.28 using the ¢ distribution,
we must first verify assumptions. (a) Does it seem reasonable that the scores are
independent within each group? (b) What about the normality condition for each
group? (c) Do you think scores from the two groups would be independent of each
other (i.e. the two samples are independent)?*”

After verifying the conditions for each sample and confirming the samples are inde-
pendent of each other, we are ready to conduct the test using the ¢ distribution. In this
case, we are estimating the true difference in average test scores using the sample data, so
the point estimate is Z4 — Zp = 5.3. The standard error of the estimate can be calculated
using Equation (5.27):

52 52 142 202
SE=]2A %8B _ 22 L2 _ 462
na + np 30 + 27

21This technique for degrees of freedom is conservative with respect to a Type 1 Error; it is more difficult
to reject the null hypothesis using this df method.

22Because the teacher did not expect one exam to be more difficult prior to examining the test results,
she should use a two-sided hypothesis test. Hp: the exams are equally difficult, on average. pa — pp = 0.
H 4: one exam was more difficult than the other, on average. ua — up # 0.

23(a) Tt is probably reasonable to conclude the scores are independent. (b) The summary statistics
suggest the data are roughly symmetric about the mean, and it doesn’t seem unreasonable to suggest the
data might be normal. Note that since these samples are each nearing 30, moderate skew in the data would
be acceptable. (c) It seems reasonable to suppose that the samples are independent since the exams were
handed out randomly.
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Figure 5.20: The t distribution with 26 degrees of freedom. The shaded
right tail represents values with T > 1.15. Because it is a two-sided test,
we also shade the corresponding lower tail.

Finally, we construct the test statistic:

T_ point estimate — null value  (79.4 —74.1) -0 115
- SE - 4.62 -
If we have a computer handy, we can identify the degrees of freedom as 45.97. Otherwise

we use the smaller of ny — 1 and ny — 1: df = 26.

() Exercise 5.30 Identify the p-value, shown in Figure 5.20. Use df = 26.%"

In Exercise 5.30, we could have used df = 45.97. However, this value is not listed in
the table. In such cases, we use the next lower degrees of freedom (unless the computer
also provides the p-value). For example, we could have used df = 45 but not df = 46.

() Exercise 5.31 Do embryonic stem cells (ESCs) help improve heart function fol-
lowing a heart attack? Table 5.21 contains summary statistics for an experiment to
test ESCs in sheep that had a heart attack. Each of these sheep was randomly as-
signed to the ESC or control group, and the change in their hearts’ pumping capacity
was measured. A positive value generally corresponds to increased pumping capacity,
which suggests a stronger recovery.

(a) Set up hypotheses that will be used to test whether there is convincing evidence
that ESCs actually increase the amount of blood the heart pumps. (b) Check con-
ditions for using the ¢ distribution for inference with the point estimate T, — Z2. To
assist in this assessment, the data are presented in Figure 5.22.%°

24We examine row df = 26 in the t table. Because this value is smaller than the value in the left column,
the p-value is larger than 0.200 (two tails!). Because the p-value is so large, we do not reject the null
hypothesis. That is, the data do not convincingly show that one exam version is more difficult than the
other, and the teacher should not be convinced that she should add points to the Version B exam scores.
25(a) We first setup the hypotheses:

Hp: The stem cells do not improve heart pumping function. pesc — fteontrot = 0.
H 4: The stem cells do improve heart pumping function. pesc — fbeontror > 0-

(b) Because the sheep were randomly assigned their treatment and, presumably, were kept separate from
one another, the independence assumption is reasonable for each sample as well as for between samples.
The data are very limited, so we can only check for obvious outliers in the raw data in Figure 5.22. Since the
distributions are (very) roughly symmetric, we will assume the normality condition is acceptable. Because
the conditions are satisfied, we can apply the t distribution.
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Figure 5.22: Histograms for both the embryonic stem cell group and the
control group. Higher values are associated with greater improvement. We
don’t see any evidence of skew in these data; however, it is worth noting
that skew would be difficult to detect with such a small sample.
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n x S
ESCs 9 350 5.17
control 9 -4.33 2.76

Table 5.21: Summary statistics of scores, split by exam version.

Area representing
p—value

Figure 5.23: Distribution of the sample difference of the test statistic if the
null hypothesis was true. The shaded area, hardly visible in the right tail,
represents the p-value.

® Example 5.32 Use the data from Table 5.21 and df = 8 to evaluate the hypotheses
for the ESC experiment described in Exercise 5.31.

First, we compute the sample difference and the standard error for that point esti-
mate:

Zesc — Tcontrol = 7.88

5172 2.762
+

SE =
9 9

=195

The p-value is depicted as the shaded slim right tail in Figure 5.23, and the test
statistic is computed as follows:

7880

=4.
1.95 03

We use the smaller of ny — 1 and ny — 1 (each are the same) for the degrees of
freedom: df = 8. Finally, we look for T' = 4.03 in the t table; it falls to the right of
the last column, so the p-value is smaller than 0.005 (one taill). Because the p-value
is less than 0.005 and therefore also smaller than 0.05, we reject the null hypothesis.
The data provide convincing evidence that embryonic stem cells improve the heart’s
pumping function in sheep that have suffered a heart attack.

5.4.3 Two sample t confidence interval

The results from the previous section provided evidence that ESCs actually help improve
the pumping function of the heart. But how large is this improvement? To answer this
question, we can use a confidence interval.
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() Exercise 5.33 In Exercise 5.31, you found that the point estimate, Zesc — Teontroi =
7.88, has a standard error of 1.95. Using df = 8, create a 99% confidence interval for
the improvement due to ESCs.?°

5.4.4 Pooled standard deviation estimate (special topic)

Occasionally, two populations will have standard deviations that are so similar that they
can be treated as identical. For example, historical data or a well-understood biological
mechanism may justify this strong assumption. In such cases, we can make our ¢ distribu-
tion approach slightly more precise by using a pooled standard deviation.

The pooled standard deviation of two groups is a way to use data from both
samples to better estimate the standard deviation and standard error. If s; and s, are
the standard deviations of groups 1 and 2 and there are good reasons to believe that the
population standard deviations are equal, then we can obtain an improved estimate of the
group variances by pooling their data:

9 52 x (ng —1) 452 x (ng — 1)

- ny+ng —2

Spooled -

where ni and no are the sample sizes, as before. To use this new statistic, we substitute
S2oolea I Place of s7 and s3 in the standard error formula, and we use an updated formula
for the degrees of freedom:

df:’II1+’I’L2—2

The benefits of pooling the standard deviation are realized through obtaining a better
estimate of the standard deviation for each group and using a larger degrees of freedom
parameter for the ¢ distribution. Both of these changes may permit a more accurate model

of the sampling distribution of z? — 3.

Caution: Pooling standard deviations should be done only after careful
research

A pooled standard deviation is only appropriate when background research indi-
cates the population standard deviations are nearly equal. When the sample size
is large and the condition may be adequately checked with data, the benefits of
pooling the standard deviations greatly diminishes.

26We know the point estimate, 7.88, and the standard error, 1.95. We also verified the conditions for
using the ¢ distribution in Exercise 5.31. Thus, we only need identify ¢} to create a 99% confidence interval:
t5 = 3.36. The 99% confidence interval for the improvement from ESCs is given by

point estimate + t§SE — 7.88 + 3.36 x 1.95 —  (1.33,14.43)

That is, we are 99% confident that the true improvement in heart pumping function is somewhere between
1.33% and 14.43%.
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5.5 Comparing many means with ANOVA
(special topic)

Sometimes we want to compare means across many groups. We might initially think to
do pairwise comparisons; for example, if there were three groups, we might be tempted to
compare the first mean with the second, then with the third, and then finally compare the
second and third means for a total of three comparisons. However, this strategy can be
treacherous. If we have many groups and do many comparisons, it is likely that we will
eventually find a difference just by chance, even if there is no difference in the populations.

In this section, we will learn a new method called analysis of variance (ANOVA)
and a new test statistic called F'. ANOVA uses a single hypothesis test to check whether
the means across many groups are equal:

Hy: The mean outcome is the same across all groups. In statistical notation, puy = s =
-+ = uy, where p; represents the mean of the outcome for observations in category 4.

H 4: At least one mean is different.
Generally we must check three conditions on the data before performing ANOVA:

e the observations are independent within and across groups,
e the data within each group are nearly normal, and

e the variability across the groups is about equal.

When these three conditions are met, we may perform an ANOVA to determine whether
the data provide strong evidence against the null hypothesis that all the u; are equal.

® Example 5.34 College departments commonly run multiple lectures of the same
introductory course each semester because of high demand. Consider a statistics
department that runs three lectures of an introductory statistics course. We might
like to determine whether there are statistically significant differences in first exam
scores in these three classes (A, B, and C). Describe appropriate hypotheses to
determine whether there are any differences between the three classes.

The hypotheses may be written in the following form:

Hy: The average score is identical in all lectures. Any observed difference is due to
chance. Notationally, we write a4 = up = pc-

H 4: The average score varies by class. We would reject the null hypothesis in favor
of the alternative hypothesis if there were larger differences among the class
averages than what we might expect from chance alone.

Strong evidence favoring the alternative hypothesis in ANOVA is described by un-
usually large differences among the group means. We will soon learn that assessing the
variability of the group means relative to the variability among individual observations
within each group is key to ANOVA’s success.

® Example 5.35 Examine Figure 5.24. Compare groups I, II, and III. Can you visu-
ally determine if the differences in the group centers is due to chance or not? Now
compare groups IV, V, and VI. Do these differences appear to be due to chance?
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Figure 5.24: Side-by-side dot plot for the outcomes for six groups.

Any real difference in the means of groups I, I, and III is difficult to discern, because
the data within each group are very volatile relative to any differences in the average
outcome. On the other hand, it appears there are differences in the centers of groups
IV, V, and VI. For instance, group V appears to have a higher mean than that of
the other two groups. Investigating groups IV, V, and VI, we see the differences in
the groups’ centers are noticeable because those differences are large relative to the
variability in the individual observations within each group.

5.5.1 Is batting performance related to player position in MLB?
We would like to discern whether there are real differences between the batting performance
of baseball players according to their position: outfielder (OF), infielder (IF), designated
hitter (DH), and catcher (C). We will use a data set called bat10, which includes batting
records of 327 Major League Baseball (MLB) players from the 2010 season. Six of the 327
cases represented in bat10 are shown in Table 5.25, and descriptions for each variable are
provided in Table 5.26. The measure we will use for the player batting performance (the
outcome variable) is on-base percentage (0BP). The on-base percentage roughly represents
the fraction of the time a player successfully gets on base or hits a home run.

name team  position AB H HR RBI AVG OBP

1 ISuzuki SEA OF 680 214 6 43 0.315 0.359
D Jeter NYY [IF 663 179 10 67 0.270 0.340

3 M Young TEX IF 656 186 21 91 0.284 0.330
325 B Molina SF C 202 52 3 17 0.257 0.312
326 J Thole NYM C 202 56 3 17 0.277  0.357
327 C Heisey CIN  OF 201 51 8 21 0.254 0.324

Table 5.25: Six cases from the bat10 data matrix.

() Exercise 5.36 The null hypothesis under consideration is the following: pgr =
pir = ppg = p¢. Write the null and corresponding alternative hypotheses in plain
language.’”

2THy: The average on-base percentage is equal across the four positions. H,: The average on-base
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variable description

name Player name

team The abbreviated name of the player’s team

position The player’s primary field position (OF, IF, DH, C)

AB Number of opportunities at bat

H Number of hits

HR Number of home runs

RBI Number of runs batted in

AVG Batting average, which is equal to H/AB

0BP On-base percentage, which is roughly equal to the fraction

of times a player gets on base or hits a home run

Table 5.26: Variables and their descriptions for the bat10 data set.

® Example 5.37 The player positions have been divided into four groups: outfield

(OF), infield (IF), designated hitter (DH), and catcher (C). What would be an appro-
priate point estimate of the batting average by outfielders, ugr?

A good estimate of the batting average by outfielders would be the sample average
of AVG for just those players whose position is outfield: Zor = 0.334.

Table 5.27 provides summary statistics for each group. A side-by-side box plot for

the batting average is shown in Figure 5.28. Notice that the variability appears to be ap-
proximately constant across groups; nearly constant variance across groups is an important
assumption that must be satisfied before we consider the ANOVA approach.

OF IF DH C
Sample size (n;) 120 154 14 39
Sample mean (Z;) 0.334 0.332 0.348 0.323
Sample SD (s;) 0.029 0.037 0.036 0.045

Table 5.27: Summary statistics of on-base percentage, split by player posi-
tion.

@® Example 5.38 The largest difference between the sample means is between the

designated hitter and the catcher positions. Consider again the original hypotheses:

Ho: por = pizr = ipr = pe
H,: The average on-base percentage (u;) varies across some (or all) groups.

Why might it be inappropriate to run the test by simply estimating whether the
difference of upy and pg is statistically significant at a 0.05 significance level?

The primary issue here is that we are inspecting the data before picking the groups
that will be compared. It is inappropriate to examine all data by eye (informal
testing) and only afterwards decide which parts to formally test. This is called data
snooping or data fishing. Naturally we would pick the groups with the large
differences for the formal test, leading to an inflation in the Type 1 Error rate. To
understand this better, let’s consider a slightly different problem.

percentage varies across some (or all) groups.
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Figure 5.28: Side-by-side box plot of the on-base percentage for 327 players
across four groups. There is one prominent outlier visible in the infield
group, but with 154 observations in the infield group, this outlier is not a
concern.

Suppose we are to measure the aptitude for students in 20 classes in a large elementary
school at the beginning of the year. In this school, all students are randomly assigned
to classrooms, so any differences we observe between the classes at the start of the
year are completely due to chance. However, with so many groups, we will probably
observe a few groups that look rather different from each other. If we select only
these classes that look so different, we will probably make the wrong conclusion that
the assignment wasn’t random. While we might only formally test differences for a
few pairs of classes, we informally evaluated the other classes by eye before choosing
the most extreme cases for a comparison.

5.38, we recommend

For additional information on the ideas expressed in Example
reading about the prosecutor’s fallacy.?®

In the next section we will learn how to use the F statistic and ANOVA to test
whether observed differences in means could have happened just by chance even if there

was no difference in the respective population means.

5.5.2 Analysis of variance (ANOVA) and the F test

The method of analysis of variance in this context focuses on answering one question:
is the variability in the sample means so large that it seems unlikely to be from chance
alone? This question is different from earlier testing procedures since we will simultaneously
consider many groups, and evaluate whether their sample means differ more than we would
expect from natural variation. We call this variability the mean square between groups

28Gee, for example, www.stat.columbia.edu,/ cook/movabletype/archives/2007/05/the_prosecutors.html.
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(M SG), and it has an associated degrees of freedom, dfe = k — 1 when there are k groups.
The M SG can be thought of as a scaled variance formula for means. If the null hypothesis
is true, any variation in the sample means is due to chance and shouldn’t be too large.
Details of MSG calculations are provided in the footnote,?” however, we typically use
software for these computations.

The mean square between the groups is, on its own, quite useless in a hypothesis test.
We need a benchmark value for how much variability should be expected among the sample
means if the null hypothesis is true. To this end, we compute a pooled variance estimate,
often abbreviated as the mean square error (M SE), which has an associated degrees of
freedom value dfg = n — k. It is helpful to think of M SE as a measure of the variability
within the groups. Details of the computations of the M SE are provided in the footnote?"
for interested readers.

When the null hypothesis is true, any differences among the sample means are only
due to chance, and the M SG and MSE should be about equal. As a test statistic for
ANOVA, we examine the fraction of M SG and M SE:

MSG
F= MSE

The M SG represents a measure of the between-group variability, and M SE measures the
variability within each of the groups.

(5.39)

() Exercise 5.40 For the baseball data, MSG = 0.00252 and MSE = 0.00127.
Identify the degrees of freedom associated with MSG and MSE and verify the F
statistic is approximately 1.994.°!

We can use the F statistic to evaluate the hypotheses in what is called an F test.
A p-value can be computed from the F' statistic using an F' distribution, which has two
associated parameters: df; and dfs. For the F statistic in ANOVA, df; = dfg and dfs = dfg.
An F distribution with 3 and 323 degrees of freedom, corresponding to the F' statistic for
the baseball hypothesis test, is shown in Figure 5.29.

29Let Z represent the mean of outcomes across all groups. Then the mean square between groups is
computed as

k
1 1
MSG=—S85G=——-> n;(# —1)°
dfe k—1 ; 12— 3)
where SSG is called the sum of squares between groups and n; is the sample size of group 1.
30Let Z represent the mean of outcomes across all groups. Then the sum of squares total (SST) is
computed as

SST = 2": (vi —2)°

i=1

where the sum is over all observations in the data set. Then we compute the sum of squared errors
(SSE) in one of two equivalent ways:

SSE = SST — SSG
= (m1 — 1)s7 + (n2 — 1)s3 + - -+ + (ng — )sj

where s? is the sample variance (square of the standard deviation) of the residuals in group i. Then the
MSE is the standardized form of SSE: MSE = 31— SSE.

31There are k = 4 groups, so dfg = k —1 = 3. There are n = ny + na + n3 + ng = 327 total
observations, so dfp = n — k = 323. Then the F statistic is computed as the ratio of M SG and MSE:
F = %gg = 8:88?3? =1.984 ~ 1.994. (F = 1.994 was computed by using values for M SG and M SE that
were not rounded.)
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Figure 5.29: An F distribution with df; = 3 and dfy = 323.

The larger the observed variability in the sample means (M SG) relative to the within-

group observations (M SE), the larger F' will be and the stronger the evidence against the
null hypothesis. Because larger values of F' represent stronger evidence against the null
hypothesis, we use the upper tail of the distribution to compute a p-value.

The F' statistic and the F' test

Analysis of variance (ANOVA) is used to test whether the mean outcome differs
across 2 or more groups. ANOVA uses a test statistic F', which represents a
standardized ratio of variability in the sample means relative to the variability
within the groups. If Hy is true and the model assumptions are satisfied, the
statistic F' follows an F' distribution with parameters df, = k — 1 and dfs = n — k.
The upper tail of the F' distribution is used to represent the p-value.

©)

Exercise 5.41 The test statistic for the baseball example is F' = 1.994. Shade the
area corresponding to the p-value in Figure 5.29. %2

Example 5.42 The p-value corresponding to the shaded area in the solution of
Exercise 5.41 is equal to about 0.115. Does this provide strong evidence against the

null hypothesis?

The p-value is larger than 0.05, indicating the evidence is not strong enough to reject
the null hypothesis at a significance level of 0.05. That is, the data do not provide
strong evidence that the average on-base percentage varies by player’s primary field
position.

32
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5.5.3 Reading an ANOVA table from software

The calculations required to perform an ANOVA by hand are tedious and prone to human
error. For these reasons, it is common to use statistical software to calculate the F' statistic
and p-value.

An ANOVA can be summarized in a table very similar to that of a regression summary,
which we will see in Chapters 7 and 8. Table 5.30 shows an ANOVA summary to test
whether the mean of on-base percentage varies by player positions in the MLB. Many of
these values should look familiar; in particular, the F' test statistic and p-value can be
retrieved from the last columns.

Df Sum Sq Mean Sq F value Pr(>F)

position 3 0.0076 0.0025 1.9943 0.1147
Residuals 323 0.4080 0.0013

Spooled = 0.036 on df =323

Table 5.30: ANOVA summary for testing whether the average on-base per-
centage differs across player positions.

5.5.4 Graphical diagnostics for an ANOVA analysis

There are three conditions we must check for an ANOVA analysis: all observations must
be independent, the data in each group must be nearly normal, and the variance within
each group must be approximately equal.

Independence. If the data are a simple random sample from less than 10% of the pop-
ulation, this condition is satisfied. For processes and experiments, carefully consider
whether the data may be independent (e.g. no pairing). For example, in the MLB
data, the data were not sampled. However, there are not obvious reasons why inde-
pendence would not hold for most or all observations.

Approximately normal. As with one- and two-sample testing for means, the normality
assumption is especially important when the sample size is quite small. The normal
probability plots for each group of the MLB data are shown in Figure 5.31; there
is some deviation from normality for infielders, but this isn’t a substantial concern
since there are about 150 observations in that group and the outliers are not extreme.
Sometimes in ANOVA there are so many groups or so few observations per group that
checking normality for each group isn’t reasonable. See the footnote® for guidance
on how to handle such instances.

Constant variance. The last assumption is that the variance in the groups is about equal
from one group to the next. This assumption can be checked by examining a side-
by-side box plot of the outcomes across the groups, as in Figure 5.28 on page 239.
In this case, the variability is similar in the four groups but not identical. We see in
Table 5.27 on page 238 that the standard deviation varies a bit from one group to the
next. Whether these differences are from natural variation is unclear, so we should
report this uncertainty with the final results.

33First calculate the residuals of the baseball data, which are calculated by taking the observed values
and subtracting the corresponding group means. For example, an outfielder with OBP of 0.435 would have
a residual of 0.405 —Zopr = 0.071. Then to check the normality condition, create a normal probability plot
using all the residuals simultaneously.
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Figure 5.31: Normal probability plot of OBP for each field position.

Caution: Diagnostics for an ANOVA analysis

Independence is always important to an ANOVA analysis. The normality condition
is very important when the sample sizes for each group are relatively small. The
constant variance condition is especially important when the sample sizes differ
between groups.

5.5.5 Multiple comparisons and controlling Type 1 Error rate

When we reject the null hypothesis in an ANOVA analysis, we might wonder, which of
these groups have different means? To answer this question, we compare the means of each
possible pair of groups. For instance, if there are three groups and there is strong evidence
that there are some differences in the group means, there are three comparisons to make:
group 1 to group 2, group 1 to group 3, and group 2 to group 3. These comparisons can
be accomplished using a two-sample ¢ test, but we use a modified significance level and
a pooled estimate of the standard deviation across groups. Usually this pooled standard
deviation can be found in the ANOVA table, e.g. along the bottom of Table 5.30.
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Class 1 A B C

n; o8 %) o1
Z; 75.1 720 78.9
i 13.9 138 13.1

Table 5.32: Summary statistics for the first midterm scores in three different
lectures of the same course.
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Figure 5.33: Side-by-side box plot for the first midterm scores in three
different lectures of the same course.

Example 5.43 Example 5.34 on page 236 discussed three statistics lectures, all
taught during the same semester. Table 5.32 shows summary statistics for these
three courses, and a side-by-side box plot of the data is shown in Figure 5.33. We
would like to conduct an ANOVA for these data. Do you see any deviations from the
three conditions for ANOVA?

In this case (like many others) it is difficult to check independence in a rigorous way.

Instead, the best we can do is use common sense to consider reasons the assumption
of independence may not hold. For instance, the independence assumption may not
be reasonable if there is a star teaching assistant that only half of the students may
access; such a scenario would divide a class into two subgroups. No such situations
were evident for these particular data, and we believe that independence is acceptable.

The distributions in the side-by-side box plot appear to be roughly symmetric and
show no noticeable outliers.

The box plots show approximately equal variability, which can be verified in Ta-
ble 5.32, supporting the constant variance assumption.

Exercise 5.44 An ANOVA was conducted for the midterm data, and summary
results are shown in Table 5.34. What should we conclude?**

34The p-value of the test is 0.0330, less than the default significance level of 0.05. Therefore, we reject
the null hypothesis and conclude that the difference in the average midterm scores are not due to chance.
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Df Sum Sq Mean Sq F value Pr(>F)
lecture 2 1290.11 645.06 3.48  0.0330
Residuals 161 29810.13 185.16

Spooled = 13.61 on df = 161

Table 5.34: ANOVA summary table for the midterm data.

There is strong evidence that the different means in each of the three classes is not
simply due to chance. We might wonder, which of the classes are actually different? As
discussed in earlier chapters, a two-sample ¢ test could be used to test for differences in each
possible pair of groups. However, one pitfall was discussed in Example 5.38 on page 238:
when we run so many tests, the Type 1 Error rate increases. This issue is resolved by using
a modified significance level.

Multiple comparisons and the Bonferroni correction for a

The scenario of testing many pairs of groups is called multiple comparisons.
The Bonferroni correction suggests that a more stringent significance level is
more appropriate for these tests:

o =a/K

where K is the number of comparisons being considered (formally or informally).
k(k—1)
——.

If there are k groups, then usually all possible pairs are compared and K =

® Example 5.45 In Exercise 5.44, you found strong evidence of differences in the
average midterm grades between the three lectures. Complete the three possible
pairwise comparisons using the Bonferroni correction and report any differences.

We use a modified significance level of o* = 0.05/3 = 0.0167. Additionally, we use
the pooled estimate of the standard deviation: Spopieq = 13.61 on df = 161, which is
provided in the ANOVA summary table.

Lecture A versus Lecture B: The estimated difference and standard error are, respec-

tively,
/13.612  13.612
Tp—Tp="751-72=3.1 SE = rs + 55 = 2.56

(See Section 5.4.4 on page 235 for additional details.) This results in a T score of 1.21
on df =161 (we use the df associated with speereq). Statistical software was used to
precisely identify the two-tailed p-value since the modified significance of 0.0167 is
not found in the ¢ table. The p-value (0.228) is larger than o = 0.0167, so there is
not strong evidence of a difference in the means of lectures A and B.

Lecture A versus Lecture C: The estimated difference and standard error are 3.8 and
2.61, respectively. This results in a 7" score of 1.46 on df = 161 and a two-tailed
p-value of 0.1462. This p-value is larger than o, so there is not strong evidence of a
difference in the means of lectures A and C.

Lecture B versus Lecture C: The estimated difference and standard error are 6.9 and
2.65, respectively. This results in a 7' score of 2.60 on df = 161 and a two-tailed
p-value of 0.0102. This p-value is smaller than a*. Here we find strong evidence of a
difference in the means of lectures B and C.
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We might summarize the findings of the analysis from Example 5.45 using the following
notation:

?

? ?
1A = [iB 1A = po UB # pe

The midterm mean in lecture A is not statistically distinguishable from those of lectures
B or C. However, there is strong evidence that lectures B and C are different. In the first
two pairwise comparisons, we did not have sufficient evidence to reject the null hypothesis.
Recall that failing to reject Hy does not imply Hj is true.

Caution: Sometimes an ANOVA will reject the null but no groups will
have statistically significant differences

It is possible to reject the null hypothesis using ANOVA and then to not subse-
quently identify differences in the pairwise comparisons. However, this does not
invalidate the ANOVA conclusion. It only means we have not been able to success-
fully identify which groups differ in their means.

The ANOVA procedure examines the big picture: it considers all groups simultane-
ously to decipher whether there is evidence that some difference exists. Even if the test
indicates that there is strong evidence of differences in group means, identifying with high
confidence a specific difference as statistically significant is more difficult.

Consider the following analogy: we observe a Wall Street firm that makes large quanti-
ties of money based on predicting mergers. Mergers are generally difficult to predict, and if
the prediction success rate is extremely high, that may be considered sufficiently strong ev-
idence to warrant investigation by the Securities and Exchange Commission (SEC). While
the SEC may be quite certain that there is insider trading taking place at the firm, the
evidence against any single trader may not be very strong. It is only when the SEC consid-
ers all the data that they identify the pattern. This is effectively the strategy of ANOVA:
stand back and consider all the groups simultaneously.
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5.6 Exercises

5.6.1 Paired data

5.1 Global warming, Part I. Is there strong evidence of global warming? Let’s consider a small
scale example, comparing how temperatures have changed in the US from 1968 to 2008. The daily
high temperature reading on January 1 was collected in 1968 and 2008 for 51 randomly selected
locations in the continental US. Then the difference between the two readings (temperature in 2008
- temperature in 1968) was calculated for each of the 51 different locations. The average of these 51
values was 1.1 degrees with a standard deviation of 4.9 degrees. We are interested in determining
whether these data provide strong evidence of temperature warming in the continental US.

(a) Is there a relationship between the observations collected in 1968 and 20087 Or are the
observations in the two groups independent? Explain.

(b) Write hypotheses for this research in symbols and in words.

(¢) Check the conditions required to complete this test.

(d) Calculate the test statistic and find the p-value.

e) What do you conclude? Interpret your conclusion in context.

f) What type of error might we have made? Explain in context what the error means.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the temperature measurements from 1968 and 2008 to include 07
Explain your reasoning.

5.2 High School and Beyond, Part I. The National Center of Education Statistics conducted
a survey of high school seniors, collecting test data on reading, writing, and several other subjects.
Here we examine a simple random sample of 200 students from this survey. Side-by-side box plots
of reading and writing scores as well as a histogram of the differences in scores are shown below.
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Differences in scores (read — write)

(a) Is there a clear difference in the average reading and writing scores?

(b) Are the reading and writing scores of each student independent of each other?

(c) Create hypotheses appropriate for the following research question: is there an evident difference
in the average scores of students in the reading and writing exam?

(d) Check the conditions required to complete this test.

(e) The average observed difference in scores is Zreqd—write = —0.545, and the standard deviation
of the differences is 8.887 points. Do these data provide convincing evidence of a difference
between the average scores on the two exams?

(f) What type of error might we have made? Explain what the error means in the context of the
application.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the
average difference between the reading and writing scores to include 07 Explain your reasoning.
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5.3 Global warming, Part II. We considered the differences between the temperature readings
in January 1 of 1968 and 2008 at 51 locations in the continental US in Exercise 5.1. The mean
and standard deviation of the reported differences are 1.1 degrees and 4.9 degrees.

(a) Calculate a 90% confidence interval for the average difference between the temperature mea-
surements between 1968 and 2008.
(b) Interpret this interval in context.

(¢) Does the confidence interval provide convincing evidence that the temperature was higher in
2008 than in 1968 in the continental US? Explain.

5.4 High school and beyond, Part II. We considered the differences between the reading and

writing scores of a random sample of 200 students who took the High School and Beyond Survey

in Exercise 5.3. The mean and standard deviation of the differences are Zreqd—write = —0.545 and

8.887 points.

(a) Calculate a 95% confidence interval for the average difference between the reading and writing
scores of all students.

(b) Interpret this interval in context.

(¢) Does the confidence interval provide convincing evidence that there is a real difference in the
average scores? Explain.

5.5 Gifted children. Researchers collected a simple random sample of 36 children who had
been identified as gifted in a large city. The following histograms show the distributions of the 1Q
scores of mothers and fathers of these children. Also provided are some sample statistics.””

12 12 12
8 8 8
4 4 4
0 0 0
r T 1 T T 1 r T 1
100 120 140 110 120 130 -20 0 20

Mother's IQ Father's 1Q Diff.

‘ Mother Father Diff.

Mean 118.2 114.8 3.4
SD 6.5 3.5 7.5

n 36 36 36

(a) Are the IQs of mothers and the IQs of fathers in this data set related? Explain.
(b) Conduct a hypothesis test to evaluate if the scores are equal on average. Make sure to clearly

state your hypotheses, check the relevant conditions, and state your conclusion in the context
of the data.

5.6 Paired or not? In each of the following scenarios, determine if the data are paired.

(a) We would like to know if Intel’s stock and Southwest Airlines’ stock have similar rates of
return. To find out, we take a random sample of 50 days for Intel’s stock and another random
sample of 50 days for Southwest’s stock.

(b) We randomly sample 50 items from Target stores and note the price for each. Then we visit
Walmart and collect the price for each of those same 50 items.

(¢) A school board would like to determine whether there is a difference in average SAT scores
for students at one high school versus another high school in the district. To check, they take
a simple random sample of 100 students from each high school.

35F.A. Graybill and H.K. Iyer. Regression Analysis: Concepts and Applications. Duxbury Press, 1994,
pp. 511-516.
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5.6.2 Difference of two means

5.7 Math scores of 13 year olds, Part I. The National Assessment of Educational Progress
tested a simple random sample of 1,000 thirteen year old students in both 2004 and 2008 (two
separate simple random samples). The average and standard deviation in 2004 were 257 and 39,
respectively. In 2008, the average and standard deviation were 260 and 38, respectively. Calculate
a 90% confidence interval for the change in average scores from 2004 to 2008, and interpret this
interval in the context of the application. (Reminder: check conditions.)*"

5.8 Work hours and education, Part I. The General Social Survey collects data on demo-
graphics, education, and work, among many other characteristics of US residents. The histograms
below display the distributions of hours worked per week for two education groups: those with
and without a college degree.®” Suppose we want to estimate the average difference between the
number of hours worked per week by all Americans with a college degree and those without a
college degree. Summary information for each group is shown in the tables.

200

College degree

100
College degree
0 Mean 41.8 hrs
0 20 40 60 80 SD 15.1 hrs
n 505

No college degree

250
No college degree Mean 39.4 hrs
125 SD 15.1 hrs
n 667

r " 1T/ 1
0 20 40 60 80

Hours worked per week

(a) What is the parameter of interest, and what is the point estimate?

(b) Are conditions satisfied for estimating this difference using a confidence interval?

(c) Create a 95% confidence interval for the difference in number of hours worked between the
two groups, and interpret the interval in context.

(d) Can you think of any real world justification for your results? (Note: There isn’t a single
correct answer to this question.)

5.9 Math scores of 13 year olds, Part II. Exercise 5.7 provides data on the average math
scores from tests conducted by the National Assessment of Educational Progress in 2004 and 2008.
Two separate simple random samples were taken in each of these years. The average and standard
deviation in 2004 were 257 and 39, respectively. In 2008, the average and standard deviation were
260 and 38, respectively.

(a) Do these data provide strong evidence that the average math score for 13 year old students
has changed from 2004 to 20087 Use a 10% significance level.

(b) It is possible that your conclusion in part (a) is incorrect. What type of error is possible for
this conclusion? Explain.

(c) Based on your hypothesis test, would you expect a 90% confidence interval to contain the null
value? Explain.

36National Center for Education Statistics, NAEP Data Explorer.
37National Opinion Research Center, General Social Survey, 2010.


http://nces.ed.gov/nationsreportcard/about/naeptools.asp
http://www3.norc.org/gss+website
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5.10 Work hours and education, Part I1. The General Social Survey described in Exercise 5.8
included random samples from two groups: US residents with a college degree and US residents
without a college degree. For the 505 sampled US residents with a college degree, the average
number of hours worked each week was 41.8 hours with a standard deviation of 15.1 hours. For
those 667 without a degree, the mean was 39.4 hours with a standard deviation of 15.1 hours.
Conduct a hypothesis test to check for a difference in the average number of hours worked for the
two groups.

5.11 Does the Paleo diet work? The Paleo diet allows only for foods that humans typically
consumed over the last 2.5 million years, excluding those agriculture-type foods that arose during
the last 10,000 years or so. Researchers randomly divided 500 volunteers into two equal-sized
groups. One group spent 6 months on the Paleo diet. The other group received a pamphlet about
controlling portion sizes. Randomized treatment assignment was performed, and at the beginning
of the study, the average difference in weights between the two groups was about 0. After the
study, the Paleo group had lost on average 7 pounds with a standard deviation of 20 pounds while
the control group had lost on average 5 pounds with a standard deviation of 12 pounds.

(a) The 95% confidence interval for the difference between the two population parameters (Paleo
- control) is given as (-0.891, 4.891). Interpret this interval in the context of the data.

(b) Based on this confidence interval, do the data provide convincing evidence that the Paleo diet
is more effective for weight loss than the pamphlet (control)? Explain your reasoning.

(c) Without explicitly performing the hypothesis test, do you think that if the Paleo group had
lost 8 instead of 7 pounds on average, and everything else was the same, the results would
then indicate a significant difference between the treatment and control groups? Explain your
reasoning.

5.12 Weight gain during pregnancy. In 2004, the state of North Carolina released to the
public a large data set containing information on births recorded in this state. This data set
has been of interest to medical researchers who are studying the relationship between habits and
practices of expectant mothers and the birth of their children. The following histograms show the
distributions of weight gain during pregnancy by 867 younger moms (less than 35 years old) and
133 mature moms (35 years old and over) who have been randomly sampled from this large data
set. The average weight gain of younger moms is 30.56 pounds, with a standard deviation of 14.35
pounds, and the average weight gain of mature moms is 28.79 pounds, with a standard deviation
of 13.48 pounds. Calculate a 95% confidence interval for the difference between the average weight
gain of younger and mature moms. Also comment on whether or not this interval provides strong
evidence that there is a significant difference between the two population means.

250
Younger mom

125
0 T 1
60 80
40
Mature mom
20
0 [ T T T 1
0 20 40 60 80

Weight gain (in pounds)
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5.13 Body fat in women and men. The third National Health and Nutrition Examination
Survey collected body fat percentage (BF) data from 13,601 subjects whose ages are 20 to 80. A
summary table for these data is given below. Note that BF is given as mean + standard error.
Construct a 95% confidence interval for the difference in average body fat percentages between
men and women, and explain the meaning of this interval.*®

Gender n BF (%)
Men 6,580 23.9 + 0.07
Women 7,021 35.0 &+ 0.09

5.14 Child care hours, Part I. The China Health and Nutrition Survey aims to examine the
effects of the health, nutrition, and family planning policies and programs implemented by national
and local governments. One of the variables collected on the survey is the number of hours parents
spend taking care of children in their household under age 6 (feeding, bathing, dressing, holding, or
watching them). In 2006, 487 females and 312 males were surveyed for this question. On average,
females reported spending 31 hours with a standard deviation of 31 hours, and males reported
spending 16 hours with a standard deviation of 21 hours. Calculate a 95% confidence interval
for the difference between the average number of hours Chinese males and females spend taking
care of their children under age 6. Also comment on whether this interval suggests a significant
difference between the two population parameters. You may assume that conditions for inference
are satisfied.”’

5.6.3 Omne-sample means with the ¢t distribution

5.15 Identify the critical . An independent random sample is selected from an approximately
normal population with unknown standard deviation. Find the degrees of freedom and the critical
t value (t*) for the given sample size and confidence level.

(a) n=6, CL = 90% (¢) n=29, CL = 95%
(b) n =21, CL = 98% (d) n =12, CL = 99%

5.16 Working backwards, Part I. A 90% confidence interval for a population mean is (65,77).
The population distribution is approximately normal and the population standard deviation is un-
known. This confidence interval is based on a simple random sample of 25 observations. Calculate
the sample mean, the margin of error, and the sample standard deviation.

5.17 Working backwards, Part II. A 95% confidence interval for a population mean, pu, is
given as (18.985, 21.015). This confidence interval is based on a simple random sample of 36
observations. Calculate the sample mean and standard deviation. Assume that all conditions
necessary for inference are satisfied. Use the ¢ distribution in any calculations.

5.18 Find the p-value. An independent random sample is selected from an approximately
normal population with an unknown standard deviation. Find the p-value for the given set of
hypotheses and T test statistic. Also determine if the null hypothesis would be rejected at o = 0.05.

(a) Ha:p>po,n=11,T =191 (¢) Ha: pp# po,n=17,T =0.83
(b) Ha:p < po,n=17,T = -3.45 (d) Ha:p> po,n=28,T=2.13
38 A Romero-Corral et al. “Accuracy of body mass index in diagnosing obesity in the adult general

population”. In: International Journal of Obesity 32.6 (2008), pp. 959-966.
39UNC Carolina Population Center, China Health and Nutrition Survey, 2006.


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877506/pdf/nihms152315.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877506/pdf/nihms152315.pdf
http://www.cpc.unc.edu/projects/china
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5.19 Sleep habits of New Yorkers. New York is known as “the city that never sleeps”.
A random sample of 25 New Yorkers were asked how much sleep they get per night. Statistical
summaries of these data are shown below. Do these data provide strong evidence that New Yorkers
sleep less than 8 hours a night on average?

n x S min max
25 773 077 6.17 9.78

a) Write the hypotheses in symbols and in words.

Check conditions, then calculate the test statistic, T', and the associated degrees of freedom.

)
¢) Find and interpret the p-value in this context. Drawing a picture may be helpful.
) What is the conclusion of the hypothesis test?

)

If you were to construct a 90% confidence interval that corresponded to this hypothesis test,
would you expect 8 hours to be in the interval?

5.20 Fuel efficiency of Prius. Fueleconomy.gov, the official US government source for fuel
economy information, allows users to share gas mileage information on their vehicles. The his-
togram below shows the distribution of gas mileage in miles per gallon (MPG) from 14 users who
drive a 2012 Toyota Prius. The sample mean is 53.3 MPG and the standard deviation is 5.2 MPG.
Note that these data are user estimates and since the source data cannot be verified, the accuracy
of these estimates are not guaranteed.*’

40 45 50 55 60 65
Mileage (in MPG)

(a) We would like to use these data to evaluate the average gas mileage of all 2012 Prius drivers.
Do you think this is reasonable? Why or why not?

(b) The EPA claims that a 2012 Prius gets 50 MPG (city and highway mileage combined). Do
these data provide strong evidence against this estimate for drivers who participate on fuele-
conomy.gov? Note any assumptions you must make as you proceed with the test.

(c) Calculate a 95% confidence interval for the average gas mileage of a 2012 Prius by drivers who
participate on fueleconomy.gov.

5.21 Find the mean. You are given the following hypotheses:

Ho : =60
Ha:p <60
We know that the sample standard deviation is 8 and the sample size is 20. For what sample

mean would the p-value be equal to 0.057 Assume that all conditions necessary for inference are
satisfied.

5.22 t" vs. z". For a given confidence level, ¢, is larger than z*. Explain how tj; being slightly
larger than 2™ affects the width of the confidence interval.

40Fyelecomy.gov, Shared MPG Estimates: Toyota Prius 2012.


http://www.fueleconomy.gov/mpg/MPG.do?action=mpgData&vehicleID=31767&browser=true&details=on
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5.6.4 The t distribution for the difference of two means

5.23 Cleveland vs. Sacramento. Average income varies from one region of the country to
another, and it often reflects both lifestyles and regional living expenses. Suppose a new graduate
is considering a job in two locations, Cleveland, OH and Sacramento, CA, and he wants to see
whether the average income in one of these cities is higher than the other. He would like to conduct
a t test based on two small samples from the 2000 Census, but he first must consider whether the
conditions are met to implement the test. Below are histograms for each city. Should he move
forward with the ¢ test? Explain your reasoning.

10
Cleveland, OH Cleveland, OH
Mean $ 35,749
SD $ 39,421
— n 21
T 1
0 45000 90000 135000 180000

Sacramento, CA

Sacramento, CA

:

Mean $ 35,500
— mem P § 41,512
T T T T 1 n 17
0 45000 90000 135000 180000

Total personal income

5.24 Oscar winners. The first Oscar awards for best actor and best actress were given out in
1929. The histograms below show the age distribution for all of the best actor and best actress
winners from 1929 to 2012. Summary statistics for these distributions are also provided. Is a ¢ test
appropriate for evaluating whether the difference in the average ages of best actors and actresses
might be due to chance? Explain your reasoning.*'

20 Best actress
Best Actress
Mean 35.6
SD 11.3
T : y
20 40 Gb 85
20
Best actor
Best Actor
10 Mean 44.7
SD 8.9
n 84
0

Ages (in years)

41Ogcar winners from 1929 — 2012, data up to 2009 from the Journal of Statistics Education data archive
and more current data from wikipedia.org.


http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.wikipedia.org/
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5.25 Friday the 13", Part I. In the early 1990’s, researchers in the UK collected data on
traffic flow, number of shoppers, and traffic accident related emergency room admissions on Friday
the 13'" and the previous Friday, Friday the 6. The histograms below show the distribution of
number of cars passing by a specific intersection on Friday the 6 and Friday the 13*® for many
such date pairs. Also given are some sample statistics, where the difference is the number of cars
on the 6th minus the number of cars on the 13th.*?

140000 6th _ 13th i Diff.
4000
135000 135000+
130000 130000 3000+
125000 125000+ 2000+
120000 120000+ 1000+
-1 0 1
6" 13 Diff.
r 128,385 126,550 1,835
s 7,259 7,664 1,176
n 10 10 10

(a) Are there any underlying structures in these data that should be considered in an analysis?
Explain.

(b) What are the hypotheses for evaluating whether the number of people out on Friday the 6"
is different than the number out on Friday the 13*"?

(c) Check conditions to carry out the hypothesis test from part (b).

(d) Calculate the test statistic and the p-value.

(e) What is the conclusion of the hypothesis test?

(f) Interpret the p-value in this context.

(g) What type of error might have been made in the conclusion of your test? Explain.

5.26 Diamonds, Part 1. Prices of diamonds are determined by what is known as the 4 Cs: cut,
clarity, color, and carat weight. The prices of diamonds go up as the carat weight increases, but
the increase is not smooth. For example, the difference between the size of a 0.99 carat diamond
and a 1 carat diamond is undetectable to the naked human eye, but the price of a 1 carat diamond
tends to be much higher than the price of a 0.99 diamond. In this question we use two random
samples of diamonds, 0.99 carats and 1 carat, each sample of size 23, and compare the average
prices of the diamonds. In order to be able to compare equivalent units, we first divide the price
for each diamond by 100 times its weight in carats. That is, for a 0.99 carat diamond, we divide
the price by 99. For a 1 carat diamond, we divide the price by 100. The distributions and some
sample statistics are shown below.*?

Conduct a hypothesis test to evaluate if there is a differ-

ence between the average standardized prices of 0.99 and % 80
1 carat diamonds. Make sure to state your hypotheses ‘=;
clearly, check relevant conditions, and interpret your re- 'Z 60 —T
sults in context of the data. o
o
0.99 carats 1 carat S 40
Mean  $44.51  §56.81 5
SD $ 13.32 $ 16.13 20
n 23 23 0.99 carats 1 carat

42 J. Scanlon et al. “Is Friday the 13th Bad For Your Health?” In: BMJ 307 (1993), pp. 1584-1586.
43H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1697765/pdf/bmj00052-0013.pdf
http://had.co.nz/ggplot2/book
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5.27 Friday the 13'", Part II. The Friday the 13" study reported in Exercise 5.25 also
provides data on traffic accident related emergency room admissions. The distributions of these
counts from Friday the 6" and Friday the 13'® are shown below for six such paired dates along
with summary statistics. You may assume that conditions for inference are met.

6th 13th
o 14+
124 .
104 -
8_
6_
4 —e
I I I
-1 0 1
Diff.
0_
o y 6" 13" diff
Mean 7.5 10.83 -3.33
4] SD 333 36 301
n 6 6 6
-6 °
.I T T
-1 0 1

(a) Conduct a hypothesis test to evaluate if there is a difference between the average numbers of
traffic accident related emergency room admissions between Friday the 6'® and Friday the 13*".

(b) Calculate a 95% confidence interval for the difference between the average numbers of traffic
accident related emergency room admissions between Friday the 6'® and Friday the 13,

(c) The conclusion of the original study states, “Friday 13th is unlucky for some. The risk of
hospital admission as a result of a transport accident may be increased by as much as 52%.
Staying at home is recommended.” Do you agree with this statement? Explain your reasoning.

5.28 Diamonds, Part II. In Exercise 5.26, we discussed diamond prices (standardized by
weight) for diamonds with weights 0.99 carats and 1 carat. See the table for summary statistics,
and then construct a 95% confidence interval for the average difference between the standardized
prices of 0.99 and 1 carat diamonds. You may assume the conditions for inference are met.

0.99 carats 1 carat
Mean $ 44.51 $ 56.81
SD $13.32 $16.13
n 23 23
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5.29 Chicken diet and weight, Part I. Chicken farming is a multi-billion dollar industry,
and any methods that increase the growth rate of young chicks can reduce consumer costs while
increasing company profits, possibly by millions of dollars. An experiment was conducted to
measure and compare the effectiveness of various feed supplements on the growth rate of chickens.
Newly hatched chicks were randomly allocated into six groups, and each group was given a different
feed supplement. Below are some summary statistics from this data set along with box plots
showing the distribution of weights by feed type."’

400 T - .

> 350 - Mean SD n
§ 2004 % casein 32358 6443 12
> horsebean  160.20 38.63 10
< 250 linseed 218.75 52.24 12
2 1 . meatmeal 276.91 64.90 11
= 200+ soybean 246.43 54.13 14

1504 L sunflower 328.92  48.84 12

100-

I T T T T 1
casein horsebean linseed meatmeal soybean sunflower

(a) Describe the distributions of weights of chickens that were fed linseed and horsebean.

(b) Do these data provide strong evidence that the average weights of chickens that were fed
linseed and horsebean are different? Use a 5% significance level.

(c) What type of error might we have committed? Explain.

(d) Would your conclusion change if we used o = 0.017

5.30 Fuel efficiency of manual and automatic cars, Part 1. Each year the US Environ-
mental Protection Agency (EPA) releases fuel economy data on cars manufactured in that year.
Below are summary statistics on fuel efficiency (in miles/gallon) from random samples of cars with
manual and automatic transmissions manufactured in 2012. Do these data provide strong evidence
of a difference between the average fuel efficiency of cars with manual and automatic transmissions
in terms of their average city mileage? Assume that conditions for inference are satisfied."”

35
City MPG
Automatic Manual 25
Mean 16.12 19.85 |
SD 3.58 4.51
n 26 26 15
1
automatic manual
City MPG

5.31 Chicken diet and weight, Part II. Casein is a common weight gain supplement for
humans. Does it have an effect on chickens? Using data provided in Exercise 5.29, test the
hypothesis that the average weight of chickens that were fed casein is different than the average
weight of chickens that were fed soybean. If your hypothesis test yields a statistically significant
result, discuss whether or not the higher average weight of chickens can be attributed to the casein
diet. Assume that conditions for inference are satisfied.

44 Chicken Weights by Feed Type, from the datasets package in R.
45U.8. Department of Energy, Fuel Economy Data, 2012 Datafile.


http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/chickwts.html
http://www.fueleconomy.gov/feg/download.shtml
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5.32 Fuel efficiency of manual and automatic cars, Part I1. The table provides summary
statistics on highway fuel economy of cars manufactured in 2012 (from Exercise 5.30). Use these
statistics to calculate a 98% confidence interval for the difference between average highway mileage
of manual and automatic cars, and interpret this interval in the context of the data."°

35
Hwy MPG

Automatic Manual 25
Mean 22.92 27.88
SD 5.29 5.01

n 26 26 15

1
automatic manual
Hwy MPG

5.33 Gaming and distracted eating, Part I. A group of researchers are interested in the
possible effects of distracting stimuli during eating, such as an increase or decrease in the amount
of food consumption. To test this hypothesis, they monitored food intake for a group of 44 patients
who were randomized into two equal groups. The treatment group ate lunch while playing solitaire,
and the control group ate lunch without any added distractions. Patients in the treatment group
ate 52.1 grams of biscuits, with a standard deviation of 45.1 grams, and patients in the control
group ate 27.1 grams of biscuits, with a standard deviation of 26.4 grams. Do these data provide
convincing evidence that the average food intake (measured in amount of biscuits consumed)
is different for the patients in the treatment group? Assume that conditions for inference are
satisfied.””

5.34 Gaming and distracted eating, Part II. The researchers from Exercise 5.33 also in-
vestigated the effects of being distracted by a game on how much people eat. The 22 patients in
the treatment group who ate their lunch while playing solitaire were asked to do a serial-order
recall of the food lunch items they ate. The average number of items recalled by the patients in
this group was 4.9, with a standard deviation of 1.8. The average number of items recalled by the
patients in the control group (no distraction) was 6.1, with a standard deviation of 1.8. Do these
data provide strong evidence that the average number of food items recalled by the patients in the
treatment and control groups are different?

5.35 Prison isolation experiment, Part I. Subjects from Central Prison in Raleigh, NC,
volunteered for an experiment involving an “isolation” experience. The goal of the experiment
was to find a treatment that reduces subjects’ psychopathic deviant T scores. This score measures
a person’s need for control or their rebellion against control, and it is part of a commonly used
mental health test called the Minnesota Multiphasic Personality Inventory (MMPI) test. The
experiment had three treatment groups:

(1) Four hours of sensory restriction plus a 15 minute “therapeutic” tape advising that professional
help is available.

(2) Four hours of sensory restriction plus a 15 minute “emotionally neutral” tape on training
hunting dogs.

(3) Four hours of sensory restriction but no taped message.

Forty-two subjects were randomly assigned to these treatment groups, and an MMPI test was
administered before and after the treatment. Distributions of the differences between pre and

46U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.
47R.E. Oldham-Cooper et al. “Playing a computer game during lunch affects fullness, memory for lunch,
and later snack intake”. In: The American Journal of Clinical Nutrition 93.2 (2011), p. 308.


http://www.fueleconomy.gov/feg/download.shtml
http://www.ajcn.org/content/93/2/308.full.pdf
http://www.ajcn.org/content/93/2/308.full.pdf
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post treatment scores (pre - post) are shown below, along with some sample statistics. Use this
information to independently test the effectiveness of each treatment. Make sure to clearly state
your hypotheses, check conditions, and interpret results in the context of the data.’®

Trl Tr2 T3

Tr1 Tr2 Tr3
Mean 6.21 286 -3.21
SD 123 794 857
n 14 14 14

5.36 True or false, Part I. Determine if the following statements are true or false, and explain

your reasoning for statements you identify as false.

(a) When comparing means of two samples where n1 = 20 and no = 40, we can use the normal
model for the difference in means since ns > 30.

(b) As the degrees of freedom increases, the T distribution approaches normality.

(c) We use a pooled standard error for calculating the standard error of the difference between
means when sample sizes of groups are equal to each other.

5.6.5 Comparing many means with ANOVA

5.37 Chicken diet and weight, Part II1. In Exercises 5.29 and 5.31 we compared the effects
of two types of feed at a time. A better analysis would first consider all feed types at once: casein,
horsebean, linseed, meat meal, soybean, and sunflower. The ANOVA output below can be used
to test for differences between the average weights of chicks on different diets.

Df Sum Sq Mean Sq F value Pr(>F)
feed 5 231,129.16  46,225.83 15.36 0.0000
Residuals 65 195,556.02 3,008.55

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
weight of chicks varies across some (or all) groups. Make sure to check relevant conditions. Figures
and summary statistics are shown below.

400+ T .
- 350+ - Mean SD n
& 3004 % casein 32358 64.43 12
> horsebean  160.20 38.63 10
< 250+ linseed 21875  52.24 12
2 1 . meatmeal  276.91 64.90 11
= 200+ soybean 246.43 54.13 14
150 L sunflower 328.92 48.84 12
100- T T T T T |
casein horsebean linseed meatmeal soybean sunflower
48 P

rison isolation experiment.


http://stat.duke.edu/resources/datasets/prison-isolation
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5.38 Student performance across discussion sections. A professor who teaches a large
introductory statistics class (197 students) with eight discussion sections would like to test if
student performance differs by discussion section, where each discussion section has a different
teaching assistant. The summary table below shows the average final exam score for each discussion
section as well as the standard deviation of scores and the number of students in each section.

Secl Sec2 Sec3 Sec4d Sech Sec6 Sec7 Sec8
ng 33 19 10 29 33 10 32 31
T; 9294 91.11 91.80 9245 89.30 88.30 90.12 93.35
Si 4.21 5.58 3.43 5.92 9.32 7.27 6.93 4.57

The ANOVA output below can be used to test for differences between the average scores from the
different discussion sections.

Df Sum Sq Mean Sq F value Pr(>F)
section 7 525.01 75.00 1.87 0.0767
Residuals 189  7584.11 40.13

Conduct a hypothesis test to determine if these data provide convincing evidence that the average
score varies across some (or all) groups. Check conditions and describe any assumptions you must
make to proceed with the test.

5.39 Coffee, depression, and physical activity. Caffeine is the world’s most widely used
stimulant, with approximately 80% consumed in the form of coffee. Participants in a study inves-
tigating the relationship between coffee consumption and exercise were asked to report the number
of hours they spent per week on moderate (e.g., brisk walking) and vigorous (e.g., strenuous sports
and jogging) exercise. Based on these data the researchers estimated the total hours of metabolic
equivalent tasks (MET) per week, a value always greater than 0. The table below gives summary
statistics of MET for women in this study based on the amount of coffee consumed.*’

Caffeinated coffee consumption
<1 cup/week 2-6 cups/week 1 cup/day 2-3 cups/day > 4 cups/day  Total

Mean 18.7 19.6 19.3 18.9 175
SD 21.1 25.5 22.5 22.0 22.0
n 12,215 6,617 17,234 12,290 2,383 50,739

(a) Write the hypotheses for evaluating if the average physical activity level varies among the
different levels of coffee consumption.

(b) Check conditions and describe any assumptions you must make to proceed with the test.

(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq  Mean Sq F value Pr(>F)

coffee | ] || | ] | 0.0003
Residuals 25,564,819
Total 25,575,327

(d) What is the conclusion of the test?

49M. Lucas et al. “Coffee, caffeine, and risk of depression among women”. In: Archives of internal
medicine 171.17 (2011), p. 1571.


http://archinte.jamanetwork.com/data/Journals/INTEMED/22528/ioi15048_1571_1578.pdf
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5.40 Work hours and education, Part III. In Exercises 5.8 and 5.10 you worked with data
from the General Social Survey in order to compare the average number of hours worked per week
by US residents with and without a college degree. However, this analysis didn’t take advantage of
the original data which contained more accurate information on educational attainment (less than
high school, high school, junior college, Bachelor’s, and graduate school). Using ANOVA, we can
consider educational attainment levels for all 1,172 respondents at once instead of re-categorizing
them into two groups. Below are the distributions of hours worked by educational attainment and
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relevant summary statistics that will be helpful in carrying out this analysis.

FEducational attainment

Less than HS HS Jr Coll Bachelor’s Graduate Total
Mean 38.67 39.6 41.39 42.55 40.85  40.45
SD 15.81 14.97 18.1 13.62 15.51 15.17
n 121 546 97 253 155 1,172
o
X =
S 80
= ___ 6 e I —
o
e}
£ 40 L
g | | | I
£ 20 8 _
E _ ] ]
0- | T T T |
Less than HS HS Jr Coll Bachelor's Graduate

(a) Write hypotheses for evaluating whether the average number of hours worked varies across the

five groups.

(b) Check conditions and describe any assumptions you must make to proceed with the test.

(c) Below is part of the output associated with this test. Fill in the empty cells.

Df Sum Sq  Mean Sq F value Pr(>F)
degree || \ 501.54 0.0682
Residuals 267,382 [ ]
Total ’ ‘

(d) What is the conclusion of the test?
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5.41 GPA and major. Undergraduate students taking an introductory statistics course at
Duke University conducted a survey about GPA and major. The side-by-side box plots show the
distribution of GPA among three groups of majors. Also provided is the ANOVA output.

e

3.6
<
[a -
) 3.3
3.0
2.7-
[ T 1
Arts and Humanities Natural Sciences Social Sciences
Df Sum Sq Mean Sq F value Pr(>F)
major 2 0.03 0.02 0.21 0.8068

Residuals 195 15.77 0.08

(a) Write the hypotheses for testing for a difference between average GPA across majors.
(b) What is the conclusion of the hypothesis test?

(¢) How many students answered these questions on the survey, i.e. what is the sample size?

5.42 Child care hours, Part II. Exercise 5.14 introduces the China Health and Nutrition
Survey which, among other things, collects information on number of hours Chinese parents spend
taking care of their children under age 6. The side by side box plots below show the distribution of
this variable by educational attainment of the parent. Also provided below is the ANOVA output
for comparing average hours across educational attainment categories.

150+

[y

o

o
I

Child care hours

] R S— g

Hg

T T T T 1
college lower middle school primary school technical or vocational

Df Sum Sq Mean Sq F value Pr(>F)
education 4 4142.09 1035.52 1.26 0.2846
Residuals 794  653047.83 822.48

(a) Write the hypotheses for testing for a difference between the average number of hours spent
on child care across educational attainment levels.

(b) What is the conclusion of the hypothesis test?
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5.43 True or false, Part II. Determine if the following statements are true or false in ANOVA,
and explain your reasoning for statements you identify as false.

(a) As the number of groups increases, the modified significance level for pairwise tests increases
as well.

(b) As the total sample size increases, the degrees of freedom for the residuals increases as well.
(¢) The constant variance condition can be somewhat relaxed when the sample sizes are relatively
consistent across groups.

(d) The independence assumption can be relaxed when the total sample size is large.

5.44 True or false, Part III. Determine if the following statements are true or false, and
explain your reasoning for statements you identify as false.

If the null hypothesis that the means of four groups are all the same is rejected using ANOVA
at a 5% significance level, then ...

(a) we can then conclude that all the means are different from one another.

(b) the standardized variability between groups is higher than the standardized variability within
groups.

(c) the pairwise analysis will identify at least one pair of means that are significantly different.

(d) the appropriate a to be used in pairwise comparisons is 0.05 / 4 = 0.0125 since there are four
groups.

5.45 Prison isolation experiment, Part 11. Exercise 5.35 introduced an experiment that was
conducted with the goal of identifying a treatment that reduces subjects’ psychopathic deviant T
scores, where this score measures a person’s need for control or his rebellion against control. In
Exercise 5.35 you evaluated the success of each treatment individually. An alternative analysis
involves comparing the success of treatments. The relevant ANOVA output is given below.

Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 639.48 319.74 3.33 0.0461
Residuals 39  3740.43 95.91

Spooled = 9.793 on df = 39

(a) What are the hypotheses?
What is the conclusion of the test? Use a 5% significance level.

P
o T
- =

If in part (b) you determined that the test is significant, conduct pairwise tests to determine
which groups are different from each other. If you did not reject the null hypothesis in part (b),
recheck your solution.
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Inference for categorical data

Chapter 6 introduces inference in the setting of categorical data. We use these methods to
answer questions like the following:

e What proportion of the American public approves of the job the Supreme Court is
doing?

e The Pew Research Center conducted a poll about support for the 2010 health care
law, and they used two forms of the survey question. Each respondent was randomly
given one of the two questions. What is the difference in the support for respondents
under the two question orderings?

We will find that the methods we learned in previous chapters are very useful in these
settings. For example, sample proportions are well characterized by a nearly normal dis-
tribution when certain conditions are satisfied, making it possible to employ the usual
confidence interval and hypothesis testing tools. In other instances, such as those with
contingency tables or when sample size conditions are not met, we will use a different
distribution, though the core ideas remain the same.

6.1 Inference for a single proportion

According to a New York Times / CBS News poll in June 2012, only about 44% of the
American public approves of the job the Supreme Court is doing.! This poll included
responses of 976 adults.

6.1.1 Identifying when the sample proportion is nearly normal

A sample proportion can be described as a sample mean. If we represent each “success” as
a 1 and each “failure” as a 0, then the sample proportion is the mean of these numerical
outcomes:

0O+14+1+4+---+0

h— —0.44
p 976

The distribution of p is nearly normal when the distribution of 0’s and 1’s is not too strongly
skewed for the sample size. The most common guideline for sample size and skew when

1 nytimes.com/2012/06/08/us/politics/44-percent-of-americans-approve-of-supreme-court-in-new-poll.html
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http://www.nytimes.com/2012/06/08/us/politics/44-percent-of-americans-approve-of-supreme-court-in-new-poll.html
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working with proportions is to ensure that we expect to observe a minimum number of
successes and failures, typically at least 10 of each.

Conditions for the sampling distribution of p being nearly normal
The sampling distribution for p, taken from a sample of size n from a population
with a true proportion p, is nearly normal when

1. the sample observations are independent and

2. we expected to see at least 10 successes and 10 failures in our sample, i.e.
np > 10 and n(1 — p) > 10. This is called the success-failure condition.

If these conditions are met, then the sampling distribution of p is nearly normal
with mean p and standard error

p(1 —p)

SE; = (6.1)

Typically we do not know the true proportion, p, so must substitute some value to
check conditions and to estimate the standard error. For confidence intervals, usually p is
used to check the success-failure condition and compute the standard error. For hypothesis
tests, typically the null value — that is, the proportion claimed in the null hypothesis — is
used in place of p. Examples are presented for each of these cases in Sections 6.1.2 and 6.1.3.

TIP: Reminder on checking independence of observations

If data come from a simple random sample and consist of less than 10% of the
population, then the independence assumption is reasonable. Alternatively, if the
data come from a random process, we must evaluate the independence condition
more carefully.

6.1.2 Confidence intervals for a proportion

We may want a confidence interval for the proportion of Americans who approve of the job
the Supreme Court is doing. Our point estimate, based on a sample of size n = 976 from
the NYTimes/CBS poll, is p = 0.44. To use the general confidence interval formula from
Section 4.5, we must check the conditions to ensure that the sampling distribution of p is
nearly normal. We also must determine the standard error of the estimate.

The data are based on a simple random sample and consist of far fewer than 10% of the
U.S. population, so independence is confirmed. The sample size must also be sufficiently
large, which is checked via the success-failure condition: there were approximately 976 xp =
429 “successes” and 976 x (1—p) = 547 “failures” in the sample, both easily greater than 10.

With the conditions met, we are assured that the sampling distribution of p is nearly
normal. Next, a standard error for p is needed, and then we can employ the usual method
to construct a confidence interval.

() Exercise 6.2 Estimate the standard error of p = 0.44 using Equation (6.1). Be-
cause p is unknown and the standard error is for a confidence interval, use p in place
of p.?

29F — \/p(ln—p) ~ \/0.44(917—60444) —0.016
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@® Example 6.3 Construct a 95% confidence interval for p, the proportion of Ameri-

cans who trust federal officials most of the time.

Using the standard error estimate from Exercise 6.2, the point estimate 0.44, and
2* = 1.96 for a 95% confidence interval, the confidence interval may be computed as

point estimate + 2z*SE — 0.44 £+ 1.96 x 0.016 —  (0.409,0.471)

We are 95% confident that the true proportion of Americans who approve of the job
of the Supreme Court (in June 2012) is between 0.409 and 0.471. If the proportion
has not changed since this poll, than we can say with high confidence that the job

approval of the Supreme Court is below 50%.

Constructing a confidence interval for a proportion

e Verify the observations are independent and also verify the success-failure
condition using p and n.

e If the conditions are met, the sampling distribution of p may be well-
approximated by the normal model.

e Construct the standard error using p in place of p and apply the general
confidence interval formula.

6.1.3 Hypothesis testing for a proportion

To apply the normal distribution framework in the context of a hypothesis test for a pro-
portion, the independence and success-failure conditions must be satisfied. In a hypothesis
test, the success-failure condition is checked using the null proportion: we verify npy and

n(l — pg) are at least 10, where pq is the null value.

() Exercise 6.4 Deborah Toohey is running for Congress, and her campaign manager
claims she has more than 50% support from the district’s electorate. Set up a one-

sided hypothesis test to evaluate this claim.?

® Example 6.5 A newspaper collects a simple random sample of 500 likely voters in
the district and estimates Toohey’s support to be 52%. Does this provide convincing

evidence for the claim of Toohey’s manager at the 5% significance level?

Because this is a simple random sample that includes fewer than 10% of the popu-
lation, the observations are independent. In a one-proportion hypothesis test, the

success-failure condition is checked using the null proportion, py = 0.5: npg

n(l — pg) = 500 x 0.5 = 250 > 10. With these conditions verified, the normal

model may be applied to p.

Next the standard error can be computed. The null value is used again here, because

this is a hypothesis test for a single proportion.

po x (1 — po) \/0.5 x (1—0.5)
E = = = 0.022
o \/ n 500 0.0

3Is there convincing evidence that the campaign manager is correct? Hg : p = 0.50, H4 : p > 0.50.
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A picture of the normal model is shown in Figure 6.1 with the p-value represented by
the shaded region. Based on the normal model, the test statistic can be computed as
the Z score of the point estimate:

__point estimate — null value  0.52 —0.50 0.89
- SE 0022 7

The upper tail area, representing the p-value, is 0.1867. Because the p-value is larger
than 0.05, we do not reject the null hypothesis, and we do not find convincing evidence
to support the campaign manager’s claim.

Z

05 052

Figure 6.1: Sampling distribution of the sample proportion if the null hy-
pothesis is true for Example 6.5. The p-value for the test is shaded.

Hypothesis test for a proportion

Set up hypotheses and verify the conditions using the null value, pg, to ensure p
is nearly normal under Hy. If the conditions hold, construct the standard error,
again using po, and show the p-value in a drawing. Lastly, compute the p-value
and evaluate the hypotheses.

6.1.4 Choosing a sample size when estimating a proportion

We first encountered sample size computations in Section 4.6, which considered the case
of estimating a single mean. We found that these computations were helpful in planning
a study to control the size of the standard error of a point estimate. The task was to find
a sample size n so that the sample mean would be within some margin of error m of the
actual mean with a certain level of confidence. For example, the margin of error for a point
estimate using 95% confidence can be written as 1.96 x SE. We set up a general equation
to represent the problem:

ME =2*SE <m

where M E represented the actual margin of error and z* was chosen to correspond to the
confidence level. The standard error formula is specified to correspond to the particular
setting. For instance, in the case of means, the standard error was given as o/y/n. In the
case of a single proportion, we use \/p(1 — p)/n for the standard error.

Planning a sample size before collecting data is equally important when estimating a
proportion. For instance, if we are conducting a university survey to determine whether
students support a $200 per year increase in fees to pay for a new football stadium, how big
of a sample is needed to be sure the margin of error is less than 0.04 using a 95% confidence
level?
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® Example 6.6 Find the smallest sample size n so that the margin of error of the
point estimate p will be no larger than m = 0.04 when using a 95% confidence interval.

For a 95% confidence level, the value z* corresponds to 1.96, and we can write the
margin of error expression as follows:

ME = 2*SE = 1.96 x <0.04

p(l —p)
n
There are two unknowns in the equation: p and n. If we have an estimate of p,
perhaps from a similar survey, we could use that value. If we have no such estimate,
we must use some other value for p. It turns out that the margin of error is largest
when p is 0.5, so we typically use this worst case estimate if no other estimate is

available:

0.5(1—0.5)
n

1.96 x <0.04

0.5(1-05) _ o042
n
05(1-05) _
0042
600.25 < n

1.962 x

1.96% x

We would need at least 600.25 participants, which means we need 601 participants
or more, to ensure the sample proportion is within 0.04 of the true proportion with
95% confidence.

No estimate of the true proportion is required in sample size computations for a
proportion, whereas an estimate of the standard deviation is always needed when computing
a sample size for a margin of error for the sample mean. However, if we have an estimate of
the proportion, we should use it in place of the worst case estimate of the proportion, 0.5.

() Exercise 6.7 A manager is about to oversee the mass production of a new tire
model in her factory, and she would like to estimate what proportion of these tires
will be rejected through quality control. The quality control team has monitored the
last three tire models produced by the factory, failing 1.7% of tires in the first model,
6.2% of the second model, and 1.3% of the third model. The manager would like
to examine enough tires to estimate the failure rate of the new tire model to within
about 2% with a 90% confidence level.”

(a) There are three different failure rates to choose from. Perform the sample size
computation for each separately, and identify three sample sizes to consider.

(b) The sample sizes in (b) vary widely. Which of the three would you suggest
using? What would influence your choice?

4(a) For the 1.7% estimate of p, we estimate the appropriate sample size as follows:

p(1 —p) 0.017(1 — 0.017)

n

1.65 x ~ 1.65 x

< 0.02 - n > 113.7

Using the estimate from the first model, we would suggest examining 114 tires (round up!). A similar
computation can be accomplished using 0.062 and 0.013 for p: 396 and 88.

(b) We could examine which of the old models is most like the new model, then choose the corresponding
sample size. Or if two of the previous estimates are based on small samples while the other is based on a
larger sample, we should consider the value corresponding to the larger sample. (Answers will vary.)
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() Exercise 6.8 A recent estimate of Congress’ approval rating was 17%.” What
sample size does this estimate suggest we should use for a margin of error of 0.04
with 95% confidence?®

6.2 Difference of two proportions

We would like to make conclusions about the difference in two population proportions:
p1 — p2. We consider three examples. In the first, we compare the approval of the 2010
healthcare law under two different question phrasings. In the second application, a company
weighs whether they should switch to a higher quality parts manufacturer. In the last
example, we examine the cancer risk to dogs from the use of yard herbicides.

In our investigations, we first identify a reasonable point estimate of p; — ps based
on the sample. You may have already guessed its form: p; — ps. Next, in each example
we verify that the point estimate follows the normal model by checking certain conditions.
Finally, we compute the estimate’s standard error and apply our inferential framework.

6.2.1 Sample distribution of the difference of two proportions

We must check two conditions before applying the normal model to p; — po. First, the
sampling distribution for each sample proportion must be nearly normal, and secondly, the
samples must be independent. Under these two conditions, the sampling distribution of
p1 — P2 may be well approximated using the normal model.

Conditions for the sampling distribution of p; — p» to be normal
The difference p; — po tends to follow a normal model when

e cach proportion separately follows a normal model, and

e the samples are independent.

The standard error of the difference in sample proportions is

— 2 2 _ pi(l —p1) | p2(1 —p2)
SEﬁl—ﬁz - SEﬁl + SEﬁz = \/ n + s (69)

where p; and po represent the population proportions, and n; and no represent
the sample sizes.

For the difference in two means, the standard error formula took the following form:

SEa_jlfa_jz = \/SE%I +SE%2

The standard error for the difference in two proportions takes a similar form. The reasons
behind this similarity are rooted in the probability theory of Section 2.4, which is described
for this context in Exercise 5.14 on page 221.

5www.gallup.com /poll /155144 /Congress- Approval-June.aspx

5We complete the same computations as before, except now we use 0.17 instead of 0.5 for p:

1= 0.17(1 —0.17
1.96x~/uz1.96x~/¥g0.04 —~  n>3388
n n

A sample size of 339 or more would be reasonable.


http://www.gallup.com/poll/155144/Congress-Approval-June.aspx
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Sample  Approve Disapprove Other
size (n;) law (%)  law (%)
“people who cannot afford it will 771 47 49 3
receive financial help from the
government” is given second

“people who do not buy it will 732 34 63 3
pay a penalty” is given second

Table 6.2: Results for a Pew Research Center poll where the ordering of
two statements in a question regarding healthcare were randomized.

6.2.2 Intervals and tests for p; — p

In the setting of confidence intervals, the sample proportions are used to verify the success-
failure condition and also compute standard error, just as was the case with a single pro-
portion.

® Example 6.10 The way a question is phrased can influence a person’s response.
For example, Pew Research Center conducted a survey with the following question:”

As you may know, by 2014 nearly all Americans will be required to have
health insurance. [People who do not buy insurance will pay a penalty]
while [People who cannot afford it will receive financial help from the gov-
ernment]. Do you approve or disapprove of this policy?

For each randomly sampled respondent, the statements in brackets were randomized:
either they were kept in the order given above, or the two statements were reversed.
Table 6.2 shows the results of this experiment. Create and interpret a 90% confidence
interval of the difference in approval.

First the conditions must be verified. Because each group is a simple random sample
from less than 10% of the population, the observations are independent, both within
the samples and between the samples. The success-failure condition also holds for
each sample. Because all conditions are met, the normal model can be used for
the point estimate of the difference in support, where p; corresponds to the original
ordering and p, to the reversed ordering:

P1 — Po = 0.47 — 0.34 = 0.13

The standard error may be computed from Equation (6.9) using the sample propor-

tions:
SE ~ \/0.47(1 —0.47) + 0.34(1 — 0.34) — 0.025

771 732
For a 90% confidence interval, we use z* = 1.65:

point estimate + z*SE — 0.13 £ 1.65x0.025 — (0.09,0.17)

We are 90% confident that the approval rating for the 2010 healthcare law changes
between 9% and 17% due to the ordering of the two statements in the survey question.
The Pew Research Center reported that this modestly large difference suggests that
the opinions of much of the public are still fluid on the health insurance mandate.

Tww w.people-press.org/2012/03/26 /public-remains-split-on-health-care-bill-opposed-to-mandate/.
Sample sizes for each polling group are approximate.


http://www.people-press.org/2012/03/26/public-remains-split-on-health-care-bill-opposed-to-mandate/
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() Exercise 6.11 A remote control car company is considering a new manufacturer

for wheel gears. The new manufacturer would be more expensive but their higher
quality gears are more reliable, resulting in happier customers and fewer warranty
claims. However, management must be convinced that the more expensive gears are
worth the conversion before they approve the switch. If there is strong evidence of a
more than 3% improvement in the percent of gears that pass inspection, management
says they will switch suppliers, otherwise they will maintain the current supplier. Set
up appropriate hypotheses for the test.®

Example 6.12 The quality control engineer from Exercise 6.11 collects a sample
of gears, examining 1000 gears from each company and finds that 899 gears pass
inspection from the current supplier and 958 pass inspection from the prospective
supplier. Using these data, evaluate the hypothesis setup of Exercise 6.11 using a

significance level of 5%.

First, we check the conditions. The sample is not necessarily random, so to pro-
ceed we must assume the gears are all independent; for this sample we will suppose
this assumption is reasonable, but the engineer would be more knowledgeable as to
whether this assumption is appropriate. The success-failure condition also holds for
each sample. Thus, the difference in sample proportions, 0.958 — 0.899 = 0.059, can
be said to come from a nearly normal distribution.

The standard error can be found using Equation (6.9):

=0.0114

~ /0.958(1 —0.958)  0.899(1 — 0.899)
SE = \/ 1000 + 1000

In this hypothesis test, the sample proportions were used. We will discuss this choice
more in Section 6.2.3.

Next, we compute the test statistic and use it to find the p-value, which is depicted
in Figure 6.3.

__point estimate — null value  0.059 —0.03 954

Z
SE 0.0114

Using the normal model for this test statistic, we identify the right tail area as 0.006.
Since this is a one-sided test, this single tail area is also the p-value, and we reject
the null hypothesis because 0.006 is less than 0.05. That is, we have statistically
significant evidence that the higher quality gears actually do pass inspection more
than 3% as often as the currently used gears. Based on these results, management
will approve the switch to the new supplier.

8 Hy: The higher quality gears will pass inspection no more than 3% more frequently than the standard
quality gears. prighQ — Pstandard = 0.03. Ha: The higher quality gears will pass inspection more than 3%
more often than the standard quality gears. phighQ — Pstandard > 0.03.
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0.006

I I
0.03 0.059

(null value)

Figure 6.3: Distribution of the test statistic if the null hypothesis was true.
The p-value is represented by the shaded area.

6.2.3 Hypothesis testing when H; : p; = po

Here we use a new example to examine a special estimate of standard error when Hy : p; =
p2. We investigate whether there is an increased risk of cancer in dogs that are exposed
to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). A study in 1994 examined 491
dogs that had developed cancer and 945 dogs as a control group.” Of these two groups,
researchers identified which dogs had been exposed to 2,4-D in their owner’s yard. The
results are shown in Table 6.4.

cancer no cancer
2,4-D 191 304
no 2,4-D 300 641

Table 6.4: Summary results for cancer in dogs and the use of 2,4-D by the
dog’s owner.

() Exercise 6.13 s this study an experiment or an observational study?'"

() Exercise 6.14  Set up hypotheses to test whether 2/4-D and the occurrence of

cancer in dogs are related. Use a one-sided test and compare across the cancer and

no cancer groups.ll

9Hayes HM, Tarone RE, Cantor KP, Jessen CR, McCurnin DM, and Richardson RC. 1991. Case-
Control Study of Canine Malignant Lymphoma: Positive Association With Dog Owner’s Use of 2, 4-
Dichlorophenoxyacetic Acid Herbicides. Journal of the National Cancer Institute 83(17):1226-1231.

10The owners were not instructed to apply or not apply the herbicide, so this is an observational study.
This question was especially tricky because one group was called the control group, which is a term usually
seen in experiments.

11 Using the proportions within the cancer and no cancer groups may seem odd. We intuitively may
desire to compare the fraction of dogs with cancer in the 2,4-D and no 2,4-D groups, since the herbicide
is an explanatory variable. However, the cancer rates in each group do not necessarily reflect the cancer
rates in reality due to the way the data were collected. For this reason, computing cancer rates may greatly
alarm dog owners.

Hy: the proportion of dogs with exposure to 2,4-D is the same in “cancer” and “no cancer” dogs, pc—pn = 0.
H 4: dogs with cancer are more likely to have been exposed to 2,4-D than dogs without cancer, p. —pn > 0.
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@® Example 6.15 Are the conditions met to use the normal model and make inference
on the results?

(1) It is unclear whether this is a random sample. However, if we believe the dogs in
both the cancer and no cancer groups are representative of each respective population
and that the dogs in the study do not interact in any way, then we may find it
reasonable to assume independence between observations. (2) The success-failure
condition holds for each sample.

Under the assumption of independence, we can use the normal model and make
statements regarding the canine population based on the data.

In your hypotheses for Exercise 6.14, the null is that the proportion of dogs with
exposure to 2,4-D is the same in each group. The point estimate of the difference in sample
proportions is p. —p, = 0.067. To identify the p-value for this test, we first check conditions
(Example 6.15) and compute the standard error of the difference:

SE = \/pc(]- _pc) + pn(]- _pn)

N Tin

In a hypothesis test, the distribution of the test statistic is always examined as though the
null hypothesis is true, i.e. in this case, p. = p,. The standard error formula should reflect
this equality in the null hypothesis. We will use p to represent the common rate of dogs
that are exposed to 2,4-D in the two groups:

SE = \/p(l —p) 2P

e Tn

We don’t know the exposure rate, p, but we can obtain a good estimate of it by pooling
the results of both samples:

# of “successes” 191 + 304

= = 0.345
# of cases 191 4 300 + 304 + 641

ﬁ:

This is called the pooled estimate of the sample proportion, and we use it to compute
the standard error when the null hypothesis is that p; = ps (e.g. pe = pn or pc — pp, = 0).
We also typically use it to verify the success-failure condition.

Pooled estimate of a proportion
When the null hypothesis is p; = po, it is useful to find the pooled estimate of the
shared proportion:

number of “successes”  ping + Pang

ﬁ =
number of cases ny + ng
Here pyn; represents the number of successes in sample 1 since

number of successes in sample 1

prL=
ni

Similarly, pons represents the number of successes in sample 2.
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TIP: Use the pooled proportion estimate when Hg : p1 = p2

When the null hypothesis suggests the proportions are equal, we use the pooled
proportion estimate (p) to verify the success-failure condition and also to estimate
the standard error:

. \/ﬁ(l ) , #(1-p) (6.16)

Te Nn

() Exercise 6.17 Using Equation (6.16), p = 0.345, n; = 491, and ny = 945, verify
the estimate for the standard error is SE = 0.026. Next, complete the hypothesis test
using a significance level of 0.05. Be certain to draw a picture, compute the p-value,
and state your conclusion in both statistical language and plain language.'”

6.3 Testing for goodness of fit using chi-square (special
topic)

In this section, we develop a method for assessing a null model when the data are binned.
This technique is commonly used in two circumstances:

e Given a sample of cases that can be classified into several groups, determine if the
sample is representative of the general population.

e Evaluate whether data resemble a particular distribution, such as a normal distribu-
tion or a geometric distribution.

Each of these scenarios can be addressed using the same statistical test: a chi-square test.

In the first case, we consider data from a random sample of 275 jurors in a small county.
Jurors identified their racial group, as shown in Table 6.5, and we would like to determine
if these jurors are racially representative of the population. If the jury is representative of
the population, then the proportions in the sample should roughly reflect the population
of eligible jurors, i.e. registered voters.

Race White Black Hispanic Other Total
Representation in juries 205 26 25 19 275
Registered voters 0.72 0.07 0.12 0.09 1.00

Table 6.5: Representation by race in a city’s juries and population.

While the proportions in the juries do not precisely represent the population propor-
tions, it is unclear whether these data provide convincing evidence that the sample is not
representative. If the jurors really were randomly sampled from the registered voters, we
might expect small differences due to chance. However, unusually large differences may
provide convincing evidence that the juries were not representative.

12Compute the test statistic:

__ point estimate — null value  0.067 — 0
h SE T 0.026
We leave the picture to you. Looking up Z = 2.58 in the normal probability table: 0.9951. However this is

the lower tail, and the upper tail represents the p-value: 1 —0.9951 = 0.0049. We reject the null hypothesis
and conclude that dogs getting cancer and owners using 2,4-D are associated.

Z = 2.58
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A second application, assessing the fit of a distribution, is presented at the end of this
section. Daily stock returns from the S&P500 for the years 1990-2011 are used to assess
whether stock activity each day is independent of the stock’s behavior on previous days.

In these problems, we would like to examine all bins simultaneously, not simply com-
pare one or two bins at a time, which will require us to develop a new test statistic.

6.3.1 Creating a test statistic for one-way tables

@® Example 6.18 Of the people in the city, 275 served on a jury. If the individuals
are randomly selected to serve on a jury, about how many of the 275 people would
we expect to be white? How many would we expect to be black?

About 72% of the population is white, so we would expect about 72% of the jurors
to be white: 0.72 x 275 = 198.

Similarly, we would expect about 7% of the jurors to be black, which would correspond
to about 0.07 x 275 = 19.25 black jurors.

() Exercise 6.19 Twelve percent of the population is Hispanic and 9% represent other
races. How many of the 275 jurors would we expect to be Hispanic or from another
race? Answers can be found in Table 6.6.

Race White Black Hispanic Other Total
Observed data 205 26 25 19 275
Expected counts 198 19.25 33 24.75 275

Table 6.6: Actual and expected make-up of the jurors.

The sample proportion represented from each race among the 275 jurors was not a
precise match for any ethnic group. While some sampling variation is expected, we would
expect the sample proportions to be fairly similar to the population proportions if there
is no bias on juries. We need to test whether the differences are strong enough to provide
convincing evidence that the jurors are not a random sample. These ideas can be organized
into hypotheses:

Hy: The jurors are a random sample, i.e. there is no racial bias in who serves on a jury,
and the observed counts reflect natural sampling fluctuation.

H 4: The jurors are not randomly sampled, i.e. there is racial bias in juror selection.

To evaluate these hypotheses, we quantify how different the observed counts are from the
expected counts. Strong evidence for the alternative hypothesis would come in the form of
unusually large deviations in the groups from what would be expected based on sampling
variation alone.

6.3.2 The chi-square test statistic

In previous hypothesis tests, we constructed a test statistic of the following form:

point estimate — null value

SE of point estimate
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This construction was based on (1) identifying the difference between a point estimate
and an expected value if the null hypothesis was true, and (2) standardizing that difference
using the standard error of the point estimate. These two ideas will help in the construction
of an appropriate test statistic for count data.

Our strategy will be to first compute the difference between the observed counts and
the counts we would expect if the null hypothesis was true, then we will standardize the
difference:

observed white count — null white count

1=

SE of observed white count

The standard error for the point estimate of the count in binned data is the square root of
the count under the null.'® Therefore:

205 — 198
Z1 = ——— =10.50
V198
The fraction is very similar to previous test statistics: first compute a difference, then
standardize it. These computations should also be completed for the black, Hispanic, and
other groups:

Black Hispanic Other
26 — 19.25 25 — 33 192475

A Y Ty = — _1.39 7y =
? ST 33 NG

= —1.16
Vv19.25

We would like to use a single test statistic to determine if these four standardized differences
are irregularly far from zero. That is, Z1, Z5, Z3, and Z, must be combined somehow to
help determine if they — as a group — tend to be unusually far from zero. A first thought
might be to take the absolute value of these four standardized differences and add them up:

|Z1| + | Za| + | Z3| + | Z4| = 4.58

Indeed, this does give one number summarizing how far the actual counts are from what
was expected. However, it is more common to add the squared values:

73+ 73+ 72+ 77 =5.89
Squaring each standardized difference before adding them together does two things:

e Any standardized difference that is squared will now be positive.
e Differences that already look unusual — e.g. a standardized difference of 2.5 — will
become much larger after being squared.

The test statistic X2, which is the sum of the Z? values, is generally used for these reasons.
We can also write an equation for X2 using the observed counts and null counts:

(observed count; — null Countl)2 (observed counts — null count4)2

X? =

null county null county

13Using some of the rules learned in earlier chapters, we might think that the standard error would be
np(1 — p), where n is the sample size and p is the proportion in the population. This would be correct if
we were looking only at one count. However, we are computing many standardized differences and adding
them together. It can be shown — though not here — that the square root of the count is a better way to
standardize the count differences.

X 2
chi-square
test statistic
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The final number X? summarizes how strongly the observed counts tend to deviate from
the null counts. In Section 6.3.4, we will see that if the null hypothesis is true, then X?
follows a new distribution called a chi-square distribution. Using this distribution, we will
be able to obtain a p-value to evaluate the hypotheses.

6.3.3 The chi-square distribution and finding areas

The chi-square distribution is sometimes used to characterize data sets and statistics
that are always positive and typically right skewed. Recall the normal distribution had
two parameters — mean and standard deviation — that could be used to describe its exact
characteristics. The chi-square distribution has just one parameter called degrees of
freedom (df), which influences the shape, center, and spread of the distribution.

() Exercise 6.20 Figure 6.7 shows three chi-square distributions. (a) How does the
center of the distribution change when the degrees of freedom is larger? (b) What
about the variability (spread)? (c) How does the shape change?'?

Degrees of Freedom
— 2
-- 4
9
I T T T T 1
0 5 10 15 20 25

Figure 6.7: Three chi-square distributions with varying degrees of freedom.

Figure 6.7 and Exercise 6.20 demonstrate three general properties of chi-square dis-
tributions as the degrees of freedom increases: the distribution becomes more symmetric,
the center moves to the right, and the variability inflates.

Our principal interest in the chi-square distribution is the calculation of p-values, which
(as we have seen before) is related to finding the relevant area in the tail of a distribution.
To do so, a new table is needed: the chi-square table, partially shown in Table 6.8. A
more complete table is presented in Appendix B.3 on page 412. This table is very similar
to the t table from Sections 5.3 and 5.4: we identify a range for the area, and we examine a
particular row for distributions with different degrees of freedom. One important difference
from the t table is that the chi-square table only provides upper tail values.

14(a) The center becomes larger. If we look carefully, we can see that the center of each distribution
is equal to the distribution’s degrees of freedom. (b) The variability increases as the degrees of freedom
increases. (c¢) The distribution is very strongly skewed for df = 2, and then the distributions become more
symmetric for the larger degrees of freedom df = 4 and df = 9. We would see this trend continue if we

examined distributions with even more larger degrees of freedom.



6.3. TESTING FOR GOODNESS OF FIT USING CHI-SQUARE (SPECIAL TOPIC)277

Upper tail | 0.3 0.2 0.1 0.05| 0.02 0.01 0.005 0.001
df 241 3.22  4.61 5.99 7.82 9.21  10.60  13.82
3.66 4.64 625  7.81 | 9.8 11.34 12.84  16.27
488 5.99 778 949 | 11.67 1328  14.86  18.47
6.06 7.29 9.24 11.07 | 13.39 15.09  16.75  20.52
7.23 856 10.64 12.59 | 15.03 16.81  18.55  22.46
838 9.80 12.02 14.07 | 16.62 18.48  20.28  24.32

~N O T W N

Table 6.8: A section of the chi-square table. A complete table is in Ap-
pendix B.3 on page 412.

@® Example 6.21 Figure 6.9(a) shows a chi-square distribution with 3 degrees of free-

O

©)

O

dom and an upper shaded tail starting at 6.25. Use Table 6.8 to estimate the shaded
area.

This distribution has three degrees of freedom, so only the row with 3 degrees of
freedom (df) is relevant. This row has been italicized in the table. Next, we see that
the value — 6.25 — falls in the column with upper tail area 0.1. That is, the shaded
upper tail of Figure 6.9(a) has area 0.1.

Example 6.22 We rarely observe the exact value in the table. For instance, Fig-
ure 6.9(b) shows the upper tail of a chi-square distribution with 2 degrees of freedom.
The bound for this upper tail is at 4.3, which does not fall in Table 6.8. Find the
approximate tail area.

The cutoff 4.3 falls between the second and third columns in the 2 degrees of freedom
row. Because these columns correspond to tail areas of 0.2 and 0.1, we can be certain
that the area shaded in Figure 6.9(b) is between 0.1 and 0.2.

Example 6.23 Figure 6.9(c) shows an upper tail for a chi-square distribution with
5 degrees of freedom and a cutoff of 5.1. Find the tail area.

Looking in the row with 5 df, 5.1 falls below the smallest cutoff for this row (6.06).
That means we can only say that the area is greater than 0.3.

Exercise 6.24  Figure 6.9(d) shows a cutoff of 11.7 on a chi-square distribution
with 7 degrees of freedom. Find the area of the upper tail.!”

Exercise 6.25 Figure 6.9(¢) shows a cutoff of 10 on a chi-square distribution with
4 degrees of freedom. Find the area of the upper tail.'®

Exercise 6.26 Figure 6.9(f) shows a cutoff of 9.21 with a chi-square distribution
with 3 df. Find the area of the upper tail.'”

15The value 11.7 falls between 9.80 and 12.02 in the 7 df row. Thus, the area is between 0.1 and 0.2.
16The area is between 0.02 and 0.05.
17Between 0.02 and 0.05.
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Figure 6.9: (a) Chi-square distribution with 3 degrees of freedom, area
above 6.25 shaded. (b) 2 degrees of freedom, area above 4.3 shaded. (c¢) 5
degrees of freedom, area above 5.1 shaded. (d) 7 degrees of freedom, area
above 11.7 shaded. (e) 4 degrees of freedom, area above 10 shaded. (f) 3
degrees of freedom, area above 9.21 shaded.
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6.3.4 Finding a p-value for a chi-square distribution

In Section 6.3.2, we identified a new test statistic (X2) within the context of assessing
whether there was evidence of racial bias in how jurors were sampled. The null hypothesis
represented the claim that jurors were randomly sampled and there was no racial bias. The
alternative hypothesis was that there was racial bias in how the jurors were sampled.

We determined that a large X2 value would suggest strong evidence favoring the
alternative hypothesis: that there was racial bias. However, we could not quantify what the
chance was of observing such a large test statistic (X2 = 5.89) if the null hypothesis actually
was true. This is where the chi-square distribution becomes useful. If the null hypothesis
was true and there was no racial bias, then X2 would follow a chi-square distribution, with
three degrees of freedom in this case. Under certain conditions, the statistic X2 follows a
chi-square distribution with & — 1 degrees of freedom, where k is the number of bins.

@® Example 6.27 How many categories were there in the juror example? How many
degrees of freedom should be associated with the chi-square distribution used for X?2?

In the jurors example, there were k = 4 categories: white, black, Hispanic, and other.
According to the rule above, the test statistic X2 should then follow a chi-square
distribution with £k — 1 = 3 degrees of freedom if Hy is true.

Just like we checked sample size conditions to use the normal model in earlier sections,
we must also check a sample size condition to safely apply the chi-square distribution for
X?. Each expected count must be at least 5. In the juror example, the expected counts
were 198, 19.25, 33, and 24.75, all easily above 5, so we can apply the chi-square model to
the test statistic, X2 = 5.89.

@® Example 6.28 If the null hypothesis is true, the test statistic X2 = 5.89 would be
closely associated with a chi-square distribution with three degrees of freedom. Using
this distribution and test statistic, identify the p-value.

The chi-square distribution and p-value are shown in Figure 6.10. Because larger chi-
square values correspond to stronger evidence against the null hypothesis, we shade
the upper tail to represent the p-value. Using the chi-square table in Appendix B.3
or the short table on page 277, we can determine that the area is between 0.1 and
0.2. That is, the p-value is larger than 0.1 but smaller than 0.2. Generally we do not
reject the null hypothesis with such a large p-value. In other words, the data do not
provide convincing evidence of racial bias in the juror selection.

0 5 10 15

Figure 6.10: The p-value for the juror hypothesis test is shaded in the chi-
square distribution with df = 3.
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Chi-square test for one-way table

Suppose we are to evaluate whether there is convincing evidence that a set of
observed counts O7, Os, ..., Ok in k categories are unusually different from what
might be expected under a null hypothesis. Call the expected counts that are
based on the null hypothesis E7, Eo, ..., Ex. If each expected count is at least 5
and the null hypothesis is true, then the test statistic below follows a chi-square
distribution with k£ — 1 degrees of freedom:

01 — Ey)? Oy — E3)? O — Ey)?
=B (O-E | (Oc- EY)
El E2 Ek

o

The p-value for this test statistic is found by looking at the upper tail of this chi-
square distribution. We consider the upper tail because larger values of X? would
provide greater evidence against the null hypothesis.

TIP: Conditions for the chi-square test
There are three conditions that must be checked before performing a chi-square
test:

Independence. Each case that contributes a count to the table must be indepen-
dent of all the other cases in the table.

Sample size / distribution. Each particular scenario (i.e. cell count) must have
at least 5 expected cases.

Degrees of freedom We only apply the chi-square technique when the table is
associated with a chi-square distribution with 2 or more degrees of freedom.

Failing to check conditions may affect the test’s error rates.

When examining a table with just two bins, pick a single bin and use the one-
proportion methods introduced in Section 6.1.

6.3.5 Evaluating goodness of fit for a distribution

Section 3.3 would be useful background reading for this example, but it is not a prerequisite.

We can apply our new chi-square testing framework to the second problem in this
section: evaluating whether a certain statistical model fits a data set. Daily stock returns
from the S&P500 for 1990-2011 can be used to assess whether stock activity each day is
independent of the stock’s behavior on previous days. This sounds like a very complex
question, and it is, but a chi-square test can be used to study the problem. We will label
each day as Up or Down (D) depending on whether the market was up or down that day.
For example, consider the following changes in price, their new labels of up and down, and
then the number of days that must be observed before each Up day:

Change in price 252 -146 0.51 -4.07 336 1.10 -5.46 -1.03 -2.99 1.71
Outcome Up D Up D Up Up D D D Up
Days to Up 1 - 2 - 2 1 - - - 4

If the days really are independent, then the number of days until a positive trading day
should follow a geometric distribution. The geometric distribution describes the probability
of waiting for the k*" trial to observe the first success. Here each up day (Up) represents
a success, and down (D) days represent failures. In the data above, it took only one day
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until the market was up, so the first wait time was 1 day. It took two more days before
we observed our next Up trading day, and two more for the third Up day. We would like
to determine if these counts (1, 2, 2, 1, 4, and so on) follow the geometric distribution.
Table 6.11 shows the number of waiting days for a positive trading day during 1990-2011
for the S&P500.

Days 1 2 3 4 5 6 T+ Total
Observed 1532 760 338 194 74 33 17 2948

Table 6.11: Observed distribution of the waiting time until a positive trad-
ing day for the S&P500, 1990-2011.

We consider how many days one must wait until observing an Up day on the S&P500
stock exchange. If the stock activity was independent from one day to the next and the
probability of a positive trading day was constant, then we would expect this waiting time
to follow a geometric distribution. We can organize this into a hypothesis framework:

Hy: The stock market being up or down on a given day is independent from all other
days. We will consider the number of days that pass until an Up day is observed.
Under this hypothesis, the number of days until an Up day should follow a geometric
distribution.

H 4: The stock market being up or down on a given day is not independent from all other
days. Since we know the number of days until an Up day would follow a geometric
distribution under the null, we look for deviations from the geometric distribution,
which would support the alternative hypothesis.

There are important implications in our result for stock traders: if information from past
trading days is useful in telling what will happen today, that information may provide an
advantage over other traders.

We consider data for the S&P500 from 1990 to 2011 and summarize the waiting times
in Table 6.12 and Figure 6.13. The S&P500 was positive on 53.2% of those days.

Because applying the chi-square framework requires expected counts to be at least 5,
we have binned together all the cases where the waiting time was at least 7 days to ensure
each expected count is well above this minimum. The actual data, shown in the Observed
row in Table 6.12, can be compared to the expected counts from the Geometric Model
row. The method for computing expected counts is discussed in Table 6.12. In general, the
expected counts are determined by (1) identifying the null proportion associated with each

Days 1 2 3 4 5 6 T+ Total
Observed 1532 760 338 194 74 33 17 2948
Geometric Model 1569 734 343 161 75 35 31 2948

Table 6.12: Distribution of the waiting time until a positive trading day.
The expected counts based on the geometric model are shown in the last
row. To find each expected count, we identify the probability of waiting D
days based on the geometric model (P(D) = (1 — 0.532)P~1(0.532)) and
multiply by the total number of streaks, 2948. For example, waiting for
three days occurs under the geometric model about 0.4682 x0.532 = 11.65%
of the time, which corresponds to 0.1165 x 2948 = 343 streaks.
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Figure 6.13: Side-by-side bar plot of the observed and expected counts for
each waiting time.

bin, then (2) multiplying each null proportion by the total count to obtain the expected
counts. That is, this strategy identifies what proportion of the total count we would expect
to be in each bin.

@® Example 6.29 Do you notice any unusually large deviations in the graph? Can

you tell if these deviations are due to chance just by looking?

It is not obvious whether differences in the observed counts and the expected counts
from the geometric distribution are significantly different. That is, it is not clear
whether these deviations might be due to chance or whether they are so strong that
the data provide convincing evidence against the null hypothesis. However, we can
perform a chi-square test using the counts in Table 6.12.

Exercise 6.30 Table 6.12 provides a set of count data for waiting times (01 = 1532,
02 = 760, ...) and expected counts under the geometric distribution (E; = 1569,
Ey = 734, ...). Compute the chi-square test statistic, X2.'*

Exercise 6.31 Because the expected counts are all at least 5, we can safely apply
the chi-square distribution to X?2. However, how many degrees of freedom should
we use?'’

Example 6.32 If the observed counts follow the geometric model, then the chi-
square test statistic X2 = 15.08 would closely follow a chi-square distribution with
df = 6. Using this information, compute a p-value.

Figure 6.14 shows the chi-square distribution, cutoff, and the shaded p-value. If we
look up the statistic X2 = 15.08 in Appendix B.3, we find that the p-value is between
0.01 and 0.02. In other words, we have sufficient evidence to reject the notion that

2 2 2
18 x2 _ (1532-1569)? | (760-734)? (17531) —15.08

1569 734

19There are k = 7 groups, so we use df = k — 1 = 6.



6.4. TESTING FOR INDEPENDENCE IN TWO-WAY TABLES (SPECIAL TOPIC)283
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Figure 6.14: Chi-square distribution with 6 degrees of freedom. The p-value
for the stock analysis is shaded.

the wait times follow a geometric distribution, i.e. trading days are not independent
and past days may help predict what the stock market will do today.

® Example 6.33 In Example 6.32, we rejected the null hypothesis that the trading
days are independent. Why is this so important?

Because the data provided strong evidence that the geometric distribution is not
appropriate, we reject the claim that trading days are independent. While it is not
obvious how to exploit this information, it suggests there are some hidden patterns
in the data that could be interesting and possibly useful to a stock trader.

6.4 Testing for independence in two-way tables (special
topic)

Google is constantly running experiments to test new search algorithms. For example,
Google might test three algorithms using a sample of 10,000 google.com search queries.
Table 6.15 shows an example of 10,000 queries split into three algorithm groups.?’ The
group sizes were specified before the start of the experiment to be 5000 for the current
algorithm and 2500 for each test algorithm.

Search algorithm current test 1 test 2 Total
Counts 5000 2500 2500 10000

Table 6.15: Google experiment breakdown of test subjects into three search
groups.

20Google regularly runs experiments in this manner to help improve their search engine. It is entirely
possible that if you perform a search and so does your friend, that you will have different search results.
While the data presented in this section resemble what might be encountered in a real experiment, these
data are simulated.
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@® Example 6.34 What is the ultimate goal of the Google experiment? What are the
null and alternative hypotheses, in regular words?

The ultimate goal is to see whether there is a difference in the performance of the
algorithms. The hypotheses can be described as the following:

Hy: The algorithms each perform equally well.
H 4: The algorithms do not perform equally well.

In this experiment, the explanatory variable is the search algorithm. However, an
outcome variable is also needed. This outcome variable should somehow reflect whether
the search results align with the user’s interests. One possible way to quantify this is to
determine whether (1) the user clicked one of the links provided and did not try a new
search, or (2) the user performed a related search. Under scenario (1), we might think
that the user was satisfied with the search results. Under scenario (2), the search results
probably were not relevant, so the user tried a second search.

Table 6.16 provides the results from the experiment. These data are very similar to
the count data in Section 6.3. However, now the different combinations of two variables
are binned in a two-way table. In examining these data, we want to evaluate whether there
is strong evidence that at least one algorithm is performing better than the others. To do
so, we apply a chi-square test to this two-way table. The ideas of this test are similar to
those ideas in the one-way table case. However, degrees of freedom and expected counts
are computed a little differently than before.

Search algorithm current test 1  test 2 Total
No new search 3511 1749 1818 7078
New search 1489 751 682 2922
Total 5000 2500 2500 10000

Table 6.16: Results of the Google search algorithm experiment.

What is so different about one-way tables and two-way tables?

A one-way table describes counts for each outcome in a single variable. A two-way
table describes counts for combinations of outcomes for two variables. When we
consider a two-way table, we often would like to know, are these variables related
in any way? That is, are they dependent (versus independent)?

The hypothesis test for this Google experiment is really about assessing whether there
is statistically significant evidence that the choice of the algorithm affects whether a user
performs a second search. In other words, the goal is to check whether the search variable
is independent of the algorithm variable.

6.4.1 Expected counts in two-way tables

® Example 6.35 From the experiment, we estimate the proportion of users who were
satisfied with their initial search (no new search) as 7078/10000 = 0.7078. If there
really is no difference among the algorithms and 70.78% of people are satisfied with
the search results, how many of the 5000 people in the “current algorithm” group
would be expected to not perform a new search?
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About 70.78% of the 5000 would be satisfied with the initial search:
0.7078 x 5000 = 3539 users

That is, if there was no difference between the three groups, then we would expect
3539 of the current algorithm users not to perform a new search.

() Exercise 6.36 Using the same rationale described in Example 6.35, about how
many users in each test group would not perform a new search if the algorithms were
equally helpful??!

We can compute the expected number of users who would perform a new search for
each group using the same strategy employed in Example 6.35 and Exercise 6.36. These
expected counts were used to construct Table 6.17, which is the same as Table 6.16, except
now the expected counts have been added in parentheses.

Search algorithm  current test 1 test 2 Total
No new search 3511  (3539) 1749  (1769.5) 1818 (1769.5) 7078
New search 1489  (1461) 751 (730.5) 682 (730.5) 2922
Total 5000 2500 2500 10000

Table 6.17: The observed counts and the (expected counts).

The examples and exercises above provided some help in computing expected counts.
In general, expected counts for a two-way table may be computed using the row totals,
column totals, and the table total. For instance, if there was no difference between the
groups, then about 70.78% of each column should be in the first row:

0.7078 x (column 1 total) = 3539
0.7078 x (column 2 total) = 1769.5
0.7078 x (column 3 total) = 1769.5

Looking back to how the fraction 0.7078 was computed — as the fraction of users who did

not perform a new search (7078/10000) — these three expected counts could have been
computed as

row 1 total
( table total
row 1 total
( table total
row 1 total
( table total

) (column 1 total) = 3539
) (column 2 total) = 1769.5

) (column 3 total) = 1769.5

This leads us to a general formula for computing expected counts in a two-way table when
we would like to test whether there is strong evidence of an association between the column
variable and row variable.

21'We would expect 0.7078 * 2500 = 1769.5. It is okay that this is a fraction.
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Computing expected counts in a two-way table
To identify the expected count for the it” row and j** column, compute

(row 4 total) x (column j total)
Expected Count,, ; =
P row i, col j table total

6.4.2 The chi-square test for two-way tables

The chi-square test statistic for a two-way table is found the same way it is found for a
one-way table. For each table count, compute

(observed count — expected count)?

General formula
expected count

(3511 — 3539)2

1 11 =0.222
Row 1, Co 3539 0
(1749 — 1769.5)?
1 12 =0.2
Row 1, Co 17695 0.237
2 — .5)?
Row 2, Col 3 w = 3.220

730.5

Adding the computed value for each cell gives the chi-square test statistic X2
X?=0.222+0.237 + - -+ + 3.220 = 6.120

Just like before, this test statistic follows a chi-square distribution. However, the degrees
of freedom are computed a little differently for a two-way table.?? For two way tables, the
degrees of freedom is equal to

df = (number of rows minus 1) X (number of columns minus 1)
In our example, the degrees of freedom parameter is
df =2-1)x(3-1)=2
If the null hypothesis is true (i.e. the algorithms are equally useful), then the test statistic

X? = 6.12 closely follows a chi-square distribution with 2 degrees of freedom. Using this
information, we can compute the p-value for the test, which is depicted in Figure 6.18.

Computing degrees of freedom for a two-way table
When applying the chi-square test to a two-way table, we use

df = (R—1) x (C —1)

where R is the number of rows in the table and C is the number of columns.

22Recall: in the one-way table, the degrees of freedom was the number of cells minus 1.
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Congress
Obama Democrats Republicans Total
Approve 842 736 541 2119
Disapprove 616 646 842 2104
Total 1458 1382 1383 4223

Table 6.19: Pew Research poll results of a March 2012 poll.

TIP: Use two-proportion methods for 2-by-2 contingency tables
When analyzing 2-by-2 contingency tables, use the two-proportion methods intro-
duced in Section 6.2.

Figure 6.18: Computing the p-value for the Google hypothesis test.

® Example 6.37 Compute the p-value and draw a conclusion about whether the
search algorithms have different performances.

Looking in Appendix B.3 on page 412, we examine the row corresponding to 2 degrees
of freedom. The test statistic, X2 = 6.120, falls between the fourth and fifth columns,
which means the p-value is between 0.02 and 0.05. Because we typically test at a
significance level of a = 0.05 and the p-value is less than 0.05, the null hypothesis is
rejected. That is, the data provide convincing evidence that there is some difference
in performance among the algorithms.

® Example 6.38 Table 6.19 summarizes the results of a Pew Research poll.”? We
would like to determine if there are actually differences in the approval ratings of
Barack Obama, Democrats in Congress, and Republicans in Congress. What are
appropriate hypotheses for such a test?

Hy: There is no difference in approval ratings between the three groups.

H 4: There is some difference in approval ratings between the three groups, e.g. per-
haps Obama’s approval differs from Democrats in Congress.

23GSee the Pew Research website: www.people-press.org/2012/03/14 /romney-leads-gop-contest-trails-in-
matchup-with-obama. The counts in Table 6.19 are approximate.


http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama/
http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama/
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() Exercise 6.39 A chi-square test for a two-way table may be used to test the
hypotheses in Example 6.38. As a first step, compute the expected values for each of
the six table cells.”*

() Exercise 6.40 Compute the chi-square test statistic.””

() Exercise 6.41 Because there are 2 rows and 3 columns, the degrees of freedom for
the test is df = (2—1) x (3—1) = 2. Use X2 = 106.4, df = 2, and the chi-square
table on page 412 to evaluate whether to reject the null hypothesis.?%

6.5 Small sample hypothesis testing for a proportion
(special topic)

In this section we develop inferential methods for a single proportion that are appropriate
when the sample size is too small to apply the normal model to p. Just like the methods
related to the t distribution, these methods can also be applied to large samples.

6.5.1 When the success-failure condition is not met

People providing an organ for donation sometimes seek the help of a special “medical
consultant”. These consultants assist the patient in all aspect of the surgery, with the goal
of reducing the possibility of complications during the medical procedure and recovery.
Patients might choose a consultant based in part on the historical complication rate of
the consultant’s clients. One consultant tried to attract patients by noting the average
complication rate for liver donor surgeries in the US is about 10%, but her clients have
only had 3 complications in the 62 liver donor surgeries she has facilitated. She claims this
is strong evidence that her work meaningfully contributes to reducing complications (and
therefore she should be hired!).

() Exercise 6.42 We will let p represent the true complication rate for liver donors
working with this consultant. Estimate p using the data, and label this value p.?”

® Example 6.43 Is it possible to assess the consultant’s claim using the data pro-
vided?

No. The claim is that there is a causal connection, but the data are observational.
Patients who hire this medical consultant may have lower complication rates for other
reasons.

24The expected count for row one / column one is found by multiplying the row one total (2119) and

column one total (1458), then dividing by the table total (4223): % = 731.6. Similarly for the first

column and the second row: % = 726.4. Column 2: 693.5 and 688.5. Column 3: 694.0 and 689.0
(842-731.6)% _ 16.7

)2 .
25For each cell, compute %. For instance, the first row and first column: 316

Adding the results of each cell gives the chi-square test statistic: X2 = 16.7 + - - - + 34.0 = 106.4.

26The test statistic is larger than the right-most column of the df = 2 row of the chi-square table,
meaning the p-value is less than 0.001. That is, we reject the null hypothesis because the p-value is
less than 0.05, and we conclude that Americans’ approval has differences among Democrats in Congress,
Republicans in Congress, and the president.

27The sample proportion: p = 3/62 = 0.048
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While it is not possible to assess this causal claim, it is still possible to test for an
association using these data. For this question we ask, could the low complication
rate of p = 0.048 be due to chance?

() Exercise 6.44 Write out hypotheses in both plain and statistical language to test
for the association between the consultant’s work and the true complication rate, p,
for this consultant’s clients.”®

@® Example 6.45 In the examples based on large sample theory, we modeled p using
the normal distribution. Why is this not appropriate here?

The independence assumption may be reasonable if each of the surgeries is from a
different surgical team. However, the success-failure condition is not satisfied. Under
the null hypothesis, we would anticipate seeing 62 x 0.10 = 6.2 complications, not the
10 required for the normal approximation.

The uncertainty associated with the sample proportion should not be modeled using
the normal distribution. However, we would still like to assess the hypotheses from Exer-
cise 6.44 in absence of the normal framework. To do so, we need to evaluate the possibility
of a sample value (p) this far below the null value, py = 0.10. This possibility is usually
measured with a p-value.

The p-value is computed based on the null distribution, which is the distribution of
the test statistic if the null hypothesis is true. Supposing the null hypothesis is true, we
can compute the p-value by identifying the chance of observing a test statistic that favors
the alternative hypothesis at least as strongly as the observed test statistic. This can be
done using simulation.

6.5.2 Generating the null distribution and p-value by simulation

We want to identify the sampling distribution of the test statistic (p) if the null hypothesis
was true. In other words, we want to see how the sample proportion changes due to chance
alone. Then we plan to use this information to decide whether there is enough evidence to
reject the null hypothesis.

Under the null hypothesis, 10% of liver donors have complications during or after
surgery. Suppose this rate was really no different for the consultant’s clients. If this was
the case, we could simulate 62 clients to get a sample proportion for the complication rate
from the null distribution.

Each client can be simulated using a deck of cards. Take one red card, nine black cards,
and mix them up. Then drawing a card is one way of simulating the chance a patient has
a complication if the true complication rate is 10% for the data. If we do this 62 times and
compute the proportion of patients with complications in the simulation, pg;y,, then this
sample proportion is exactly a sample from the null distribution.

An undergraduate student was paid $2 to complete this simulation. There were 5
simulated cases with a complication and 57 simulated cases without a complication, i.e.
Dsim = 5/62 = 0.081.

28 Hy: There is no association between the consultant’s contributions and the clients’ complication rate.
In statistical language, p = 0.10. H4: Patients who work with the consultant tend to have a complication
rate lower than 10%, i.e. p < 0.10.
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Figure 6.20: The null distribution for p, created from 10,000 simulated
studies. The left tail, representing the p-value for the hypothesis test,
contains 12.22% of the simulations.

@® Example 6.46 Is this one simulation enough to determine whether or not we should
reject the null hypothesis from Exercise 6.447 Explain.

No. To assess the hypotheses, we need to see a distribution of many pg;m,, not just a
single draw from this sampling distribution.

One simulation isn’t enough to get a sense of the null distribution; many simulation
studies are needed. Roughly 10,000 seems sufficient. However, paying someone to simulate
10,000 studies by hand is a waste of time and money. Instead, simulations are typically
programmed into a computer, which is much more efficient.

Figure 6.20 shows the results of 10,000 simulated studies. The proportions that are
equal to or less than p = 0.048 are shaded. The shaded areas represent sample proportions
under the null distribution that provide at least as much evidence as p favoring the alter-
native hypothesis. There were 1222 simulated sample proportions with ps; < 0.048. We
use these to construct the null distribution’s left-tail area and find the p-value:

Number of observed simulations with g, < 0.048
10000

Of the 10,000 simulated pg;m, 1222 were equal to or smaller than p. Since the hypothesis
test is one-sided, the estimated p-value is equal to this tail area: 0.1222.

left tail =

(6.47)

() Exercise 6.48 Because the estimated p-value is 0.1222, which is larger than the
significance level 0.05, we do not reject the null hypothesis. Explain what this means
in plain language in the context of the problem.?’

() Exercise 6.49 Does the conclusion in Exercise 6.48 imply there is no real associa-
tion between the surgical consultant’s work and the risk of complications? Explain.*"

29There isn’t sufficiently strong evidence to support an association between the consultant’s work and
fewer surgery complications.

30No. It might be that the consultant’s work is associated with a reduction but that there isn’t enough
data to convincingly show this connection.
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One-sided hypothesis test for p with a small sample

The p-value is always derived by analyzing the null distribution of the test statis-
tic. The normal model poorly approximates the null distribution for p when the
success-failure condition is not satisfied. As a substitute, we can generate the null
distribution using simulated sample proportions (psim) and use this distribution
to compute the tail area, i.e. the p-value.

We continue to use the same rule as before when computing the p-value for a two-
sided test: double the single tail area, which remains a reasonable approach even when the
sampling distribution is assymmetric. However, this can result in p-values larger than 1
when the point estimate is very near the mean in the null distribution; in such cases, we
write that the p-value is 1. Also, very large p-values computed in this way (e.g. 0.85), may
also be slightly inflated.

Exercise 6.48 said the p-value is estimated. It is not exact because the simulated null
distribution itself is not exact, only a close approximation. However, we can generate an
exact null distribution and p-value using the binomial model from Section 3.4.

6.5.3 Generating the exact null distribution and p-value

The number of successes in n independent cases can be described using the binomial model,
which was introduced in Section 3.4. Recall that the probability of observing exactly k
successes is given by

R Tr—eY (nn! k)!p’“u —p)" " (6.50)

P(k successes) = (Z)pk(l —p) k=
where p is the true probability of success. The expression (Z) is read as n choose k, and
the exclamation points represent factorials. For instance, 3! is equal to 3 x 2 x 1 =6, 4! is
equal to 4 x 3 x 2 x 1 =24, and so on (see Section 3.4).

The tail area of the null distribution is computed by adding up the probability in
Equation (6.50) for each k that provides at least as strong of evidence favoring the al-
ternative hypothesis as the data. If the hypothesis test is one-sided, then the p-value is
represented by a single tail area. If the test is two-sided, compute the single tail area and
double it to get the p-value, just as we have done in the past.
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@® Example 6.51 Compute the exact p-value to check the consultant’s claim that her
clients’ complication rate is below 10%.

Exactly k = 3 complications were observed in the n = 62 cases cited by the consultant.
Since we are testing against the 10% national average, our null hypothesis is p = 0.10.
We can compute the p-value by adding up the cases where there are 3 or fewer

complications:
n> p] n—j
J

a
-
o

NE

p-value =

<.
Il
=)

I
NE

J

<.
Il
=)

62
0.1°(1 —0.1)%270 ¢ (1 )0.11(1 —0.1)521

_ (62
0
( )0 12(1 —0.1)5272 4 (632> 0.13(1 — 0.1)62=3

= 0.0015 + 0.0100 + 0.0340 + 0.0755
= 0.1210

This exact p-value is very close to the p-value based on the simulations (0.1222), and
we come to the same conclusion. We do not reject the null hypothesis, and there is
not statistically significant evidence to support the association.

If it were plotted, the exact null distribution would look almost identical to the
simulated null distribution shown in Figure 6.20 on page 290.

6.5.4 Using simulation for goodness of fit tests

Simulation methods may also be used to test goodness of fit. In short, we simulate a new
sample based on the purported bin probabilities, then compute a chi-square test statistic
X2,.. We do this many times (e.g. 10,000 times), and then examine the distribution
of these simulated chi-square test statistics. This distribution will be a very precise null
distribution for the test statistic X2 if the probabilities are accurate, and we can find the
upper tail of this null distribution, using a cutoff of the observed test statistic, to calculate

the p-value.

® Example 6.52 Section 6.3 introduced an example where we considered whether
jurors were racially representative of the population. Would our findings differ if we
used a simulation technique?

Since the minimum bin count condition was satisfied, the chi-square distribution is an
excellent approximation of the null distribution, meaning the results should be very
similar. Figure 6.21 shows the simulated null distribution using 100,000 simulated
X2 values with an overlaid curve of the chi-square distribution. The distributions
are almost identical, and the p-values are essentially indistinguishable: 0.115 for the

simulated null distribution and 0.117 for the theoretical null distribution.
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Figure 6.21: The precise null distribution for the juror example from Sec-
tion 6.3 is shown as a histogram of simulated X2, = statistics, and the
theoretical chi-square distribution is also shown.

6.6 Hypothesis testing for two proportions
(special topic)

Cardiopulmonary resuscitation (CPR) is a procedure commonly used on individuals suf-
fering a heart attack when other emergency resources are not available. This procedure is
helpful in maintaining some blood circulation, but the chest compressions involved can also
cause internal injuries. Internal bleeding and other injuries complicate additional treatment
efforts following arrival at a hospital. For instance, blood thinners may be used to help
release a clot that is causing the heart attack. However, the blood thinner would negatively
affect an internal injury. Here we consider an experiment for patients who underwent CPR
for a heart attack and were subsequently admitted to a hospital.®! These patients were
randomly divided into a treatment group where they received a blood thinner or the control
group where they did not receive the blood thinner. The outcome variable of interest was
whether the patients survived for at least 24 hours.

@® Example 6.53 Form hypotheses for this study in plain and statistical language.
Let p. represent the true survival proportion in the control group and p; represent
the survival proportion for the treatment group.

We are interested in whether the blood thinners are helpful or harmful, so this should
be a two-sided test.

Hy: Blood thinners do not have an overall survival effect, i.e. the survival proportions
are the same in each group. p; — p. = 0.

H 4: Blood thinners do have an impact on survival. p; — p. # 0.

31 Bfficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation:
a prospective clinical trial, by Bottiger et al., The Lancet, 2001.
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6.6.1 Large sample framework for a difference in two proportions

There were 50 patients in the experiment who did not receive the blood thinner and 40
patients who did. The study results are shown in Table 6.22.

Survived Died Total

Control 11 39 50
Treatment 14 26 40
Total 25 65 90

Table 6.22: Results for the CPR study. Patients in the treatment group
were given a blood thinner, and patients in the control group were not.

() Exercise 6.54 What is the observed survival rate in the control group? And in

the treatment group? Also, provide a point estimate of the difference in survival
proportions of the two groups: p; — pe."”

According to the point estimate, there is a 13% increase in the survival proportion

when patients who have undergone CPR outside of the hospital are treated with blood
thinners. However, we wonder if this difference could be due to chance. We’d like to
investigate this using a large sample framework, but we first need to check the conditions
for such an approach.

@® Example 6.55 Can the point estimate of the difference in survival proportions be

adequately modeled using a normal distribution?

We will assume the patients are independent, which is probably reasonable. The
success-failure condition is also satisfied. Since the proportions are equal under the
null, we can compute the pooled proportion, p = (11 + 14)/(50 4+ 40) = 0.278, for
checking conditions. We find the expected number of successes (13.9, 11.1) and
failures (36.1, 28.9) are above 10. The normal model is reasonable.

While we can apply a normal framework as an approximation to find a p-value, we

might keep in mind that the expected number of successes is only 13.9 in one group and
11.1 in the other. Below we conduct an analysis relying on the large sample normal theory.
We will follow up with a small sample analysis and compare the results.

@® Example 6.56 Assess the hypotheses presented in Example 6.53 using a large sam-

ple framework. Use a significance level of o = 0.05.

We suppose the null distribution of the sample difference follows a normal distribution
with mean 0 (the null value) and a standard deviation equal to the standard error of
the estimate. The null hypothesis in this case would be that the two proportions are
the same, so we compute the standard error using the pooled standard error formula
from Equation (6.16) on page 273:

1- 1— 278(1 - 0.2 278(1 - 0.2
spo . [Pi=p)  p1-p) \/0 78(1-0278)  0.278(1—-0.278) _ o
Ny Ne 40 50

1

320bserved control survival rate: p. = L — .22, Treatment survival rate: Pt = % = 0.35. Observed
difference: p: — p. = 0.35 — 0.22 = 0.13.

50
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where we have used the pooled estimate (13 = %éiié = 0.278) in place of the true

proportion, p.
The null distribution with mean zero and standard deviation 0.095 is shown in Fig-

ure 6.23. We compute the tail areas to identify the p-value. To do so, we use the Z
score of the point estimate:

(Pt — Ppc) —null value  0.13 —0
SE 0 0.095

Z = =1.37

If we look this Z score up in Appendix B.1, we see that the right tail has area
0.0853. The p-value is twice the single tail area: 0.176. This p-value does not provide
convincing evidence that the blood thinner helps. Thus, there is insufficient evidence
to conclude whether or not the blood thinner helps or hurts. (Remember, we never
“accept” the null hypothesis — we can only reject or fail to reject.)

right tail

-0.29 -0.19 -01 0 0.1 0.19 0.29

Figure 6.23: The null distribution of the point estimate p, — p. under the
large sample framework is a normal distribution with mean 0 and standard
deviation equal to the standard error, in this case SE = 0.095. The p-value
is represented by the shaded areas.

The p-value 0.176 relies on the normal approximation. We know that when the samples
sizes are large, this approximation is quite good. However, when the sample sizes are
relatively small as in this example, the approximation may only be adequate. Next we
develop a simulation technique, apply it to these data, and compare our results. In general,
the small sample method we develop may be used for any size sample, small or large, and
should be considered as more accurate than the corresponding large sample technique.

6.6.2 Simulating a difference under the null distribution

The ideas in this section were first introduced in the optional Section 1.8 on page 42. For
the interested reader, this earlier section provides a more in-depth discussion.

Suppose the null hypothesis is true. Then the blood thinner has no impact on survival
and the 13% difference was due to chance. In this case, we can simulate null differences
that are due to chance using a randomization technique.”® By randomly assigning “fake
treatment” and “fake control” stickers to the patients’ files, we could get a new grouping —
one that is completely due to chance. The expected difference between the two proportions
under this simulation is zero.

33The test procedure we employ in this section is formally called a permutation test.
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We run this simulation by taking 40 treatment_fake and 50 control_fake labels
and randomly assigning them to the patients. The label counts of 40 and 50 correspond to
the number of treatment and control assignments in the actual study. We use a computer
program to randomly assign these labels to the patients, and we organize the simulation
results into Table 6.24.

Survived Died Total

control_fake 15 35 50
treatment_fake 10 30 40
Total 25 65 90

Table 6.24: Simulated results for the CPR study under the null hypothesis.
The labels were randomly assigned and are independent of the outcome of
the patient.

() Exercise 6.57 What is the difference in death rates between the two fake groups
in Table 6.24? How does this compare to the observed 13% in the real groups?**

The difference computed in Exercise 6.57 represents a draw from the null distribution
of the sample differences. Next we generate many more simulated experiments to build up
the null distribution, much like we did in Section 6.5.2 to build a null distribution for a one
sample proportion.

Caution: Simulation in the two proportion case requires that the null
difference is zero

The technique described here to simulate a difference from the null distribution
relies on an important condition in the null hypothesis: there is no connection
between the two variables considered. In some special cases, the null difference
might not be zero, and more advanced methods (or a large sample approximation,
if appropriate) would be necessary.

6.6.3 Null distribution for the difference in two proportions

We build up an approximation to the null distribution by repeatedly creating tables like
the one shown in Table 6.24 and computing the sample differences. The null distribution
from 10,000 simulations is shown in Figure 6.25.

® Example 6.58 Compare Figures 6.23 and 6.25. How are they similar? How are
they different?

The shapes are similar, but the simulated results show that the continuous approxi-
mation of the normal distribution is not very good. We might wonder, how close are
the p-values?

34The difference is Dt, fake — De, fake = :1,’—0 — 15 — _0.095, which is closer to the null value pg = 0 than

0~ 35
what we observed.
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Figure 6.25: An approximation of the null distribution of the point estimate,
Pt — Pe- The p-value is twice the right tail area.

() Exercise 6.59 The right tail area is about 0.13. (It is only a coincidence that
we also have p; — p. = 0.13.) The p-value is computed by doubling the right tail
area: 0.26. How does this value compare with the large sample approximation for
the p-value??°

In general, small sample methods produce more accurate results since they rely on
fewer assumptions. However, they often require some extra work or simulations. For this
reason, many statisticians use small sample methods only when conditions for large sample
methods are not satisfied.

6.6.4 Randomization for two-way tables and chi-square

Randomization methods may also be used for the contingency tables. In short, we create
a randomized contingency table, then compute a chi-square test statistic X2, . We repeat
this many times using a computer, and then we examine the distribution of these simulated
test statistics. This randomization approach is valid for any sized sample, and it will be
more accurate for cases where one or more expected bin counts do not meet the minimum
threshold of 5. When the minimum threshold is met, the simulated null distribution will
very closely resemble the chi-square distribution. As before, we use the upper tail of the

null distribution to calculate the p-value.

35The approximation in this case is fairly poor (p-values: 0.174 vs. 0.26), though we come to the same
conclusion. The data do not provide convincing evidence showing the blood thinner helps or hurts patients.
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6.7 Exercises
6.7.1 Inference for a single proportion

6.1 Vegetarian college students. Suppose that 8% of college students are vegetarians. De-
termine if the following statements are true or false, and explain your reasoning.

(a) The distribution of the sample proportions of vegetarians in random samples of size 60 is
approximately normal since n > 30.

(b) The distribution of the sample proportions of vegetarian college students in random samples
of size 50 is right skewed.

¢) A random sample of 125 college students where 12;0 are vegetarians would be considered
g g
unusual.

(d) A random sample of 250 college students where 12% are vegetarians would be considered
unusual.

(e) The standard error would be reduced by one-half if we increased the sample size from 125
to 250.

6.2 Young Americans, Part I. About 77% of young adults think they can achieve the American
dream. Determine if the following statements are true or false, and explain your reasoning.”"

(a) The distribution of sample proportions of young Americans who think they can achieve the
American dream in samples of size 20 is left skewed.

(b) The distribution of sample proportions of young Americans who think they can achieve the
American dream in random samples of size 40 is approximately normal since n > 30.

(¢) A random sample of 60 young Americans where 85% think they can achieve the American
dream would be considered unusual.

(d) A random sample of 120 young Americans where 85% think they can achieve the American
dream would be considered unusual.

6.3 Orange tabbies. Suppose that 90% of orange tabby cats are male. Determine if the

following statements are true or false, and explain your reasoning.

(a) The distribution of sample proportions of random samples of size 30 is left skewed.

(b) Using a sample size that is 4 times as large will reduce the standard error of the sample
proportion by one-half.

(c) The distribution of sample proportions of random samples of size 140 is approximately normal.

(d) The distribution of sample proportions of random samples of size 280 is approximately normal.

6.4 Young Americans, Part I1. About 25% of young Americans have delayed starting a family

due to the continued economic slump. Determine if the following statements are true or false, and

explain your reasoning.”’

(a) The distribution of sample proportions of young Americans who think they can achieve the
American dream in random samples of size 12 is right skewed.

(b) In order for the the distribution of sample proportions of young Americans who think they
can achieve the American dream to be approximately normal, we need random samples where
the sample size is at least 40.

(¢) A random sample of 50 young Americans where 20% have delayed starting a family due to
the continued economic slump would be considered unusual.

(d) A random sample of 150 young Americans where 20% have delayed starting a family due to
the continued economic slump would be considered unusual.

(e) Tripling the sample size will reduce the standard error of the sample proportion by one-third.

36 A. Vaughn. “Poll finds young adults optimistic, but not about money”. In: Los Angeles Times (2011).
37Demos.org. “The State of Young America: The Poll”. In: (2011).
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6.5 Prop 19 in California. In a 2010 Survey USA poll, 70% of the 119 respondents between
the ages of 18 and 34 said they would vote in the 2010 general election for Prop 19, which would
change California law to legalize marijuana and allow it to be regulated and taxed. At a 95%
confidence level, this sample has an 8% margin of error. Based on this information, determine if
the following statements are true or false, and explain your reasoning.”*

(a) We are 95% confident that between 62% and 78% of the California voters in this sample
support Prop 19.

(b) We are 95% confident that between 62% and 78% of all California voters between the ages of
18 and 34 support Prop 19.

(c¢) If we considered many random samples of 119 California voters between the ages of 18 and
34, and we calculated 95% confidence intervals for each, 95% of them will include the true
population proportion of Californians who support Prop 19.

(d) In order to decrease the margin of error to 4%, we would need to quadruple (multiply by 4)
the sample size.

(e) Based on this confidence interval, there is sufficient evidence to conclude that a majority of
California voters between the ages of 18 and 34 support Prop 19.

6.6 2010 Healthcare Law. On June 28, 2012 the U.S. Supreme Court upheld the much debated
2010 healthcare law, declaring it constitutional. A Gallup poll released the day after this decision
indicates that 46% of 1,012 Americans agree with this decision. At a 95% confidence level, this
sample has a 3% margin of error. Based on this information, determine if the following statements
are true or false, and explain your reasoning.”’

(a) We are 95% confident that between 43% and 49% of Americans in this sample support the
decision of the U.S. Supreme Court on the 2010 healthcare law.

(b) We are 95% confident that between 43% and 49% of Americans support the decision of the
U.S. Supreme Court on the 2010 healthcare law.

(c) If we considered many random samples of 1,012 Americans, and we calculated the sample
proportions of those who support the decision of the U.S. Supreme Court, 95% of those sample
proportions will be between 43% and 49%.

(d) The margin of error at a 90% confidence level would be higher than 3%.
6.7 Fireworks on July 4. In late June 2012, Survey USA published results of a survey stating
that 56% of the 600 randomly sampled Kansas residents planned to set off fireworks on July 4%".
Determine the margin of error for the 56% point estimate using a 95% confidence level."”

6.8 Elderly drivers. In January 2011, The Marist Poll published a report stating that 66% of
adults nationally think licensed drivers should be required to retake their road test once they reach
65 years of age. It was also reported that interviews were conducted on 1,018 American adults,
and that the margin of error was 3% using a 95% confidence level.**

(a) Verify the margin of error reported by The Marist Poll.

(b) Based on a 95% confidence interval, does the poll provide convincing evidence that more than
70% of the population think that licensed drivers should be required to retake their road test
once they turn 657

383urvey USA, Election Poll #16804, data collected July 8-11, 2010.

39Gallup, Americans Issue Split Decision on Healthcare Ruling, data collected June 28, 2012.
40Survey USA, News Poll #19333, data collected on June 27, 2012.

410\ arist Poll, Road Rules: Re-Testing Drivers at Age 657, March 4, 2011.


http://www.surveyusa.com/client/PollReport.aspx?g=d525bd62-80d2-4884-86a1-8c48ad920150
http://www.gallup.com/poll/155447/Americans-Issue-Split-Decision-Healthcare-Ruling.aspx
http://www.surveyusa.com/client/PollReport.aspx?g=9f76df27-701b-4223-bf0f-3a6027b80321
http://maristpoll.marist.edu/34-road-rules-re-testing-drivers-at-age-65
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6.9 Life after college. We are interested in estimating the proportion of graduates at a mid-sized
university who found a job within one year of completing their undergraduate degree. Suppose we
conduct a survey and find out that 348 of the 400 randomly sampled graduates found jobs. The
graduating class under consideration included over 4500 students.

(a) Describe the population parameter of interest. What is the value of the point estimate of this
parameter?

(b) Check if the conditions for constructing a confidence interval based on these data are met.

(c) Calculate a 95% confidence interval for the proportion of graduates who found a job within
one year of completing their undergraduate degree at this university, and interpret it in the
context of the data.

(d) What does “95% confidence” mean?

(e) Now calculate a 99% confidence interval for the same parameter and interpret it in the context
of the data.

(f) Compare the widths of the 95% and 99% confidence intervals. Which one is wider? Explain.

6.10 Life rating in Greece. Greece has faced a severe economic crisis since the end of 2009.
A Gallup poll surveyed 1,000 randomly sampled Greeks in 2011 and found that 25% of them said

9 42

they would rate their lives poorly enough to be considered “suffering”.

(a) Describe the population parameter of interest. What is the value of the point estimate of this
parameter?

(b) Check if the conditions required for constructing a confidence interval based on these data are
met.

(c) Construct a 95% confidence interval for the proportion of Greeks who are “suffering”.

(d) Without doing any calculations, describe what would happen to the confidence interval if we
decided to use a higher confidence level.

(e) Without doing any calculations, describe what would happen to the confidence interval if we
used a larger sample.

6.11 Study abroad. A survey on 1,509 high school seniors who took the SAT and who completed
an optional web survey between April 25 and April 30, 2007 shows that 55% of high school seniors
are fairly certain that they will participate in a study abroad program in college.

(a) Is this sample a representative sample from the population of all high school seniors in the
US? Explain your reasoning.

(b) Let’s suppose the conditions for inference are met. Even if your answer to part (a) indicated
that this approach would not be reliable, this analysis may still be interesting to carry out
(though not report). Construct a 90% confidence interval for the proportion of high school
seniors (of those who took the SAT) who are fairly certain they will participate in a study
abroad program in college, and interpret this interval in context.

(c) What does “90% confidence” mean?

(d) Based on this interval, would it be appropriate to claim that the majority of high school seniors
are fairly certain that they will participate in a study abroad program in college?

42Gallup World, More Than One in 10 “Suffering” Worldwide, data, collected throughout 2011.
43studentPOLL, College-Bound Students’ Interests in Study Abroad and Other International Learning
Activities, January 2008.


http://www.gallup.com/poll/153869/One-Suffering-Worldwide.aspx
http://www.gallup.com/poll/153869/One-Suffering-Worldwide.aspx
http://www.gallup.com/poll/153869/One-Suffering-Worldwide.aspx
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6.12 Legalization of marijuana, Part I. The 2010 General Social Survey asked 1,259 US res-
idents: “Do you think the use of marijuana should be made legal, or not?” 48% of the respondents
said it should be made legal.**

(a) Is 48% a sample statistic or a population parameter? Explain.

(b) Construct a 95% confidence interval for the proportion of US residents who think marijuana
should be made legal, and interpret it in the context of the data.

(c) A critic points out that this 95% confidence interval is only accurate if the statistic follows a
normal distribution, or if the normal model is a good approximation. Is this true for these
data? Explain.

(d) A news piece on this survey’s findings states, “Majority of Americans think marijuana should
be legalized.” Based on your confidence interval, is this news piece’s statement justified?

6.13 Public option, Part I. A Washington Post article from 2009 reported that “support
for a government-run health-care plan to compete with private insurers has rebounded from its
summertime lows and wins clear majority support from the public.” More specifically, the article
says “seven in 10 Democrats back the plan, while almost nine in 10 Republicans oppose it. Inde-
pendents divide 52 percent against, 42 percent in favor of the legislation.” There were were 819
Democrats, 566 Republicans and 783 Independents surveyed.*’

(a) A political pundit on TV claims that a majority of Independents oppose the health care public
option plan. Do these data provide strong evidence to support this statement?

(b) Would you expect a confidence interval for the proportion of Independents who oppose the
public option plan to include 0.57 Explain.

6.14 The Civil War. A national survey conducted in 2011 among a simple random sample of
1,507 adults shows that 56% of Americans think the Civil War is still relevant to American politics
and political life.*°

(a) Conduct a hypothesis test to determine if these data provide strong evidence that the majority
of the Americans think the Civil War is still relevant.

(b) Interpret the p-value in this context.

(c) Calculate a 90% confidence interval for the proportion of Americans who think the Civil War
is still relevant. Interpret the interval in this context, and comment on whether or not the
confidence interval agrees with the conclusion of the hypothesis test.

6.15 Browsing on the mobile device. A 2012 survey of 2,254 American adults indicates
that 17% of cell phone owners do their browsing on their phone rather than a computer or other
device.""

(a) According to an online article, a report from a mobile research company indicates that 38 per-
cent of Chinese mobile web users only access the internet through their cell phones.*® Conduct
a hypothesis test to determine if these data provide strong evidence that the proportion of
Americans who only use their cell phones to access the internet is different than the Chinese
proportion of 38%.

(b) Interpret the p-value in this context.

(c¢) Calculate a 95% confidence interval for the proportion of Americans who access the internet
on their cell phones, and interpret the interval in this context.

44National Opinion Research Center, General Social Survey, 2010.

45D, Balz and J. Cohen. “Most support public option for health insurance, poll finds”. In: The Wash-
ington Post (2009).

46pPew Research Center Publications, Civil War at 150: Still Relevant, Still Divisive, data collected
between March 30 - April 3, 2011.

47Pew Internet, Cell Internet Use 2012, data collected between March 15 - April 13, 2012.

483, Chang. “The Chinese Love to Use Feature Phone to Access the Internet”. In: M.I.C Gadget (2012).


http://www3.norc.org/gss+website
http://www.washingtonpost.com/wp-dyn/content/article/2009/10/19/AR2009101902451.html
http://pewresearch.org/pubs/1958/civil-war-still-relevant-and-divisive-praise-confederate-leaders-flag
http://www.pewinternet.org/Reports/2012/Cell-Internet-Use-2012.aspx
http://micgadget.com/24163/the-chinese-love-to-use-feature-phone-to-access-the-internet/
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6.16 Is college worth it? Part I. Among a simple random sample of 331 American adults
who do not have a four-year college degree and are not currently enrolled in school, 48% said they
decided not to go to college because they could not afford school.*’

(a) A newspaper article states that only a minority of the Americans who decide not to go to
college do so because they cannot afford it and uses the point estimate from this survey
as evidence. Conduct a hypothesis test to determine if these data provide strong evidence
supporting this statement.

(b) Would you expect a confidence interval for the proportion of American adults who decide not
to go to college because they cannot afford it to include 0.57 Explain.

6.17 Taste test. Some people claim that they can tell the difference between a diet soda and

a regular soda in the first sip. A researcher wanting to test this claim randomly sampled 80 such

people. He then filled 80 plain white cups with soda, half diet and half regular through random

assignment, and asked each person to take one sip from their cup and identify the soda as diet or

regular. 53 participants correctly identified the soda.

(a) Do these data provide strong evidence that these people are able to detect the difference
between diet and regular soda, in other words, are the results significantly better than just
random guessing?

(b) Interpret the p-value in this context.

6.18 1Is college worth it? Part II. Exercise 6.16 presents the results of a poll where 48% of

331 Americans who decide to not go to college do so because they cannot afford it.

(a) Calculate a 90% confidence interval for the proportion of Americans who decide to not go to
college because they cannot afford it, and interpret the interval in context.

(b) Suppose we wanted the margin of error for the 90% confidence level to be about 1.5%. How
large of a survey would you recommend?

6.19 College smokers. We are interested in estimating the proportion of students at a university

who smoke. Out of a random sample of 200 students from this university, 40 students smoke.

(a) Calculate a 95% confidence interval for the proportion of students at this university who smoke,
and interpret this interval in context. (Reminder: check conditions)

(b) If we wanted the margin of error to be no larger than 2% at a 95% confidence level for the
proportion of students who smoke, how big of a sample would we need?

6.20 Legalize Marijuana, Part II. As discussed in Exercise 6.12, the 2010 General Social
Survey reported a sample where about 48% of US residents thought marijuana should be made
legal. If we wanted to limit the margin of error of a 95% confidence interval to 2%, about how
many Americans would we need to survey 7

6.21 Public option, Part I1. Exercise 6.13 presents the results of a poll evaluating support for
the health care public option in 2009, reporting that 52% of Independents in the sample opposed
the public option. If we wanted to estimate this number to within 1% with 90% confidence, what
would be an appropriate sample size?

6.22 Acetaminophen and liver damage. It is believed that large doses of acetaminophen

(the active ingredient in over the counter pain relievers like Tylenol) may cause damage to the

liver. A researcher wants to conduct a study to estimate the proportion of acetaminophen users

who have liver damage. For participating in this study, he will pay each subject $20 and provide

a free medical consultation if the patient has liver damage.

(a) If he wants to limit the margin of error of his 98% confidence interval to 2%, what is the
minimum amount of money he needs to set aside to pay his subjects?

(b) The amount you calculated in part (a) is substantially over his budget so he decides to use
fewer subjects. How will this affect the width of his confidence interval?

49Pew Research Center Publications, Is College Worth It7, data collected between March 15-29, 2011.


http://pewresearch.org/pubs/1993/survey-is-college-degree-worth-cost-debt-college-presidents-higher-education-system

6.7. EXERCISES 303

6.7.2 Difference of two proportions

6.23 Social experiment, Part I. A “social experiment” conducted by a TV program ques-
tioned what people do when they see a very obviously bruised woman getting picked on by her
boyfriend. On two different occasions at the same restaurant, the same couple was depicted. In
one scenario the woman was dressed “provocatively” and in the other scenario the woman was
dressed “conservatively”. The table below shows how many restaurant diners were present under
each scenario, and whether or not they intervened.

Scenario
Provocative  Conservative Total
Intervene Yes o 15 20
No 15 10 25
Total 20 25 45

Explain why the sampling distribution of the difference between the proportions of interventions
under provocative and conservative scenarios does not follow an approximately normal distribu-
tion.

6.24 Heart transplant success. The Stanford University Heart Transplant Study was con-
ducted to determine whether an experimental heart transplant program increased lifespan. Each
patient entering the program was officially designated a heart transplant candidate, meaning that
he was gravely ill and might benefit from a new heart. Patients were randomly assigned into
treatment and control groups. Patients in the treatment group received a transplant, and those in
the control group did not. The table below displays how many patients survived and died in each
group.”’

control  treatment
alive 4 24
dead 30 45

A hypothesis test would reject the conclusion that the survival rate is the same in each group,
and so we might like to calculate a confidence interval. Explain why we cannot construct such an
interval using the normal approximation. What might go wrong if we constructed the confidence
interval despite this problem?

6.25 Gender and color preference. A 2001 study asked 1,924 male and 3,666 female under-
graduate college students their favorite color. A 95% confidence interval for the difference between
the proportions of males and females whose favorite color is black (Pmate — Pfemale) Was calculated
to be (0.02, 0.06). Based on this information, determine if the following statements are true or
false, and explain your reasoning for each statement you identify as false.”’

(a) We are 95% confident that the true proportion of males whose favorite color is black is 2%
lower to 6% higher than the true proportion of females whose favorite color is black.

(b) We are 95% confident that the true proportion of males whose favorite color is black is 2% to
6% higher than the true proportion of females whose favorite color is black.

(c) 95% of random samples will produce 95% confidence intervals that include the true difference
between the population proportions of males and females whose favorite color is black.

(d) We can conclude that there is a significant difference between the proportions of males and fe-
males whose favorite color is black and that the difference between the two sample proportions
is too large to plausibly be due to chance.

(e) The 95% confidence interval for (pfemate — Pmate) cannot be calculated with only the informa-
tion given in this exercise.

50B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical
Association 69 (1974), pp. 74-80.
511, Ellis and C Ficek. “Color preferences according to gender and sexual orientation”. In: Personality

and Individual Differences 31.8 (2001), pp. 1375-1379.


http://www.jstor.org/discover/10.2307/2285502?uid=3739256&uid=2129&uid=2&uid=70&uid=4&sid=47699108222567
http://www.sciencedirect.com/science/article/pii/S0191886900002312
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6.26 The Daily Show. A 2010 Pew Research foundation poll indicates that among 1,099
college graduates, 33% watch The Daily Show. Meanwhile, 22% of the 1,110 people with a high
school degree but no college degree in the poll watch The Daily Show. A 95% confidence interval
for (Pcollege grad — PHS or less), Where p is the proportion of those who watch The Daily Show, is
(0.07, 0.15). Based on this information, determine if the following statements are true or false,
and explain your reasoning if you identify the statement as false.””

(a) At the 5% significance level, the data provide convincing evidence of a difference between the
proportions of college graduates and those with a high school degree or less who watch The
Daily Show.

(b) We are 95% confident that 7% less to 15% more college graduates watch The Daily Show than
those with a high school degree or less.

(¢) 95% of random samples of 1,099 college graduates and 1,110 people with a high school degree
or less will yield differences in sample proportions between 7% and 15%.

(d) A 90% confidence interval for (pcoliege grad — PHS or less) would be wider.

(e) A 95% confidence interval for (PuS or less — Deollege grad) 18 (-0.15,-0.07).

6.27 Public Option, Part I11. Exercise 6.13 presents the results of a poll evaluating support
for the health care public option plan in 2009. 70% of 819 Democrats and 42% of 783 Independents
support the public option.

(a) Calculate a 95% confidence interval for the difference between (pp — pr) and interpret it in
this context. We have already checked conditions for you.

(b) True or false: If we had picked a random Democrat and a random Independent at the time
of this poll, it is more likely that the Democrat would support the public option than the
Independent.

6.28 Sleep deprivation, CA vs. OR, Part I. According to a report on sleep deprivation by the
Centers for Disease Control and Prevention, the proportion of California residents who reported
insufficient rest or sleep during each of the preceding 30 days is 8.0%, while this proportion is
8.8% for Oregon residents. These data are based on simple random samples of 11,545 California
and 4,691 Oregon residents. Calculate a 95% confidence interval for the difference between the
proportions of Californians and Oregonians who are sleep deprived and interpret it in context of
the data.”

6.29 Offshore drilling, Part I. A 2010 survey asked 827 randomly sampled registered voters
in California “Do you support? Or do you oppose? Drilling for oil and natural gas off the Coast of
California? Or do you not know enough to say?” Below is the distribution of responses, separated
based on whether or not the respondent graduated from college.”

(a) What percent of college graduates and what percent of

the non-college graduates in this sample do not know College Grad
enough to have an opinion on drilling for oil and natural Yes No
gas off the Coast of California? Support 154 132
(b) Conduct a hypothesis test to determine if the data Oppose 180 126
provide strong evidence that the proportion of college Do not know 104 131
graduates who do not have an opinion on this issue is Total 438 389

different than that of non-college graduates.

52The Pew Research Center, Americans Spending More Time Following the News, data collected June
8-28, 2010.

53CDC, Perceived Insufficient Rest or Sleep Among Adults — United States, 2008.

54Qurvey USA, Election Poll #16804, data collected July 8-11, 2010.


http://www.people-press.org/files/legacy-pdf/652.pdf
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5842a2.htm
http://www.surveyusa.com/client/PollReport.aspx?g=d525bd62-80d2-4884-86a1-8c48ad920150
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6.30 Sleep deprivation, CA vs. OR, Part Il. Exercise 6.28 provides data on sleep depri-
vation rates of Californians and Oregonians. The proportion of California residents who reported
insufficient rest or sleep during each of the preceding 30 days is 8.0%, while this proportion is 8.8%
for Oregon residents. These data are based on simple random samples of 11,545 California and
4,691 Oregon residents.

(a) Conduct a hypothesis test to determine if these data provide strong evidence the rate of sleep
deprivation is different for the two states. (Reminder: check conditions)

(b) Tt is possible the conclusion of the test in part (a) is incorrect. If this is the case, what type
of error was made?

6.31 Offshore drilling, Part II. Results of a poll evaluating support for drilling for oil and
natural gas off the coast of California were introduced in Exercise 6.29.

College Grad

Yes No
Support 154 132
Oppose 180 126
Do not know 104 131
Total 438 389

(a) What percent of college graduates and what percent of the non-college graduates in this sample
support drilling for oil and natural gas off the Coast of California?

(b) Conduct a hypothesis test to determine if the data provide strong evidence that the proportion
of college graduates who support off-shore drilling in California is different than that of non-
college graduates.

6.32 Full body scan, Part I. A news article reports that “Americans have differing views
on two potentially inconvenient and invasive practices that airports could implement to uncover
potential terrorist attacks.” This news piece was based on a survey conducted among a random
sample of 1,137 adults nationwide, interviewed by telephone November 7-10, 2010, where one of
the questions on the survey was “Some airports are now using ‘full-body’ digital x-ray machines to
electronically screen passengers in airport security lines. Do you think these new x-ray machines
should or should not be used at airports?” Below is a summary of responses based on party
affiliation.””

Party Affiliation
Republican Democrat Independent

Should 264 299 351
Answer  Should not 38 55 7
Don’t know/No answer 16 15 22
Total 318 369 450

(a) Conduct an appropriate hypothesis test evaluating whether there is a difference in the pro-
portion of Republicans and Democrats who think the full-body scans should be applied in
airports. Assume that all relevant conditions are met.

(b) The conclusion of the test in part (a) may be incorrect, meaning a testing error was made. If
an error was made, was it a Type I or a Type II error? Explain.

558. Condon. “Poll: 4 in 5 Support Full-Body Airport Scanners”. In: CBS News (2010).


http://www.cbsnews.com/8301-503544_162-20022876-503544.html
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6.33 Sleep deprived transportation workers. The National Sleep Foundation conducted a
survey on the sleep habits of randomly sampled transportation workers and a control sample of
non-transportation workers. The results of the survey are shown below.””

Transportation Professionals

Truck Train Bux/Taxi/Limo
Control Pilots Drivers Operators Drivers
Less than 6 hours of sleep 35 19 35 29 21
6 to 8 hours of sleep 193 132 117 119 131
More than 8 hours 64 51 51 32 58
Total 292 202 203 180 210

Conduct a hypothesis test to evaluate if these data provide evidence of a difference between the
proportions of truck drivers and non-transportation workers (the control group) who get less than
6 hours of sleep per day, i.e. are considered sleep deprived.

6.34 Prenatal vitamins and Autism. Researchers studying the link between prenatal vitamin
use and autism surveyed the mothers of a random sample of children aged 24 - 60 months with
autism and conducted another separate random sample for children with typical development. The
table below shows the number of mothers in each group who did and did not use prenatal vitamins
during the three months before pregnancy (periconceptional period).””

Autism
Autism  Typical development  Total
Periconceptional  Vitamin 111 70 181
prenatal vitamin  No vitamin 143 159 302
Total 254 229 483

(a) State appropriate hypotheses to test for independence of use of prenatal vitamins during the
three months before pregnancy and autism.

(b) Complete the hypothesis test and state an appropriate conclusion. (Reminder: verify any
necessary conditions for the test.)

(¢) A New York Times article reporting on this study was titled “Prenatal Vitamins May Ward
Off Autism”. Do you find the title of this article to be appropriate? Explain your answer.
Additionally, propose an alternative title.”

6.35 HIV in sub-Saharan Africa. In July 2008 the US National Institutes of Health an-
nounced that it was stopping a clinical study early because of unexpected results. The study
population consisted of HIV-infected women in sub-Saharan Africa who had been given single
dose Nevaripine (a treatment for HIV) while giving birth, to prevent transmission of HIV to the
infant. The study was a randomized comparison of continued treatment of a woman (after suc-
cessful childbirth) with Nevaripine vs. Lopinavir, a second drug used to treat HIV. 240 women
participated in the study; 120 were randomized to each of the two treatments. Twenty-four weeks
after starting the study treatment, each woman was tested to determine if the HIV infection was
becoming worse (an outcome called virologic failure). Twenty-six of the 120 women treated with
Nevaripine experienced virologic failure, while 10 of the 120 women treated with the other drug
experienced virologic failure.””

(a) Create a two-way table presenting the results of this study.
(b) State appropriate hypotheses to test for independence of treatment and virologic failure.

(c) Complete the hypothesis test and state an appropriate conclusion. (Reminder: verify any
necessary conditions for the test.)

56National Sleep Foundation, 2012 Sleep in America Poll: Transportation Workers Sleep, 2012.

57R.J. Schmidt et al. “Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism”.
In: Epidemiology 22.4 (2011), p. 476.

58R.C. Rabin. “Patterns: Prenatal Vitamins May Ward Off Autism”. In: New York Times (2011).

593, Lockman et al. “Response to antiretroviral therapy after a single, peripartum dose of nevirapine”.

In: Obstetrical & gynecological survey 62.6 (2007), p. 361.


http://www.sleepfoundation.org/2012poll
http://www.ncbi.nlm.nih.gov/pubmed/21610500
http://www.nytimes.com/2011/06/14/health/research/14patterns.html?_r=1&ref=research
http://www.nejm.org/doi/pdf/10.1056/NEJMoa062876
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6.36 Diabetes and unemployment. A 2012 Gallup poll surveyed Americans about their
employment status and whether or not they have diabetes. The survey results indicate that 1.5%
of the 47,774 employed (full or part time) and 2.5% of the 5,855 unemployed 18-29 year olds have
diabetes.””

(a) Create a two-way table presenting the results of this study.

(b) State appropriate hypotheses to test for independence of incidence of diabetes and employment
status.

(¢) The sample difference is about 1%. If we completed the hypothesis test, we would find that
the p-value is very small (about 0), meaning the difference is statistically significant. Use
this result to explain the difference between statistically significant and practically significant
findings.

6.7.3 Testing for goodness of fit using chi-square

6.37 True or false, Part I. Determine if the statements below are true or false. For each false

statement, suggest an alternative wording to make it a true statement.

(a) The chi-square distribution, just like the normal distribution, has two parameters, mean and
standard deviation.

(b) The chi-square distribution is always right skewed, regardless of the value of the degrees of
freedom parameter.

(¢) The chi-square statistic is always positive.

(d) As the degrees of freedom increases, the shape of the chi-square distribution becomes more
skewed.

6.38 True or false, Part II. Determine if the statements below are true or false. For each false
statement, suggest an alternative wording to make it a true statement.

(a) As the degrees of freedom increases, the mean of the chi-square distribution increases.

(b) If you found X? = 10 with df = 5 you would fail to reject Ho at the 5% significance level.

(c) When finding the p-value of a chi-square test, we always shade the tail areas in both tails.
)

(d) As the degrees of freedom increases, the variability of the chi-square distribution decreases.

6.39 Open source textbook. A professor using an open source introductory statistics book
predicts that 60% of the students will purchase a hard copy of the book, 25% will print it out from
the web, and 15% will read it online. At the end of the semester he asks his students to complete
a survey where they indicate what format of the book they used. Of the 126 students, 71 said
they bought a hard copy of the book, 30 said they printed it out from the web, and 25 said they
read it online.

(a) State the hypotheses for testing if the professor’s predictions were inaccurate.

(b) How many students did the professor expect to buy the book, print the book, and read the
book exclusively online?

(c) This is an appropriate setting for a chi-square test. List the conditions required for a test and
verify they are satisfied.

(d) Calculate the chi-squared statistic, the degrees of freedom associated with it, and the p-value.

(e) Based on the p-value calculated in part (d), what is the conclusion of the hypothesis test?
Interpret your conclusion in this context.

60Gallup Wellbeing, Employed Americans in Better Health Than the Unemployed, data collected Jan.
2, 2011 - May 21, 2012.


http://www.gallup.com/poll/155408/Employed-Americans-Better-Health-Unemployed.aspx
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6.40 Evolution vs. creationism. A Gallup Poll released in December 2010 asked 1019 adults
living in the Continental U.S. about their belief in the origin of humans. These results, along with
results from a more comprehensive poll from 2001 (that we will assume to be exactly accurate),
are summarized in the table below:"’

Year
Response 2010 2001
Humans evolved, with God guiding (1) 38%  37%
Humans evolved, but God had no part in process (2) 16% 12%
God created humans in present form (3) 0%  45%
Other / No opinion (4) 6% 6%

(a) Calculate the actual number of respondents in 2010 that fall in each response category.

(b) State hypotheses for the following research question: have beliefs on the origin of human life
changed since 20017

(c) Calculate the expected number of respondents in each category under the condition that the
null hypothesis from part (b) is true.

(d) Conduct a chi-square test and state your conclusion. (Reminder: verify conditions.)

6.7.4 Testing for independence in two-way tables

6.41 Quitters. Does being part of a support group affect the ability of people to quit smoking?
A county health department enrolled 300 smokers in a randomized experiment. 150 participants
were assigned to a group that used a nicotine patch and met weekly with a support group; the
other 150 received the patch and did not meet with a support group. At the end of the study, 40
of the participants in the patch plus support group had quit smoking while only 30 smokers had
quit in the other group.

(a) Create a two-way table presenting the results of this study.

(b) Answer each of the following questions under the null hypothesis that being part of a support
group does not affect the ability of people to quit smoking, and indicate whether the expected
values are higher or lower than the observed values.

i. How many subjects in the “patch 4+ support” group would you expect to quit?
ii. How many subjects in the “only patch” group would you expect to not quit?

6.42 Full body scan, Part II. The table below summarizes a data set we first encountered
in Exercise 6.32 regarding views on full-body scans and political affiliation. The differences in
each political group may be due to chance. Complete the following computations under the null
hypothesis of independence between an individual’s party affiliation and his support of full-body
scans. It may be useful to first add on an extra column for row totals before proceeding with the
computations.

Party Affiliation
Republican Democrat Independent

Should 264 299 351
Answer  Should not 38 55 7
Don’t know/No answer 16 15 22
Total 318 369 450

(a) How many Republicans would you expect to not support the use of full-body scans?
(b) How many Democrats would you expect to support the use of full-body scans?

(¢) How many Independents would you expect to not know or not answer?

61Four in 10 Americans Believe in Strict Creationism, December 17, 2010, http://www.gallup.com/poll/
145286 /Four- Americans- Believe-Strict- Creationism.aspx.


http://www.gallup.com/poll/145286/Four-Americans-Believe-Strict-Creationism.aspx
http://www.gallup.com/poll/145286/Four-Americans-Believe-Strict-Creationism.aspx

6.7. EXERCISES 309

6.43 Offshore drilling, Part II1. The table below summarizes a data set we first encountered
in Exercise 6.29 that examines the responses of a random sample of college graduates and non-
graduates on the topic of oil drilling. Complete a chi-square test for these data to check whether
there is a statistically significant difference in responses from college graduates and non-graduates.

College Grad

Yes No
Support 154 132
Oppose 180 126
Do not know 104 131
Total 438 389

6.44 Coffee and Depression. Researchers conducted a study investigating the relationship
between caffeinated coffee consumption and risk of depression in women. They collected data
on 50,739 women free of depression symptoms at the start of the study in the year 1996, and
these women were followed through 2006. The researchers used questionnaires to collect data on
caffeinated coffee consumption, asked each individual about physician-diagnosed depression, and
also asked about the use of antidepressants. The table below shows the distribution of incidences
of depression by amount of caffeinated coffee consumption.“”

Caffeinated coffee consumption

<1 2.6 i 23 >4
cup/week cups/week cup/day cups/day cups/day  Total
Clinical ~ Yes 670 [373] 905 564 95 2,607
depression  No 11,545 6,244 16,329 11,726 2,288 48,132
Total 12,215 6,617 17,234 12,290 2,383 50,739

(a) What type of test is appropriate for evaluating if there is an association between coffee intake
and depression?

(b) Write the hypotheses for the test you identified in part (a).
(c) Calculate the overall proportion of women who do and do not suffer from depression.

(d) Identify the expected count for the highlighted cell, and calculate the contribution of this cell
to the test statistic, i.e. (Observed — Expected)/Expected.

(e) The test statistic is X? = 20.93. What is the p-value?
(f) What is the conclusion of the hypothesis test?

(g) One of the authors of this study was quoted on the NYTimes as saying it was “too early to
recommend that women load up on extra coffee” based on just this study.’” Do you agree with
this statement? Explain your reasoning.

62M. Lucas et al. “Coffee, caffeine, and risk of depression among women”. In: Archives of internal
medicine 171.17 (2011), p. 1571.
63A. O’Connor. “Coffee Drinking Linked to Less Depression in Women”. In: New York Times (2011).


http://archinte.jamanetwork.com/data/Journals/INTEMED/22528/ioi15048_1571_1578.pdf
http://well.blogs.nytimes.com/2011/09/26/coffee-drinking-linked-to-less-depression-in-women
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6.45 Privacy on Facebook. A 2011 survey asked 806 randomly sampled adult Facebook users
about their Facebook privacy settings. One of the questions on the survey was, “Do you know
how to adjust your Facebook privacy settings to control what people can and cannot see?” The
responses are cross-tabulated based on gender.""

Gender
Male Female Total
Yes 288 378 666
Response  No 61 62 123
Not sure 10 7 17
Total 359 447 806

(a) State appropriate hypotheses to test for independence of gender and whether or not Facebook
users know how to adjust their privacy settings.

(b) Verify any necessary conditions for the test and determine whether or not a chi-square test
can be completed.

6.46 Shipping holiday gifts. A December 2010 survey asked 500 randomly sampled Los
Angeles residents which shipping carrier they prefer to use for shipping holiday gifts. The table
below shows the distribution of responses by age group as well as the expected counts for each cell
(shown in parentheses).

Age
18-34 35-54 55+ Total
USPS 72 (81) | 97 (102) | T6  (62) 245
UPS 52 (53) | 76 (68) | 34  (41) 162
Shipping Method FedEx 31 (21) | 24 (27) 9 (16) 64
Something else | 7 (5) 6 (7) 3 (4) 16
Not sure 3 (5) 6 (5) 4 (3) 13
Total 165 209 126 500

(a) State the null and alternative hypotheses for testing for independence of age and preferred
shipping method for holiday gifts among Los Angeles residents.

(b) Are the conditions for inference using a chi-square test satisfied?

6.7.5 Small sample hypothesis testing for a proportion

6.47 Bullying in schools. A 2012 Survey USA poll asked Florida residents how big of a problem
they thought bullying was in local schools. 9 out of 191 18-34 year olds responded that bullying is
no problem at all. Using these data, is it appropriate to construct a confidence interval using the
formula p =+ z*1/p(1 — p)/n for the true proportion of 18-34 year old Floridians who think bullying
is no problem at all? If it is appropriate, construct the confidence interval. If it is not, explain
why.

64Survey USA, News Poll #17960, data collected February 16-17, 2011.


http://www.surveyusa.com/client/PollPrint.aspx?g=2ef98776-a34d-419f-bb2e-466ef4098289&d=0
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6.48 Choose a test. We would like to test the following hypotheses:
Hy : P = 0.1
Hp:p#0.1

The sample size is 120 and the sample proportion is 8.5%. Determine which of the below test(s)
is/are appropriate for this situation and explain your reasoning.

1. Z test for a proportion, IV. Simulation test for a proportion

i.e. proportion test using normal model
. . V. t test for a mean
II. Z test for comparing two proportions

ITI. x? test of independence VI. ANOVA

6.49 The Egyptian Revolution. A popular uprising that started on January 25, 2011 in Egypt
led to the 2011 Egyptian Revolution. Polls show that about 69% of American adults followed the
news about the political crisis and demonstrations in Egypt closely during the first couple weeks
following the start of the uprising. Among a random sample of 30 high school students, it was
found that only 17 of them followed the news about Egypt closely during this time."”

(a) Write the hypotheses for testing if the proportion of high school students who followed the
news about Egypt is different than the proportion of American adults who did.

(b) Calculate the proportion of high schoolers in this sample who followed the news about Egypt
closely during this time.

(c) Based on large sample theory, we modeled p using the normal distribution. Why should we
be cautious about this approach for these data?

(d) The normal approximation will not be as reliable as a simulation, especially for a sample of this
size. Describe how to perform such a simulation and, once you had results, how to estimate
the p-value.

(e) Below is a histogram showing the distribution of psim in 10,000 simulations under the null
hypothesis. Estimate the p-value using the plot and determine the conclusion of the hypothesis

test.
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65Gallup Politics, Americans’ Views of Egypt Sharply More Negative, data collected February 2-5, 2011.


http://www.gallup.com/poll/146003/americans-views-egypt-sharply-negative.aspx
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6.50 Assisted Reproduction. Assisted Reproductive Technology (ART) is a collection of
techniques that help facilitate pregnancy (e.g. in vitro fertilization). A 2008 report by the Centers
for Disease Control and Prevention estimated that ART has been successful in leading to a live
birth in 31% of cases’®. A new fertility clinic claims that their success rate is higher than average.
A random sample of 30 of their patients yielded a success rate of 40%. A consumer watchdog
group would like to determine if this provides strong evidence to support the company’s claim.

(a) Write the hypotheses to test if the success rate for ART at this clinic is significantly higher
than the success rate reported by the CDC.

(b) Based on large sample theory, we modeled p using the normal distribution. Why is this not
appropriate here?

(¢) The normal approximation would be less reliable here, so we should use a simulation strategy.
Describe a setup for a simulation that would be appropriate in this situation and how the
p-value can be calculated using the simulation results.

(d) Below is a histogram showing the distribution of psim in 10,000 simulations under the null
hypothesis. Estimate the p-value using the plot and use it to evaluate the hypotheses.

(e) After performing this analysis, the consumer group releases the following news headline: “In-
fertility clinic falsely advertises better success rates”. Comment on the appropriateness of this
statement.
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66CDC. 2008 Assisted Reproductive Technology Report.


http://www.cdc.gov/art/ART2008/index.htm
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6.7.6 Hypothesis testing for two proportions

6.51 Social experiment, Part II. Exercise 6.23 introduces a “social experiment” conducted
by a TV program that questioned what people do when they see a very obviously bruised woman
getting picked on by her boyfriend. On two different occasions at the same restaurant, the same
couple was depicted. In one scenario the woman was dressed “provocatively” and in the other
scenario the woman was dressed “conservatively”. The table below shows how many restaurant
diners were present under each scenario, and whether or not they intervened.

Scenario
Provocative  Conservative Total
Intervene Yes o 15 20
No 15 10 25
Total 20 25 45

A simulation was conducted to test if people react differently under the two scenarios. 10,000
simulated differences were generated to construct the null distribution shown. The value Ppr sim
represents the proportion of diners who intervened in the simulation for the provocatively dressed
woman, and Peon,sim 1S the proportion for the conservatively dressed woman.
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(a) What are the hypotheses? For the purposes of this exercise, you may assume that each
observed person at the restaurant behaved independently, though we would want to evaluate
this assumption more rigorously if we were reporting these results.

(b) Calculate the observed difference between the rates of intervention under the provocative and
conservative scenarios: pPpr — Peon-

(c) Estimate the p-value using the figure above and determine the conclusion of the hypothesis
test.
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6.52 Is yawning contagious? An experiment conducted by the MythBusters, a science en-
tertainment TV program on the Discovery Channel, tested if a person can be subconsciously
influenced into yawning if another person near them yawns. 50 people were randomly assigned to
two groups: 34 to a group where a person near them yawned (treatment) and 16 to a group where
there wasn’t a person yawning near them (control). The following table shows the results of this
experiment.®”

Group
Treatment Control Total
Result Yawn 10 4 14
Not Yawn 24 12 36
Total 34 16 50

A simulation was conducted to understand the distribution of the test statistic under the assump-
tion of independence: having someone yawn near another person has no influence on if the other
person will yawn. In order to conduct the simulation, a researcher wrote yawn on 14 index cards
and not yawn on 36 index cards to indicate whether or not a person yawned. Then he shuffled
the cards and dealt them into two groups of size 34 and 16 for treatment and control, respectively.
He counted how many participants in each simulated group yawned in an apparent response to a
nearby yawning person, and calculated the difference between the simulated proportions of yawn-
ing as Pirtmt,sim — Detri,sim- Lhis simulation was repeated 10,000 times using software to obtain
10,000 differences that are due to chance alone. The histogram shows the distribution of the
simulated differences.
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(a) What are the hypotheses?
(b) Calculate the observed difference between the yawning rates under the two scenarios.

(c) Estimate the p-value using the figure above and determine the conclusion of the hypothesis
test.

67MythBusters, Season 3, Episode 28.


http://www.yourdiscovery.com/video/mythbusters-top-10-is-yawning-contagious

Chapter 7

Introduction to linear
regression

Linear regression is a very powerful statistical technique. Many people have some familiarity
with regression just from reading the news, where graphs with straight lines are overlaid
on scatterplots. Linear models can be used for prediction or to evaluate whether there is a
linear relationship between two numerical variables.

Figure 7.1 shows two variables whose relationship can be modeled perfectly with a
straight line. The equation for the line is

y =5+ 57.49z

Imagine what a perfect linear relationship would mean: you would know the exact value
of y just by knowing the value of z. This is unrealistic in almost any natural process. For
example, if we took family income z, this value would provide some useful information
about how much financial support y a college may offer a prospective student. However,
there would still be variability in financial support, even when comparing students whose
families have similar financial backgrounds.

Linear regression assumes that the relationship between two variables, x and y, can
be modeled by a straight line:

y=Po+ bz (7.1)

where By and (8 represent two model parameters (S is the Greek letter beta). These
parameters are estimated using data, and we write their point estimates as by and b;.
When we use z to predict y, we usually call x the explanatory or predictor variable, and
we call y the response.

It is rare for all of the data to fall on a straight line, as seen in the three scatterplots in
Figure 7.2. In each case, the data fall around a straight line, even if none of the observations
fall exactly on the line. The first plot shows a relatively strong downward linear trend, where
the remaining variability in the data around the line is minor relative to the strength of
the relationship between x and y. The second plot shows an upward trend that, while
evident, is not as strong as the first. The last plot shows a very weak downward trend in
the data, so slight we can hardly notice it. In each of these examples, we will have some
uncertainty regarding our estimates of the model parameters, 5y and ;. For instance, we
might wonder, should we move the line up or down a little, or should we tilt it more or less?
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Figure 7.1: Requests from twelve separate buyers were simultaneously
placed with a trading company to purchase Target Corporation stock (ticker
TGT, April 26th, 2012), and the total cost of the shares were reported. Be-
cause the cost is computed using a linear formula, the linear fit is perfect.
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Figure 7.2: Three data sets where a linear model may be useful even though
the data do not all fall exactly on the line.

As we move forward in this chapter, we will learn different criteria for line-fitting, and we
will also learn about the uncertainty associated with estimates of model parameters.

We will also see examples in this chapter where fitting a straight line to the data, even
if there is a clear relationship between the variables, is not helpful. One such case is shown
in Figure 7.3 where there is a very strong relationship between the variables even though
the trend is not linear. We will discuss nonlinear trends in this chapter and the next, but
the details of fitting nonlinear models are saved for a later course.

7.1 Line fitting, residuals, and correlation

It is helpful to think deeply about the line fitting process. In this section, we examine
criteria for identifying a linear model and introduce a new statistic, correlation.
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Figure 7.3: A linear model is not useful in this nonlinear case. These data
are from an introductory physics experiment.

7.1.1 Beginning with straight lines

Scatterplots were introduced in Chapter 1 as a graphical technique to present two numerical
variables simultaneously. Such plots permit the relationship between the variables to be
examined with ease. Figure 7.4 shows a scatterplot for the head length and total length
of 104 brushtail possums from Australia. Each point represents a single possum from the
data.

The head and total length variables are associated. Possums with an above average
total length also tend to have above average head lengths. While the relationship is not per-
fectly linear, it could be helpful to partially explain the connection between these variables
with a straight line.

Straight lines should only be used when the data appear to have a linear relationship,
such as the case shown in the left panel of Figure 7.6. The right panel of Figure 7.6 shows
a case where a curved line would be more useful in understanding the relationship between
the two variables.

Caution: Watch out for curved trends

We only consider models based on straight lines in this chapter. If data show a
nonlinear trend, like that in the right panel of Figure 7.6, more advanced techniques
should be used.

7.1.2 Fitting a line by eye

We want to describe the relationship between the head length and total length variables
in the possum data set using a line. In this example, we will use the total length as
the predictor variable, x, to predict a possum’s head length, y. We could fit the linear
relationship by eye, as in Figure 7.7. The equation for this line is

§ =41 + 0.59z (7.2)
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Figure 7.4: A scatterplot showing head length against total length for 104
brushtail possums. A point representing a possum with head length 94.1mm
and total length 89cm is highlighted.

Figure 7.5: The common brushtail possum of Australia.

Photo by wollombi on Flickr: www.flickr.com/photos/wollombi/58499575


http://flickr.com/photos/wollombi/58499575/
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Figure 7.6: The figure on the left shows head length versus total length, and
reveals that many of the points could be captured by a straight band. On
the right, we see that a curved band is more appropriate in the scatterplot
for weight and mpgCity from the cars data set.

We can use this line to discuss properties of possums. For instance, the equation predicts
a possum with a total length of 80 cm will have a head length of

y =41+ 0.59 x 80
= 88.2

A “hat” on y is used to signify that this is an estimate. This estimate may be viewed as
an average: the equation predicts that possums with a total length of 80 cm will have an
average head length of 88.2 mm. Absent further information about an 80 cm possum, the
prediction for head length that uses the average is a reasonable estimate.

7.1.3 Residuals

Residuals are the leftover variation in the data after accounting for the model fit:
Data = Fit + Residual

Each observation will have a residual. If an observation is above the regression line, then
its residual, the vertical distance from the observation to the line, is positive. Observations
below the line have negative residuals. One goal in picking the right linear model is for
these residuals to be as small as possible.

Three observations are noted specially in Figure 7.7. The observation marked by an
“x” has a small, negative residual of about -1; the observation marked by “+” has a large
residual of about +7; and the observation marked by “A” has a moderate residual of about
-4. The size of a residual is usually discussed in terms of its absolute value. For example,
the residual for “A” is larger than that of “x” because | — 4] is larger than | — 1].
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Figure 7.7: A reasonable linear model was fit to represent the relationship
between head length and total length.

Residual: difference between observed and expected
The residual of the i*" observation (x;, ;) is the difference of the observed response
(y;) and the response we would predict based on the model fit (¢;):

We typically identify g; by plugging z; into the model.

e =y — Ui

©)

Example 7.3 The linear fit shown in Figure 7.7 is given as § = 41 4 0.59z. Based
on this line, formally compute the residual of the observation (77.0,85.3). This obser-
vation is denoted by “x” on the plot. Check it against the earlier visual estimate, -1.

We first compute the predicted value of point “x” based on the model:

Jx =41 +0.59z, =414 0.59 x 77.0 = 86.4

Next we compute the difference of the actual head length and the predicted head
length:

ex = Yx — Yx = 85.3 — 86.43 = —0.93
This is very close to the visual estimate of -1.

Exercise 7.4 If a model underestimates an observation, will the residual be positive
or negative? What about if it overestimates the observation?’

LIf a model underestimates an observation, then the model estimate is below the actual. The residual,
which is the actual observation value minus the model estimate, must then be positive. The opposite is
true when the model overestimates the observation: the residual is negative.
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Figure 7.8: Residual plot for the model in Figure

() Exercise 7.5 Compute the residuals for the observations (85.0,98.6) (“+” in the

figure) and (95.5,94.0) (“A”) using the linear relationship § = 41 + 0.59z. ~

Residuals are helpful in evaluating how well a linear model fits a data set. We often

display them in a residual plot such as the one shown in Figure 7.8 for the regression line
in Figure 7.7. The residuals are plotted at their original horizontal locations but with the
vertical coordinate as the residual. For instance, the point (85.0,98.6), had a residual of
7.45, so in the residual plot it is placed at (85.0,7.45). Creating a residual plot is sort of
like tipping the scatterplot over so the regression line is horizontal.

@® Example 7.6 One purpose of residual plots is to identify characteristics or patterns

~

still apparent in data after fitting a model. Figure 7.9 shows three scatterplots with
linear models in the first row and residual plots in the second row. Can you identify
any patterns remaining in the residuals?

In the first data set (first column), the residuals show no obvious patterns. The
residuals appear to be scattered randomly around the dashed line that represents 0.

The second data set shows a pattern in the residuals. There is some curvature in the
scatterplot, which is more obvious in the residual plot. We should not use a straight
line to model these data. Instead, a more advanced technique should be used.

The last plot shows very little upwards trend, and the residuals also show no obvious
patterns. It is reasonable to try to fit a linear model to the data. However, it is
unclear whether there is statistically significant evidence that the slope parameter is
different from zero. The point estimate of the slope parameter, labeled by, is not zero,
but we might wonder if this could just be due to chance. We will address this sort of
scenario in Section 7.4.

2(+) First compute the predicted value based on the model:

U+ =414 0.59z4 =414 0.59 x 85.0 = 91.15

Then the residual is given by

ey =Yy — G4 = 98.6 —91.15 = 7.45

This was close to the earlier estimate of 7.
(D) ga =414 0.59z4 = 97.3. ea =y — Ga = —3.3, close to the estimate of -4.
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Figure 7.9: Sample data with their best fitting lines (top row) and their
corresponding residual plots (bottom row).

7.1.4 Describing linear relationships with correlation

Correlation: strength of a linear relationship
Correlation, which always takes values between -1 and 1, describes the strength
of the linear relationship between two variables. We denote the correlation by R.

We can compute the correlation using a formula, just as we did with the sample mean
and standard deviation. However, this formula is rather complex,” so we generally perform
the calculations on a computer or calculator. Figure 7.10 shows eight plots and their
corresponding correlations. Only when the relationship is perfectly linear is the correlation
either -1 or 1. If the relationship is strong and positive, the correlation will be near +1.
If it is strong and negative, it will be near -1. If there is no apparent linear relationship
between the variables, then the correlation will be near zero.

The correlation is intended to quantify the strength of a linear trend. Nonlinear trends,
even when strong, sometimes produce correlations that do not reflect the strength of the

relationship; see three such examples in Figure 7.11.

() Exercise 7.7 It appears no straight line would fit any of the datasets represented
in Figure 7.11. Try drawing nonlinear curves on each plot. Once you create a curve
for each, describe what is important in your fit.*

3Formally, we can compute the correlation for observations (z1,%1), (2,%2), ..., (Tn,¥yn) using the
formula

1
R =
n—1*“

n —
=

Ti—TY — Y
Sx

1 Sy

where Z, §, sz, and sy are the sample means and standard deviations for each variable.
4We’ll leave it to you to draw the lines. In general, the lines you draw should be close to most points
and reflect overall trends in the data.
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Figure 7.10: Sample scatterplots and their correlations. The first row shows
variables with a positive relationship, represented by the trend up and to
the right. The second row shows variables with a negative trend, where a
large value in one variable is associated with a low value in the other.
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Figure 7.11: Sample scatterplots and their correlations. In each case, there
is a strong relationship between the variables. However, the correlation is
not very strong, and the relationship is not linear.
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Gift Aid From University ($1000s)

0 100 200
Family Income ($1000s)

Figure 7.12: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College. Two lines are fit to the data, the solid
line being the least squares line.

7.2 Fitting a line by least squares regression

Fitting linear models by eye is open to criticism since it is based on an individual preference.
In this section, we use least squares regression as a more rigorous approach.

This section considers family income and gift aid data from a random sample of fifty
students in the 2011 freshman class of Elmhurst College in Illinois.” Gift aid is financial
aid that is a gift, as opposed to a loan. A scatterplot of the data is shown in Figure 7.12
along with two linear fits. The lines follow a negative trend in the data; students who have
higher family incomes tended to have lower gift aid from the university.

() Exercise 7.8 Is the correlation positive or negative in Figure 7.12?°

7.2.1 An objective measure for finding the best line

We begin by thinking about what we mean by “best”. Mathematically, we want a line
that has small residuals. Perhaps our criterion could minimize the sum of the residual
magnitudes:

lex| +lea| + -+ + len] (7.9)

which we could accomplish with a computer program. The resulting dashed line shown
in Figure 7.12 demonstrates this fit can be quite reasonable. However, a more common
practice is to choose the line that minimizes the sum of the squared residuals:

el+er+...e2 (7.10)

5These data were sampled from a table of data for all freshman from the 2011 class at Elmhurst
College that accompanied an article titled What Students Really Pay to Go to College published online by
The Chronicle of Higher Education: chronicle.com/article/What-Students-Really-Pay-to-Go/131435

SLarger family incomes are associated with lower amounts of aid, so the correlation will be negative.
Using a computer, the correlation can be computed: -0.499.
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The line that minimizes this least squares criterion is represented as the solid line in
Figure 7.12. This is commonly called the least squares line. The following are three
possible reasons to choose Criterion (7.10) over Criterion (7.9):

1. It is the most commonly used method.

2. Computing the line based on Criterion (7.10) is much easier by hand and in most
statistical software.

3. In many applications, a residual twice as large as another residual is more than twice
as bad. For example, being off by 4 is usually more than twice as bad as being off by
2. Squaring the residuals accounts for this discrepancy.

The first two reasons are largely for tradition and convenience; the last reason explains why
Criterion (7.10) is typically most helpful.”

7.2.2 Conditions for the least squares line
When fitting a least squares line, we generally require

Linearity. The data should show a linear trend. If there is a nonlinear trend (e.g. left
panel of Figure 7.13), an advanced regression method from another book or later
course should be applied.

Nearly normal residuals. Generally the residuals must be nearly normal. When this
condition is found to be unreasonable, it is usually because of outliers or concerns
about influential points, which we will discuss in greater depth in Section 7.3. An
example of non-normal residuals is shown in the second panel of Figure 7.13.

Constant variability. The variability of points around the least squares line remains
roughly constant. An example of non-constant variability is shown in the third panel
of Figure 7.13.

Be cautious about applying regression to data collected sequentially in what is called a
time series. Such data may have an underlying structure that should be considered in
a model and analysis. There are other instances where correlations within the data are
important. This topic will be further discussed in Chapter 8.

() Exercise 7.11  Should we have concerns about applying least squares regression to
the Elmhurst data in Figure 7.127%
7.2.3 Finding the least squares line
For the Elmhurst data, we could write the equation of the least squares regression line as
aid = Bo + B1 X family_income

Here the equation is set up to predict gift aid based on a student’s family income, which
would be useful to students considering Elmhurst. These two values, 5y and 31, are the
parameters of the regression line.

"There are applications where Criterion (7.9) may be more useful, and there are plenty of other criteria
we might consider. However, this book only applies the least squares criterion.

8The trend appears to be linear, the data fall around the line with no obvious outliers, the variance is
roughly constant. These are also not time series observations. Least squares regression can be applied to
these data.
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Figure 7.13: Four examples showing when the methods in this chapter are
insufficient to apply to the data. In the left panel, a straight line does not
fit the data. In the second panel, there are outliers; two points on the left
are relatively distant from the rest of the data, and one of these points
is very far away from the line. In the third panel, the variability of the
data around the line increases with larger values of z. In the last panel,
a time series data set is shown, where successive observations are highly
correlated.

As in Chapters 4-6, the parameters are estimated using observed data. In practice,
this estimation is done using a computer in the same way that other estimates, like a
sample mean, can be estimated using a computer or calculator. However, we can also find
the parameter estimates by applying two properties of the least squares line:

e The slope of the least squares line can be estimated by
by = YR (7.12)

Sx

where R is the correlation between the two variables, and s, and s, are the sample
standard deviations of the explanatory variable and response, respectively.

e If Z is the mean of the horizontal variable (from the data) and g is the mean of the
vertical variable, then the point (Z, ) is on the least squares line.

We use by and by to represent the point estimates of the parameters Gy and (1.

() Exercise 7.13 Table 7.14 shows the sample means for the family income and gift
aid as $101,800 and $19,940, respectively. Plot the point (101.8,19.94) on Figure 7.12
on page 324 to verify it falls on the least squares line (the solid line).”

family income, in $1000s (“z”)  gift aid, in $1000s (“y”)

mean T = 101.8 7 =19.94
sd Sy = 63.2 5y = 5.46
R =-0.499

Table 7.14: Summary statistics for family income and gift aid.

91f you need help finding this location, draw a straight line up from the x-value of 100 (or thereabout).
Then draw a horizontal line at 20 (or thereabout). These lines should intersect on the least squares line.
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() Exercise 7.14  Using the summary statistics in Table 7.14, compute the slope for
the regression line of gift aid against family income.'"

You might recall the point-slope form of a line from math class (another common
form is slope-intercept). Given the slope of a line and a point on the line, (zg,yo), the
equation for the line can be written as

y — yo = slope x (x — x9) (7.15)

A common exercise to become more familiar with foundations of least squares regression
is to use basic summary statistics and point-slope form to produce the least squares line.

TIP: Identifying the least squares line from summary statistics
To identify the least squares line from summary statistics:

e Estimate the slope parameter, by, using Equation (7.12).
e Noting that the point (Z, %) is on the least squares line, use 9 = Z and yg = ¥

along with the slope b; in the point-slope equation:

y—y="bi(zr—I)

e Simplify the equation.

® Example 7.16 Using the point (101.8,19.94) from the sample means and the slope
estimate by = —0.0431 from Exercise 7.14, find the least-squares line for predicting
aid based on family income.

Apply the point-slope equation using (101.8,19.94) and the slope b, = —0.0431:

Y —yo = bi(x — o)
y —19.94 = —0.0431(z — 101.8)

Expanding the right side and then adding 19.94 to each side, the equation simplifies:
aid = 24.3 — 0.0431 x family_income

Here we have replaced y with aid and z with family_income to put the equation in
context.

We mentioned earlier that a computer is usually used to compute the least squares
line. A summary table based on computer output is shown in Table 7.15 for the Elmhurst
data. The first column of numbers provides estimates for by and by, respectively. Compare
these to the result from Example 7.16.

10 Apply Equation (7.12) with the summary statistics from Table 7.14 to compute the slope:

4
by = ¥R = 20 6 409y = —0.0431
se 632
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Estimate Std. Error t value Pr(>[t|)

(Intercept) 24.3193 1.2915 18.83 0.0000
family_income -0.0431 0.0108 -3.98 0.0002

Table 7.15: Summary of least squares fit for the Elmhurst data. Compare
the parameter estimates in the first column to the results of Example 7.16.

® Example 7.17 Examine the second, third, and fourth columns in Table 7.15. Can

you guess what they represent?

We’ll describe the meaning of the columns using the second row, which corresponds
to B1. The first column provides the point estimate for (51, as we calculated in
an earlier example: -0.0431. The second column is a standard error for this point
estimate: 0.0108. The third column is a ¢ test statistic for the null hypothesis that
B1=0: T = —3.98. The last column is the p-value for the t test statistic for the null
hypothesis 81 = 0 and a two-sided alternative hypothesis: 0.0002. We will get into
more of these details in Section 7.4.

Example 7.18 Suppose a high school senior is considering Elmhurst College. Can
she simply use the linear equation that we have estimated to calculate her financial
aid from the university?

She may use it as an estimate, though some qualifiers on this approach are important.

First, the data all come from one freshman class, and the way aid is determined by
the university may change from year to year. Second, the equation will provide an
imperfect estimate. While the linear equation is good at capturing the trend in the
data, no individual student’s aid will be perfectly predicted.

7.2.4 Interpreting regression line parameter estimates

Interpreting parameters in a regression model is often one of the most important steps in
the analysis.

® Example 7.19 The slope and intercept estimates for the Elmhurst data are -0.0431

and 24.3. What do these numbers really mean?

Interpreting the slope parameter is helpful in almost any application. For each addi-
tional $1,000 of family income, we would expect a student to receive a net difference
of $1,000 x (—0.0431) = —$43.10 in aid on average, i.e. $43.10 less. Note that a
higher family income corresponds to less aid because the coefficient of family income
is negative in the model. We must be cautious in this interpretation: while there
is a real association, we cannot interpret a causal connection between the variables
because these data are observational. That is, increasing a student’s family income
may not cause the student’s aid to drop. (It would be reasonable to contact the
college and ask if the relationship is causal, i.e. if Elmhurst College’s aid decisions
are partially based on students’ family income.)

The estimated intercept by = 24.3 (in $1000s) describes the average aid if a student’s
family had no income. The meaning of the intercept is relevant to this application
since the family income for some students at Elmhurst is $0. In other applications,
the intercept may have little or no practical value if there are no observations where
T is near zero.
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Interpreting parameters estimated by least squares

The slope describes the estimated difference in the y variable if the explanatory
variable z for a case happened to be one unit larger. The intercept describes the
average outcome of y if x = 0 and the linear model is valid all the way to x = 0,
which in many applications is not the case.

7.2.5 Extrapolation is treacherous

When those blizzards hit the Fast Coast this winter, it proved to my satisfaction that global warming
was a fraud. That snow was freezing cold. But in an alarming trend, temperatures this spring have
risen. Consider this: On February 61" it was 10 degrees. Today it hit almost 80. At this rate, by
August it will be 220 degrees. So clearly folks the climate debate rages on.

Stephen Colbert
April 6th, 2010 !

Linear models can be used to approximate the relationship between two variables.
However, these models have real limitations. Linear regression is simply a modeling frame-
work. The truth is almost always much more complex than our simple line. For example,
we do not know how the data outside of our limited window will behave.

® Example 7.20 Use the model aid = 24.3 — 0.0431 x family_income to estimate
the aid of another freshman student whose family had income of $1 million.

Recall that the units of family income are in $1000s, so we want to calculate the aid
for family_income = 1000:

24.3 — 0.0431 x family_income = 24.3 — 0.0431 x 1000 = —18.8

The model predicts this student will have -$18,800 in aid (!). Elmhurst College cannot
(or at least does not) require any students to pay extra on top of tuition to attend.

Applying a model estimate to values outside of the realm of the original data is called
extrapolation. Generally, a linear model is only an approximation of the real relation-
ship between two variables. If we extrapolate, we are making an unreliable bet that the
approximate linear relationship will be valid in places where it has not been analyzed.

7.2.6 Using R? to describe the strength of a fit

We evaluated the strength of the linear relationship between two variables earlier using the
correlation, R. However, it is more common to explain the strength of a linear fit using R?,
called R-squared. If provided with a linear model, we might like to describe how closely
the data cluster around the linear fit.

The R? of a linear model describes the amount of variation in the response that is
explained by the least squares line. For example, consider the Elmhurst data, shown in
Figure 7.16. The variance of the response variable, aid received, is s2,;, = 29.8. However,
if we apply our least squares line, then this model reduces our uncertainty in predicting

Hhttp://www.colbertnation.com /the-colbert-report-videos/269929/
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Gift Aid From University ($1000s)

0 100 200
Family Income ($1000s)

Figure 7.16: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College, shown with the least squares regression
line.

aid using a student’s family income. The variability in the residuals describes how much
variation remains after using the model: s> _ = 22.4. In short, there was a reduction of

RES
Shid ~ Shps _ 299-224 75 _
52 29.9 299

GPA

or about 25% in the data’s variation by using information about family income for predicting
aid using a linear model. This corresponds exactly to the R-squared value:

R = -0.499 R?=10.25

() Exercise 7.21 1If a linear model has a very strong negative relationship with a
correlation of -0.97, how much of the variation in the response is explained by the
explanatory variable?'?

7.2.7 Categorical predictors with two levels

Categorical variables are also useful in predicting outcomes. Here we consider a categorical
predictor with two levels (recall that a level is the same as a category). We'll consider Ebay
auctions for a video game, Mario Kart for the Nintendo Wii, where both the total price of
the auction and the condition of the game were recorded.'® Here we want to predict total
price based on game condition, which takes values used and new. A plot of the auction
data is shown in Figure 7.17.

To incorporate the game condition variable into a regression equation, we must convert
the categories into a numerical form. We will do so using an indicator variable called
cond_new, which takes value 1 when the game is new and 0 when the game is used. Using
this indicator variable, the linear model may be written as

p@e = By + B1 X cond_new

12 About R? = (—0.97)2 = 0.94 or 94% of the variation is explained by the linear model.
13These data were collected in Fall 2009 and may be found at openintro.org.
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Figure 7.17: Total auction prices for the video game Mario Kart, divided
into used (z = 0) and new (z = 1) condition games. The least squares
regression line is also shown.

Estimate Std. Error t value Pr(>]t])

(Intercept) 42.87 0.81 52.67 0.0000
cond_new 10.90 1.26 8.66 0.0000

Table 7.18: Least squares regression summary for the final auction price
against the condition of the game.

p@e =42.87 4+ 10.90 x cond_new

of Mario Kart in eBay auctions.
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The fitted model is summarized in Table 7.18, and the model with its parameter estimates
is given as

For categorical predictors with just two levels, the linearity assumption will always be
satisfied. However, we must evaluate whether the residuals in each group are approximately
normal and have approximately equal variance. As can be seen in Figure 7.17, both of these
conditions are reasonably satisfied by the auction data.

@® Example 7.22 Interpret the two parameters estimated in the model for the price

The intercept is the estimated price when cond_new takes value 0, i.e. when the game
is in used condition. That is, the average selling price of a used version of the game

is $42.87.

The slope indicates that, on average, new games sell for about $10.90 more than used

games.
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TIP: Interpreting model estimates for categorical predictors.

The estimated intercept is the value of the response variable for the first category
(i.e. the category corresponding to an indicator value of 0). The estimated slope is
the average change in the response variable between the two categories.

We’ll elaborate further on this Ebay auction data in Chapter 8, where we examine the
influence of many predictor variables simultaneously using multiple regression. In multiple
regression, we will consider the association of auction price with regard to each variable
while controlling for the influence of other variables. This is especially important since
some of the predictors are associated. For example, auctions with games in new condition
also often came with more accessories.

7.3 Types of outliers in linear regression

In this section, we identify criteria for determining which outliers are important and influ-
ential.

Outliers in regression are observations that fall far from the “cloud” of points. These
points are especially important because they can have a strong influence on the least squares
line.

@® Example 7.23 There are six plots shown in Figure 7.19 along with the least squares
line and residual plots. For each scatterplot and residual plot pair, identify any
obvious outliers and note how they influence the least squares line. Recall that an
outlier is any point that doesn’t appear to belong with the vast majority of the other
points.

(1) There is one outlier far from the other points, though it only appears to slightly
influence the line.

(2) There is one outlier on the right, though it is quite close to the least squares
line, which suggests it wasn’t very influential.

(3) There is one point far away from the cloud, and this outlier appears to pull the
least squares line up on the right; examine how the line around the primary
cloud doesn’t appear to fit very well.

(4) There is a primary cloud and then a small secondary cloud of four outliers. The
secondary cloud appears to be influencing the line somewhat strongly, making
the least square line fit poorly almost everywhere. There might be an interesting
explanation for the dual clouds, which is something that could be investigated.

(5) There is no obvious trend in the main cloud of points and the outlier on the
right appears to largely control the slope of the least squares line.

(6) There is one outlier far from the cloud, however, it falls quite close to the least
squares line and does not appear to be very influential.

Examine the residual plots in Figure 7.19. You will probably find that there is some
trend in the main clouds of (3) and (4). In these cases, the outliers influenced the slope of
the least squares lines. In (5), data with no clear trend were assigned a line with a large
trend simply due to one outlier (!).
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Figure 7.19: Six plots, each with a least squares line and residual plot. All
data sets have at least one outlier.
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Leverage
Points that fall horizontally away from the center of the cloud tend to pull harder
on the line, so we call them points with high leverage.

Points that fall horizontally far from the line are points of high leverage; these points
can strongly influence the slope of the least squares line. If one of these high leverage
points does appear to actually invoke its influence on the slope of the line — as in cases (3),
(4), and (5) of Example 7.23 — then we call it an influential point. Usually we can say
a point is influential if, had we fitted the line without it, the influential point would have
been unusually far from the least squares line.

It is tempting to remove outliers. Don’t do this without a very good reason. Models
that ignore exceptional (and interesting) cases often perform poorly. For instance, if a
financial firm ignored the largest market swings — the “outliers” — they would soon go
bankrupt by making poorly thought-out investments.

Caution: Don’t ignore outliers when fitting a final model

If there are outliers in the data, they should not be removed or ignored without
a good reason. Whatever final model is fit to the data would not be very helpful if
it ignores the most exceptional cases.

Caution: Outliers for a categorical predictor with two levels
Be cautious about using a categorical predictor when one of the levels has very few
observations. When this happens, those few observations become influential points.

7.4 Inference for linear regression

In this section we discuss uncertainty in the estimates of the slope and y-intercept for
a regression line. Just as we identified standard errors for point estimates in previous
chapters, we first discuss standard errors for these new estimates. However, in the case of
regression, we will identify standard errors using statistical software.

7.4.1 Midterm elections and unemployment

Elections for members of the United States House of Representatives occur every two
years, coinciding every four years with the U.S. Presidential election. The set of House
elections occurring during the middle of a Presidential term are called midterm elections.
In America’s two-party system, one political theory suggests the higher the unemployment
rate, the worse the President’s party will do in the midterm elections.

To assess the validity of this claim, we can compile historical data and look for a
connection. We consider every midterm election from 1898 to 2010, with the exception
of those elections during the Great Depression. Figure 7.20 shows these data and the
least-squares regression line:

% change in House seats for President’s party

= —6.71 — 1.00 x (unemployment rate)

We counsider the percent change in the number of seats of the President’s party (e.g. percent
change in the number of seats for Democrats in 2010) against the unemployment rate.
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Figure 7.20: The percent change in House seats for the President’s party
in each election from 1898 to 2010 plotted against the unemployment rate.
The two points for the Great Depression have been removed, and a least
squares regression line has been fit to the data.

Examining the data, there are no clear deviations from linearity, the constant variance
condition, or in the normality of residuals (though we don’t examine a normal probability
plot here). While the data are collected sequentially, a separate analysis was used to check
for any apparent correlation between successive observations; no such correlation was found.

() Exercise 7.24 The data for the Great Depression (1934 and 1938) were removed
because the unemployment rate was 21% and 18%, respectively. Do you agree that
they should be removed for this investigation? Why or why not?'*

There is a negative slope in the line shown in Figure 7.20. However, this slope (and
the y-intercept) are only estimates of the parameter values. We might wonder, is this
convincing evidence that the “true” linear model has a negative slope? That is, do the
data provide strong evidence that the political theory is accurate? We can frame this
investigation into a one-sided statistical hypothesis test:

Hy: pB1 = 0. The true linear model has slope zero.

Hy: B < 0. The true linear model has a slope less than zero. The higher the unemploy-
ment, the greater the losses for the President’s party in the House of Representatives.

We would reject Hy in favor of H 4 if the data provide strong evidence that the true slope
parameter is less than zero. To assess the hypotheses, we identify a standard error for the
estimate, compute an appropriate test statistic, and identify the p-value.

14We will provide two considerations. Each of these points would have very high leverage on any
least-squares regression line, and years with such high unemployment may not help us understand what
would happen in other years where the unemployment is only modestly high. On the other hand, these
are exceptional cases, and we would be discarding important information if we exclude them from a final
analysis.
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7.4.2 Understanding regression output from software

Just like other point estimates we have seen before, we can compute a standard error and
test statistic for b;. We will generally label the test statistic using a 7T, since it follows the
t distribution.

We will rely on statistical software to compute the standard error and leave the ex-
planation of how this standard error is determined to a second or third statistics course.
Table 7.21 shows software output for the least squares regression line in Figure 7.20. The
row labeled unemp represents the information for the slope, which is the coefficient of the
unemployment variable.

Estimate Std. Error t value Pr(>t|)

(Intercept)  -6.7142 54567  -1.23  0.2300
unemp  -1.0010 0.8717  -1.15  0.2617
df = 25

Table 7.21: Output from statistical software for the regression line model-
ing the midterm election losses for the President’s party as a response to
unemployment.

® Example 7.25 What do the first and second columns of Table 7.21 represent?

The entries in the first column represent the least squares estimates, by and by, and
the values in the second column correspond to the standard errors of each estimate.

We previously used a t test statistic for hypothesis testing in the context of numerical
data. Regression is very similar. In the hypotheses we consider, the null value for the slope
is 0, so we can compute the test statistic using the T (or Z) score formula:

T— estimate — null value _ —1.0010 -0 115
SE 0.8717

We can look for the one-sided p-value — shown in Figure 7.22 — using the probability table
for the t distribution in Appendix B.2 on page 410.

® Example 7.26 Table 7.21 offers the degrees of freedom for the test statistic 7"
df = 25. Identify the p-value for the hypothesis test.

Looking in the 25 degrees of freedom row in Appendix B.2, we see that the absolute
value of the test statistic is smaller than any value listed, which means the tail area
and therefore also the p-value is larger than 0.100 (one tail!). Because the p-value
is so large, we fail to reject the null hypothesis. That is, the data do not provide
convincing evidence that a higher unemployment rate has any correspondence with
smaller or larger losses for the President’s party in the House of Representatives in
midterm elections.

We could have identified the t test statistic from the software output in Table 7.21,
shown in the second row (unemp) and third column (t value). The entry in the second
row and last column in Table 7.21 represents the p-value for the two-sided hypothesis test
where the null value is zero. The corresponding one-sided test would have a p-value half of
the listed value.



7.4. INFERENCE FOR LINEAR REGRESSION 337

T T T T 1
—2.62 -1.74 -0.87 0 0.87 1.74 2.62

Figure 7.22: The distribution shown here is the sampling distribution for
b1, if the null hypothesis was true. The shaded tail represents the p-value
for the hypothesis test evaluating whether there is convincing evidence that
higher unemployment corresponds to a greater loss of House seats for the
President’s party during a midterm election.

Inference for regression

We usually rely on statistical software to identify point estimates and standard
errors for parameters of a regression line. After verifying conditions hold for fitting
a line, we can use the methods learned in Section 5.3 for the ¢ distribution to create
confidence intervals for regression parameters or to evaluate hypothesis tests.

Caution: Don’t carelessly use the p-value from regression output

The last column in regression output often lists p-values for one particular hypoth-
esis: a two-sided test where the null value is zero. If your test is one-sided and the
point estimate is in the direction of H4, then you can halve the software’s p-value
to get the one-tail area. If neither of these scenarios match your hypothesis test,
be cautious about using the software output to obtain the p-value.

@® Example 7.27 Examine Figure 7.16 on page 330, which relates the Elmhurst Col-
lege aid and student family income. How sure are you that the slope is statistically
significantly different from zero? That is, do you think a formal hypothesis test would
reject the claim that the true slope of the line should be zero?

While the relationship between the variables is not perfect, there is an evident de-
creasing trend in the data. This suggests the hypothesis test will reject the null claim
that the slope is zero.
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() Exercise 7.28 Table 7.23 shows statistical software output from fitting the least
squares regression line shown in Figure 7.16. Use this output to formally evaluate the
following hypotheses. Hy: The true coefficient for family income is zero. H4: The
true coefficient for family income is not zero.'?

Estimate Std. Error t value Pr(>t|)

(Intercept)  24.3193 12915  18.83  0.0000
family_income  -0.0431 0.0108  -3.98  0.0002
df = 48

Table 7.23: Summary of least squares fit for the Elmhurst College data.

TIP: Always check assumptions

If conditions for fitting the regression line do not hold, then the methods presented
here should not be applied. The standard error or distribution assumption of the
point estimate — assumed to be normal when applying the ¢ test statistic — may
not be valid.

7.4.3 An alternative test statistic

We considered the ¢ test statistic as a way to evaluate the strength of evidence for a
hypothesis test in Section 7.4.2. However, we could focus on R?. Recall that R? described
the proportion of variability in the response variable (y) explained by the explanatory
variable (z). If this proportion is large, then this suggests a linear relationship exists
between the variables. If this proportion is small, then the evidence provided by the data
may not be convincing.

This concept — considering the amount of variability in the response variable explained
by the explanatory variable — is a key component in some statistical techniques. The anal-
ysis of variance (ANOVA) technique introduced in Section 5.5 uses this general principle.
The method states that if enough variability is explained away by the categories, then we
would conclude the mean varied between the categories. On the other hand, we might not
be convinced if only a little variability is explained. ANOVA can be further employed in
advanced regression modeling to evaluate the inclusion of explanatory variables, though we
leave these details to a later course.

15We look in the second row corresponding to the family income variable. We see the point estimate of
the slope of the line is -0.0431, the standard error of this estimate is 0.0108, and the t test statistic is -3.98.
The p-value corresponds exactly to the two-sided test we are interested in: 0.0002. The p-value is so small
that we reject the null hypothesis and conclude that family income and financial aid at Elmhurst College
for freshman entering in the year 2011 are negatively correlated and the true slope parameter is indeed less
than 0, just as we believed in Example 7.27.
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7.5 Exercises

7.5.1 Line fitting, residuals, and correlation

7.1 Visualize the residuals. The scatterplots shown below each have a superimposed regression
line. If we were to construct a residual plot (residuals versus z) for each, describe what those plots

would look like.

(b)

7.2 Trends in the residuals. Shown below are two plots of residuals remaining after fitting a
linear model to two different sets of data. Describe important features and determine if a linear
model would be appropriate for these data. Explain your reasoning.

7.3 Identify relationships, Part I. For each of the six plots, identify the strength of the
relationship (e.g. weak, moderate, or strong) in the data and whether fitting a linear model would

be reasonable.

(@ (b) (©)

(d) (e) ®
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7.4 Identify relationships, Part I. For each of the six plots, identify the strength of the
relationship (e.g. weak, moderate, or strong) in the data and whether fitting a linear model would

be reasonable.

(a)

(Y

(d)

(e)

®

7.5 The two scatterplots below show the relationship between final and mid-semester exam grades

recorded during several years for a Statistics course at a university.

(a) Based on these graphs, which of the two exams has the strongest correlation with the final

exam grade? Explain.

(b) Can you think of a reason why the correlation between the exam you chose in part (a) and

the final exam is higher?
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7.6 Husbands and wives, Part I. The Great Britain Office of Population Census and Surveys
once collected data on a random sample of 170 married couples in Britain, recording the age (in
years) and heights (converted here to inches) of the husbands and wives.'® The scatterplot on the
left shows the wife’s age plotted against her husband’s age, and the plot on the right shows wife’s
height plotted against husband’s height.

70
7 604 ) §
g > g
£ =% ‘
& 40 o -§, %
I 000 ©
w e8g°e < 60
o < @
2 . 2
20- s
T T T 557 T T T T
20 40 60 60 65 70 75

Husband's age (in years) Husband's height (in inches)

(a) Describe the relationship between husbands’ and wives’ ages.

(b) Describe the relationship between husbands’ and wives’ heights.

(c) Which plot shows a stronger correlation? Explain your reasoning.

(d) Data on heights were originally collected in centimeters, and then converted to inches. Does
this conversion affect the correlation between husbands’ and wives’ heights?

7.7 Match the correlation, Part I.
Match the calculated correlations to the

corresponding scatterplot. ' p

(a) R=-0.7 oo _

(b) R=045 o S

(c) R=0.06 -'(‘l)' - >
(d) R=0.92

(3) 4

7.8 Match the correlation, Part II.
Match the calculated correlations to the
corresponding scatterplot.

(a) R=0.49

(b) R=-0.48 . R
(c) R=-0.03 @ ' —
(d) R=-0.85

3) 4

16D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.
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7.9 Speed and height. 1,302 UCLA students were asked to fill out a survey where they were
asked about their height, fastest speed they have ever driven, and gender. The scatterplot on the
left displays the relationship between height and fastest speed, and the scatterplot on the right
displays the breakdown by gender in this relationship.
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(a) Describe the relationship between height and fastest speed.
(b) Why do you think these variables are positively associated?
(c) What role does gender play in the relationship between height and fastest driving speed?

7.10 Trees. The scatterplots below show the relationship between height, diameter, and volume
of timber in 31 felled black cherry trees. The diameter of the tree is measured 4.5 feet above the

ground.'”
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)

) Describe the relationship between volume and height of these trees.
Describe the relationship between volume and diameter of these trees.

Suppose you have height and diameter measurements for another black cherry tree. Which of
these variables would be preferable to use to predict the volume of timber in this tree using a
simple linear regression model? Explain your reasoning.

17Source: R Dataset, http://stat.ethz.ch/R-manual/R-patched/library /datasets/html/trees.html.


http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/trees.html
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7.11 The Coast Starlight, Part I. The Coast Starlight Amtrak train runs from Seattle to Los
Angeles. The scatterplot below displays the distance between each stop (in miles) and the amount
of time it takes to travel from one stop to another (in minutes).

(a) Describe the relationship between 3604
distance and travel time.

(b) How would the relationship change 300
if travel time was instead measured é
in hours, and distance was instead £ 240
measured in kilometers? @ 0.

(¢) Correlation between travel time (in %
miles) and distance (in minutes) is g 120
R = 0.636. What is the correlation
between travel time (in kilometers) 60 -
and distance (in hours)? ’

100

200

300

Distance (miles)

7.12 Crawling babies, Part I. A study conducted at the University of Denver investigated
whether babies take longer to learn to crawl in cold months, when they are often bundled in clothes
that restrict their movement, than in warmer months.'® Infants born during the study year were
split into twelve groups, one for each birth month. We consider the average crawling age of babies
in each group against the average temperature when the babies are six months old (that’s when
babies often begin trying to crawl). Temperature is measured in degrees Fahrenheit (°F) and age
is measured in weeks.

34+

(a) Describe the relationship between - .
temperature and crawling age. < . .
(b) How would the relationship change % 7.
if temperature was measured in de- < 30 :
grees Celsius (°C) and age was 2 . :
measured in months? 2 314
(¢) The correlation between tempera- g .
ture in °F and age in weeks was S 30- .
R = -0.70. If we converted g :
the temperature to °C and age to Q 29
months, what would the correlation < .
be? 30 40 50 60 70
Temperature (in F)
18] B. Benson. “Season of birth and onset of locomotion: Theoretical and methodological implications”.

In: Infant behavior and development 16.1 (1993), pp. 69-81. 1sSN: 0163-6383.


http://www.sciencedirect.com/science/article/pii/0163638393800298
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7.13 Body measurements, Part I. Researchers studying anthropometry collected body girth
measurements and skeletal diameter measurements, as well as age, weight, height and gender for
507 physically active individuals.'” The scatterplot below shows the relationship between height
and shoulder girth (over deltoid muscles), both measured in centimeters.

200
(a) Describe the relationship between
shoulder girth and height. 190+ ‘ ° .

(b) How would the relationship change

3 oo o
8 ’
if shoulder girth was measured in g 1807 . - § éle"g;,g';;‘;é )
inches while the units of height re- ;:’ 170- ,:QW:(X . ’m :'g o euge ’
mained in centimeters? 2 \%o‘&:;?'ﬁ ofie ous
T L RB o P opes

160 o oo st RS 3

150

90 100 110 120 130
Shoulder girth (in cm)

7.14 Body measurements, Part II. The scatterplot below shows the relationship between
weight measured in kilograms and hip girth measured in centimeters from the data described in

vd

Exercise 7.13.

120+
(a) Describe the relationship between
hip girth and weight.
(b) How would the relationship change § 1007 2
if weight was measured in pounds c
while the units for hip girth re- E 80 N
mained in centimeters? 2
; 60,
40

80 90 100 110 120 130
Hip girth (in cm)
7.15 Correlation, Part I. What would be the correlation between the ages of husbands and
wives if men always married woman who were
(a) 3 years younger than themselves?
(b) 2 years older than themselves?

(c) half as old as themselves?

7.16 Correlation, Part II. What would be the correlation between the annual salaries of males
and females at a company if for a certain type of position men always made

(a) $5,000 more than women?

(b) 25% more than women?

(c) 15% less than women?

19G. Heinz et al. “Exploring relationships in body dimensions”. In: Journal of Statistics Education 11.2
(2003).


http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html
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7.5.2 Fitting a line by least squares regression

345

7.17 Tourism spending. The Association of Turkish Travel Agencies reports the number of
foreign tourists visiting Turkey and tourist spending by year.”’ The scatterplot below shows the
relationship between these two variables along with the least squares fit.

(a) Describe the relationship between number of tourists and spending.

(b) What are the explanatory and response variables?
(¢) Why might we want to fit a regression line to these data?

(d) Do the data meet the conditions required for fitting a least squares line? In addition to the
scatterplot, use the residual plot and histogram to answer this question.
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T T T
-1500 -750 0
Residuals

T
750

1
1500


http://www.tursab.org.tr/en/statistics/foreign-visitors-figure-tourist-spendings-by-years_1083.html
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7.18 Nutrition at Starbucks, Part I. The scatterplot below shows the relationship between

the number of calories and amount of carbohydrates (in grams) Starbucks food menu items con-

tain.”! Since Starbucks only lists the number of calories on the display items, we are interested in

predicting the amount of carbs a menu item has based on its calorie content.

(a) Describe the relationship between number of calories and amount of carbohydrates (in grams)
that Starbucks food menu items contain.

(b) In this scenario, what are the explanatory and response variables?

(¢) Why might we want to fit a regression line to these data?

(d) Do these data meet the conditions required for fitting a least squares line?
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7.19 The Coast Starlight, Part II. Exercise 7.11 introduces data on the Coast Starlight

Amtrak train that runs from Seattle to Los Angeles. The mean travel time from one stop to the

next on the Coast Starlight is 129 mins, with a standard deviation of 113 minutes. The mean

distance traveled from one stop to the next is 107 miles with a standard deviation of 99 miles. The

correlation between travel time and distance is 0.636.

(a) Write the equation of the regression line for predicting travel time.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R? of the regression line for predicting travel time from distance traveled for the
Coast Starlight, and interpret R? in the context of the application.

(d) The distance between Santa Barbara and Los Angeles is 103 miles. Use the model to estimate
the time it takes for the Starlight to travel between these two cities.

(e) It actually takes the the Coast Starlight about 168 mins to travel from Santa Barbara to Los
Angeles. Calculate the residual and explain the meaning of this residual value.

(f) Suppose Amtrak is considering adding a stop to the Coast Starlight 500 miles away from Los
Angeles. Would it be appropriate to use this linear model to predict the travel time from Los
Angeles to this point?

2150urce: Starbucks.com, collected on March 10, 2011,
http://www.starbucks.com/menu/nutrition.
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7.20 Body measurements, Part III. Exercise 7.13 introduces data on shoulder girth and
height of a group of individuals. The mean shoulder girth is 108.20 cm with a standard deviation
of 10.37 cm. The mean height is 171.14 cm with a standard deviation of 9.41 cm. The correlation
between height and shoulder girth is 0.67.

(a) Write the equation of the regression line for predicting height.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R? of the regression line for predicting height from shoulder girth, and interpret it
in the context of the application.

(d) A randomly selected student from your class has a shoulder girth of 100 cm. Predict the height
of this student using the model.

(e) The student from part (c) is 160 cm tall. Calculate the residual, and explain what this residual
means.

(f) A one year old has a shoulder girth of 56 cm. Would it be appropriate to use this linear model
to predict the height of this child?

7.21 Grades and TV. Data were collected on the
number of hours per week students watch TV and the
grade they earned in a biology class on a 100 point scale.
Based on the scatterplot and the residual plot provided,
describe the relationship between the two variables, and
determine if a simple linear model is appropriate to
predict a student’s grade from the number of hours per
week the student watches TV.

80 90 100
1

Grades (out of 100)

70
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T T T
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TV (hours)

10 20
1

0
1

-20 -10

7.22 Nutrition at Starbucks, Part II. Exer-
cise 7.18 introduced a data set on nutrition informa- .
tion on Starbucks food menu items. Based on the
scatterplot and the residual plot provided, describe the
relationship between the protein content and calories
of these menu items, and determine if a simple linear
model is appropriate to predict amount of protein from
the number of calories.

Protein (in grams)

T T T T T
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-20
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7.23 Helmets and lunches. The scatterplot shows the relationship between socioeconomic
status measured as the percentage of children in a neighborhood receiving reduced-fee lunches at
school (lunch) and the percentage of bike riders in the neighborhood wearing helmets (helmet).
The average percentage of children receiving reduced-fee lunches is 30.8% with a standard deviation
of 26.7% and the average percentage of bike riders wearing helmets is 38.8% with a standard
deviation of 16.9%.

(a)

If the R? for the least-squares regression line for

these data is 72%, what is the correlation between 60
lunch and helmet?
(b) Calculate the slope and intercept for the least- & 07
squares regression line for these data. % 40
(c) Interpret the intercept of the least-squares regres- g, .
sion line in the context of the application. 'g 307
(d) Interpret the slope of the least-squares regression 2 204
line in the context of the application. 8 104
(e) What would the value of the residual be for a
neighborhood where 40% of the children receive 0 20 20 60 80

reduced-fee lunches and 40% of the bike riders
wear helmets? Interpret the meaning of this resid-
ual in the context of the application.

% receiving reduced—fee lunch

7.5.3 Types of outliers in linear regression

7.24 Outliers, Part L. Identify the outliers in the scatterplots shown below, and determine
what type of outliers they are. Explain your reasoning.

(b) (c)

7.25 Outliers, Part II. Identify the outliers in the scatterplots shown below and determine
what type of outliers they are. Explain your reasoning.

(a) (b) ()

7.26 Crawling babies, Part II. Exercise 7.12 introduces data on the average monthly tem-
perature during the month babies first try to crawl (about 6 months after birth) and the average
first crawling age for babies born in a given month. A scatterplot of these two variables reveals a
potential outlying month when the average temperature is about 53°F and average crawling age
is about 28.5 weeks. Does this point have high leverage? Is it an influential point?
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7.27 Urban homeowners, Part I. The scatterplot below shows the percent of families who
own their home vs. the percent of the population living in urban areas in 2010.>” There are 52
observations, each corresponding to a state in the US. Puerto Rico and District of Columbia are
also included.

(a) Describe the relationship between the per- 70 © a0
cent of families who own their home and the g 654 : LIS ; -
percent of the population living in urban ar- -E 604 N
eas in 2010. 2

(b) The outlier at the bottom right corner is Dis- é’ %57
trict of Columbia, where 100% of the pop- < 507
ulation is considered urban. What type of 45+

outlier is this observation? \ \ \ \ \ \ \
40 50 60 70 80 90 100

% urban population

7.5.4 Inference for linear regression

In the following exercises, visually check the conditions for fitting a least squares regression line,
but you do not need to report these conditions in your solutions.

7.28 Beer and blood alcohol content. Many people believe that gender, weight, drinking
habits, and many other factors are much more important in predicting blood alcohol content (BAC)
than simply considering the number of drinks a person consumed. Here we examine data from
sixteen student volunteers at Ohio State University who each drank a randomly assigned number
of cans of beer. These students were evenly divided between men and women, and they differed
in weight and drinking habits. Thirty minutes later, a police officer measured their blood alcohol
content (BAC) in grams of alcohol per deciliter of blood.”” The scatterplot and regression table
summarize the findings.

5
S 0.15-
@
©
5 .
% 0.10 .. Estimate  Std. Error t value Pr(>]t])
£ . N (Intercept) -0.0127 0.0126 -1.00 0.3320
g . . beers 0.0180 0.0024 7.48 0.0000
G 0.05+ R
< .
4] .
T T T T
2 4 6 8

Cans of beer

(a) Describe the relationship between the number of cans of beer and BAC.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(¢) Do the data provide strong evidence that drinking more cans of beer is associated with an
increase in blood alcohol? State the null and alternative hypotheses, report the p-value, and
state your conclusion.

(d) The correlation coefficient for number of cans of beer and BAC is 0.89. Calculate R? and
interpret it in context.

(e) Suppose we visit a bar, ask people how many drinks they have had, and also take their BAC.
Do you think the relationship between number of drinks and BAC would be as strong as the
relationship found in the Ohio State study?

22United States Census Bureau, 2010 Census Urban and Rural Classification and Urban Area Criteria
and Housing Characteristics: 2010.

23], Malkevitch and L.M. Lesser. For All Practical Purposes: Mathematical Literacy in Today’s World.
WH Freeman & Co, 2008.


http://www.census.gov/geo/www/ua/2010urbanruralclass.html
http://www.census.gov/prod/cen2010/briefs/c2010br-07.pdf
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7.29 Body measurements, Part I'V. The scatterplot and least squares summary below show
the relationship between weight measured in kilograms and height measured in centimeters of 507
physically active individuals.

100+

Estimate  Std. Error t value  Pr(>[t])

Weight (in kg)
o]
<

$ 7 (Tntercept)  -105.0113 75394 -13.93 0.0000
oo wd g height 1.0176 0.0440  23.13 0.0000
A LR
y2 ol
40~ T T T
150 175 200

Height (in cm)

(a) Describe the relationship between height and weight.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(c) Do the data provide strong evidence that an increase in height is associated with an increase
in weight? State the null and alternative hypotheses, report the p-value, and state your
conclusion.

(d) The correlation coefficient for height and weight is 0.72. Calculate R? and interpret it in
context.

7.30 Husbands and wives, Part Il. Exercise 7.6 presents a scatterplot displaying the rela-
tionship between husbands’ and wives’ ages in a random sample of 170 married couples in Britain,
where both partners’ ages are below 65 years. Given below is summary output of the least squares
fit for predicting wife’s age from husband’s age.

.60
o
[
[}
>
£ o Estimate  Std. Error t value Pr(>]t])
9,40 o (Intercept) 1.5740 1.1501 1.37 0.1730
© oo age_husband 0.9112 0.0259 35.25 0.0000
2 . aF = 168
2
20
20 40 60

Husband's age (in years)

(a) We might wonder, is the age difference between husbands and wives constant over time? If
this were the case, then the slope parameter would be 51 = 1. Use the information above to
evaluate if there is strong evidence that the difference in husband and wife ages actually has
changed.
) Write the equation of the regression line for predicting wife’s age from husband’s age.
) Interpret the slope and intercept in context.
(d) Given that R = 0.88, what is the correlation of ages in this data set?

) You meet a married man from Britain who is 55 years old. What would you predict his wife’s
age to be? How reliable is this prediction?
(f) You meet another married man from Britain who is 85 years old. Would it be wise to use the

same linear model to predict his wife’s age? Explain.
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7.31 Husbands and wives, Part I11. The scatterplot below summarizes husbands’ and wives’
heights in a random sample of 170 married couples in Britain, where both partners’ ages are below
65 years. Summary output of the least squares fit for predicting wife’s height from husband’s
height is also provided in the table.

70+
m
@
<
2
< 65-
E Estimate  Std. Error t value Pr(>[t])
‘% (Intercept) 43.5755 4.6842 9.30 0.0000
ﬁ 60 ) height_husband 0.2863 0.0686 4.17 0.0000
®
=
55+

60 65 70 75
Husband's height (in inches)
(a) Is there strong evidence that taller men marry taller women? State the hypotheses and include
any information used to conduct the test.
Write the equation of the regression line for predicting wife’s height from husband’s height.

Given that R% = 0.09, what is the correlation of heights in this data set?

You meet a married man from Britain who is 5°9” (69 inches). What would you predict his
wife’s height to be? How reliable is this prediction?

(f) You meet another married man from Britain who is 6’77 (79 inches). Would it be wise to use
the same linear model to predict his wife’s height? Why or why not?

)

(c) Interpret the slope and intercept in the context of the application.
)
)

7.32 Urban homeowners, Part II. Exercise 7.27 gives a scatterplot displaying the relationship
between the percent of families that own their home and the percent of the population living in
urban areas. Below is a summary of a least squares line for these data, excluding District of
Columbia. There were 51 cases.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.5755 4.6842 9.30 0.0000
height_husband 0.2863 0.0686 4.17 0.0000

75
Il

(a) For these data, R* = 0.28. What is the
correlation? How can you tell if it is posi-
tive or negative?

(b) Examine the residual plot. What do you
observe? Is a simple least squares fit ap-
propriate for these data?
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7.33 Babies. Is the gestational age (time between conception and birth) of a low birth-weight
baby useful in predicting head circumference at birth? Twenty-five low birth-weight babies were
studied at a Harvard teaching hospital; the investigators calculated the regression of head circum-
ference (measured in centimeters) against gestational age (measured in weeks). The estimated
regression line is

head_cir%ference = 3.91 + 0.78 X gestational_age

(a) What is the predicted head circumference for a baby whose gestational age is 28 weeks?

(b) The standard error for the coefficient of gestational age is 0.35, which is associated with
df = 23. Does the model provide strong evidence that gestational age is significantly associated
with head circumference?

7.34 Rate my professor. Some college students critique professors’ teaching at RateMyPro-
fessors.com, a web page where students anonymously rate their professors on quality, easiness,
and attractiveness. Using the self-selected data from this public forum, researchers examine the
relations between quality, easiness, and attractiveness for professors at various universities. In this
exercise we will work with a portion of these data that the researchers made publicly available.”*
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24]. Felton et al. “Web-based student evaluations of professors: the relations between perceived quality,
easiness and sexiness”. In: Assessment & Fvaluation in Higher Education 29.1 (2004), pp. 91-108.
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Estimate Std. Error t value Pr(>[t])
(Intercept) 4.010 0.0255  157.21 0.0000
beauty [ | 00322 413  0.0000

Given that the average standardized beauty score is -0.0883 and average teaching evaluation
score is 3.9983, calculate the slope. Alternatively, the slope may be computed using just the
information provided in the model summary table.

Do these data provide convincing evidence that the slope of the relationship between teaching
evaluation and beauty is positive? Explain your reasoning.

List the conditions required for linear regression and check if each one is satisfied for this
model.



Chapter 8

Multiple and logistic regression

The principles of simple linear regression lay the foundation for more sophisticated re-
gression methods used in a wide range of challenging settings. In Chapter 8, we explore
multiple regression, which introduces the possibility of more than one predictor, and logistic
regression, a technique for predicting categorical outcomes with two possible categories.

8.1 Introduction to multiple regression

Multiple regression extends simple two-variable regression to the case that still has one re-
sponse but many predictors (denoted x1, 2, 3, ...). The method is motivated by scenarios
where many variables may be simultaneously connected to an output.

We will consider Ebay auctions of a video game called Mario Kart for the Nintendo
Wii. The outcome variable of interest is the total price of an auction, which is the highest
bid plus the shipping cost. We will try to determine how total price is related to each char-
acteristic in an auction while simultaneously controlling for other variables. For instance,
all other characteristics held constant, are longer auctions associated with higher or lower
prices? And, on average, how much more do buyers tend to pay for additional Wii wheels
(plastic steering wheels that attach to the Wii controller) in auctions? Multiple regression
will help us answer these and other questions.

The data set mario_kart includes results from 141 auctions.’ Four observations from
this data set are shown in Table 8.1, and descriptions for each variable are shown in Ta-
ble 8.2. Notice that the condition and stock photo variables are indicator variables. For
instance, the cond_new variable takes value 1 if the game up for auction is new and 0 if it is
used. Using indicator variables in place of category names allows for these variables to be
directly used in regression. See Section 7.2.7 for additional details. Multiple regression also
allows for categorical variables with many levels, though we do not have any such variables
in this analysis, and we save these details for a second or third course.

1Diez DM, Barr CD, and Cetinkaya-Rundel M. 2012. openintro: Openlntro data sets and supplemental
functions. cran.r-project.org/web/packages/openintro.
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price cond_new stock_photo duration wheels

1 51.55 1 1 3 1
2 37.04 0 1 7 1
140 38.76 0 0 7 0
141  54.51 1 1 1 2

Table 8.1: Four observations from the mario_kart data set.

variable description
price final auction price plus shipping costs, in US dollars
cond_new a coded two-level categorical variable, which takes value 1 when the

game is new and 0 if the game is used

stock_photo a coded two-level categorical variable, which takes value 1 if the
primary photo used in the auction was a stock photo and 0 if the
photo was unique to that auction

duration the length of the auction, in days, taking values from 1 to 10

wheels the number of Wii wheels included with the auction (a Wii wheel
is a plastic racing wheel that holds the Wii controller and is an
optional but helpful accessory for playing Mario Kart)

Table 8.2: Variables and their descriptions for the mario_kart data set.

8.1.1 A single-variable model for the Mario Kart data

Let’s fit a linear regression model with the game’s condition as a predictor of auction price.
The model may be written as

p?z'ze = 42.87 + 10.90 x cond_new

Results of this model are shown in Table 8.3 and a scatterplot for price versus game con-
dition is shown in Figure 8.4.

Estimate Std. Error t value Pr(>[t|)

(Intercept)  42.8711 08140  52.67  0.0000
cond_new  10.8996 1.2583  8.66  0.0000
df =139

Table 8.3: Summary of a linear model for predicting auction price based on
game condition.

() Exercise 8.1 Examine Figure 8.4. Does the linear model seem reasonable?”

@® Example 8.2 Interpret the coefficient for the game’s condition in the model. Is this
coefficient significantly different from 07

Note that cond_new is a two-level categorical variable that takes value 1 when the
game is new and value 0 when the game is used. So 10.90 means that the model

2Yes. Constant variability, nearly normal residuals, and linearity all appear reasonable.
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Figure 8.4: Scatterplot of the total auction price against the game’s condi-
tion. The least squares line is also shown.

predicts an extra $10.90 for those games that are new versus those that are used.
(See Section 7.2.7 for a review of the interpretation for two-level categorical predictor
variables.) Examining the regression output in Table 8.3, we can see that the p-
value for cond_new is very close to zero, indicating there is strong evidence that the
coefficient is different from zero when using this simple one-variable model.

8.1.2 Including and assessing many variables in a model

Sometimes there are underlying structures or relationships between predictor variables.
For instance, new games sold on Ebay tend to come with more Wii wheels, which may
have led to higher prices for those auctions. We would like to fit a model that includes all
potentially important variables simultaneously. This would help us evaluate the relationship
between a predictor variable and the outcome while controlling for the potential influence
of other variables. This is the strategy used in multiple regression. While we remain
cautious about making any causal interpretations using multiple regression, such models
are a common first step in providing evidence of a causal connection.

We want to construct a model that accounts for not only the game condition, as in Sec-
tion 8.1.1, but simultaneously accounts for three other variables: stock_photo, duration,
and wheels.

pr/i\ce = fBo + 1 X cond_new + 33 X stock_photo
+ B3 X duration + B4 X wheels
9= Bo+ bi1x1 + Boxa + B3xs + Paxy (8.3)

In this equation, y represents the total price, x; indicates whether the game is new, o
indicates whether a stock photo was used, x3 is the duration of the auction, and x4 is the
number of Wii wheels included with the game. Just as with the single predictor case, a
multiple regression model may be missing important components or it might not precisely
represent the relationship between the outcome and the available explanatory variables.
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While no model is perfect, we wish to explore the possibility that this one may fit the data
reasonably well.

We estimate the parameters £y, f1, ..., 84 in the same way as we did in the case of a
single predictor. We select bg, by, ..., by that minimize the sum of the squared residuals:

141 141
SSE=ci+c3+-+efu= =) (s—9) &4
i=1

=1

Here there are 141 residuals, one for each observation. We typically use a computer to
minimize the sum in Equation (8.4) and compute point estimates, as shown in the sample
output in Table 8.5. Using this output, we identify the point estimates b; of each 3;, just
as we did in the one-predictor case.

Estimate Std. Error t value Pr(>|t|)

(Intercept)  36.2110 1.5140 23.92 0.0000
cond_new 5.1306 1.0511 4.88 0.0000
stock_photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882
wheels 7.2852 0.5547 13.13 0.0000

df = 136

Table 8.5: Output for the regression model where price is the outcome and
cond_new, stock_photo, duration, and wheels are the predictors.

Multiple regression model
A multiple regression model is a linear model with many predictors. In general,
we write the model as

7= Bo+ frx1 + Boxa + -+ - + Brai

when there are k predictors. We often estimate the §; parameters using a computer.

() Exercise 8.5 Write out the model in Equation (8.3) using the point estimates from
Table 8.5. How many predictors are there in this model??

() Exercise 8.6 What does 4, the coefficient of variable x4 (Wil wheels), represent?
What is the point estimate of 5,?*

() Exercise 8.7 Compute the residual of the first observation in Table 8.1 on page 355
using the equation identified in Exercise 8.5. °

3@ = 36.21 4+ 5.13z1 + 1.08x2 — 0.03z3 + 7.29x4, and there are k = 4 predictor variables.

41t is the average difference in auction price for each additional Wii wheel included when holding the
other variables constant. The point estimate is by = 7.29.

Se; = y; — s = 51.55 — 49.62 = 1.93, where 49.62 was computed using the variables values from the
observation and the equation identified in Exercise 8.5.
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@® Example 8.8 We estimated a coefficient for cond_new in Section 8.1.1 of b; = 10.90
with a standard error of SEj,, = 1.26 when using simple linear regression. Why might
there be a difference between that estimate and the one in the multiple regression
setting?

If we examined the data carefully, we would see that some predictors are correlated.
For instance, when we estimated the connection of the outcome price and predictor
cond_new using simple linear regression, we were unable to control for other variables
like the number of Wii wheels included in the auction. That model was biased by the
confounding variable wheels. When we use both variables, this particular underlying
and unintentional bias is reduced or eliminated (though bias from other confounding
variables may still remain).

Example 8.8 describes a common issue in multiple regression: correlation among pre-
dictor variables. We say the two predictor variables are collinear (pronounced as co-linear)
when they are correlated, and this collinearity complicates model estimation. While it is
impossible to prevent collinearity from arising in observational data, experiments are usu-
ally designed to prevent predictors from being collinear.

() Exercise 8.9 The estimated value of the intercept is 36.21, and one might be
tempted to make some interpretation of this coefficient, such as, it is the model’s
predicted price when each of the variables take value zero: the game is used, the
primary image is not a stock photo, the auction duration is zero days, and there are
no wheels included. Is there any value gained by making this interpretation?®

8.1.3 Adjusted R? as a better estimate of explained variance

We first used R? in Section 7.2 to determine the amount of variability in the response that
was explained by the model:

R2o_1_ variability in residuals _1_ Var(e;)
variability in the outcome Var(y;)

where e; represents the residuals of the model and y; the outcomes. This equation remains
valid in the multiple regression framework, but a small enhancement can often be even
more informative.

() Exercise 8.10 The variance of the residuals for the model given in Exercise 8.7 is
23.34, and the variance of the total price in all the auctions is 83.06. Calculate R?
for this model.”

This strategy for estimating R? is acceptable when there is just a single variable.
However, it becomes less helpful when there are many variables. The regular R? is actually
a biased estimate of the amount of variability explained by the model. To get a better
estimate, we use the adjusted R2.

6Three of the variables (cond_new, stock_photo, and wheels) do take value 0, but the auction duration
is always one or more days. If the auction is not up for any days, then no one can bid on it! That means
the total auction price would always be zero for such an auction; the interpretation of the intercept in this
setting is not insightful.

TR2 23.34 _
R?=1- 2234 — 0719,
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Adjusted R? as a tool for model assessment
The adjusted R? is computed as
~ Var(e))/(n—k—-1) Var(e;) n—1

Z.=1 =1-
Rag Var(y;)/(n—1) Var(y;) x n—k—1

where n is the number of cases used to fit the model and k is the number of
predictor variables in the model.

Because k is never negative, the adjusted R? will be smaller — often times just a
little smaller — than the unadjusted R?. The reasoning behind the adjusted R? lies in the
degrees of freedom associated with each variance.®

() Exercise 8.11 There were n = 141 auctions in the mario_kart data set and k =4
predictor variables in the model. Use n, k, and the variances from Exercise 8.10 to
calculate dej for the Mario Kart model.”

() Exercise 8.12  Suppose you added another predictor to the model, but the variance
of the errors Var(e;) didn’t go down. What would happen to the R?? What would
happen to the adjusted R?? 'V

8.2 Model selection

The best model is not always the most complicated. Sometimes including variables that
are not evidently important can actually reduce the accuracy of predictions. In this section
we discuss model selection strategies, which will help us eliminate from the model variables
that are less important.

In this section, and in practice, the model that includes all available explanatory
variables is often referred to as the full model. Our goal is assess whether the full model
is the best model. If it isn’t, we want to identify a smaller model that is preferable.

8.2.1 Identifying variables in the model that may not be helpful

Table 8.6 provides a summary of the regression output for the full model for the auction
data. The last column of the table lists p-values that can be used to assess hypotheses of
the following form:

Hy: B; = 0 when the other explanatory variables are included in the model.

H4: B; # 0 when the other explanatory variables are included in the model.

8In multiple regression, the degrees of freedom associated with the variance of the estimate of the
residuals is n —k — 1, not n— 1. For instance, if we were to make predictions for new data using our current
model, we would find that the unadjusted R? is an overly optimistic estimate of the reduction in variance

in the response, and using the degrees of freedom in the adjusted R? formula helps correct this bias.
9R2 1 _ 2334 141-4-1 _ -qq
adj = 83.06 14a1-1 — 't
10The unadjusted R? would stay the same and the adjusted R? would go down.
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Estimate Std. Error t value Pr(>[t|)

(Intercept) 36.2110 1.5140 23.92 0.0000
cond_new 5.1306 1.0511 4.88 0.0000
stock_photo 1.0803 1.0568 1.02 0.3085
duration -0.0268 0.1904 -0.14 0.8882
wheels 7.2852 0.5547 13.13 0.0000

R?ldj = 0.7108 df = 136

Table 8.6: The fit for the full regression model, including the adjusted R2.

@® Example 8.13 The coefficient of cond_new has a t test statistic of T = 4.88 and a

p-value for its corresponding hypotheses (Hp : 1 = 0, Ha : 81 # 0) of about zero.
How can this be interpretted?

If we keep all the other variables in the model and add no others, then there is strong
evidence that a game’s condition (new or used) has a real relationship with the total
auction price.

Example 8.14 Is there strong evidence that using a stock photo is related to the
total auction price?

The t test statistic for stock_photo is 7" = 1.02 and the p-value is about 0.31. After
accounting for the other predictors, there is not strong evidence that using a stock
photo in an auction is related to the total price of the auction. We might consider
removing the stock_photo variable from the model.

Exercise 8.15 Identify the p-values for both the duration and wheels variables
in the model. Is there strong evidence supporting the connection of these variables
with the total price in the model?"

There is not statistically significant evidence that either the stock photo or duration

variables contribute meaningfully to the model. Next we consider common strategies for
pruning such variables from a model.

TIP: Using adjusted R? instead of p-values for model selection

The adjusted R? may be used as an alternative to p-values for model selection,
where a higher adjusted R? represents a better model fit. For instance, we could
compare two models using their adjusted R?, and the model with the higher ad-
justed R? would be preferred. This approach tends to include more variables in the
final model when compared to the p-value approach.

8.2.2 Two model selection strategies

Two common strategies for adding or removing variables in a multiple regression model
are called backward-selection and forward-selection. These techniques are often referred to

11The p-value for the auction duration is 0.8882, which indicates that there is not statistically significant
evidence that the duration is related to the total auction price when accounting for the other variables.
The p-value for the Wii wheels variable is about zero, indicating that this variable is associated with the
total auction price.
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as stepwise model selection strategies, because they add or delete one variable at a time
as they “step” through the candidate predictors. We will discuss these strategies in the
context of the p-value approach. Alternatively, we could have employed an R? 4 approach.

The backward-elimination strategy starts with the model that includes all poten-
tial predictor variables. Variables are eliminated one-at-a-time from the model until only
variables with statistically significant p-values remain. The strategy within each elimina-
tion step is to drop the variable with the largest p-value, refit the model, and reassess the

inclusion of all variables.

® Example 8.16 Results corresponding to the full model for the mario_kart data
are shown in Table 8.6. How should we proceed under the backward-elimination
strategy?

There are two variables with coefficients that are not statistically different from zero:
stock_photo and duration. We first drop the duration variable since it has a larger
corresponding p-value, then we refit the model. A regression summary for the new
model is shown in Table 8.7.

In the new model, there is not strong evidence that the coefficient for stock_photo
is different from zero, even though the p-value decreased slightly, and the other p-
values remain very small. Next, we again eliminate the variable with the largest
non-significant p-value, stock_photo, and refit the model. The updated regression
summary is shown in Table 8.8.

In the latest model, we see that the two remaining predictors have statistically signif-
icant coefficients with p-values of about zero. Since there are no variables remaining
that could be eliminated from the model, we stop. The final model includes only the
cond_new and wheels variables in predicting the total auction price:

7 = bo+bixy + baxy
= 36.78 + 5.58x1 + 7.23x4

where x1 represents cond_new and x4 represents wheels.

An alternative to using p-values in model selection is to use the adjusted R2. At each
elimination step, we refit the model without each of the variables up for potential
elimination. For example, in the first step, we would fit four models, where each would
be missing a different predictor. If one of these smaller models has a higher adjusted
R? than our current model, we pick the smaller model with the largest adjusted R?.
We continue in this way until removing variables does not increase RZdj. Had we
used the adjusted R? criteria, we would have kept the stock_photo variable along
with the cond_new and wheels variables.

Notice that the p-value for stock_photo changed a little from the full model (0.309)
to the model that did not include the duration variable (0.275). It is common for p-values
of one variable to change, due to collinearity, after eliminating a different variable. This
fluctuation emphasizes the importance of refitting a model after each variable elimination
step. The p-values tend to change dramatically when the eliminated variable is highly
correlated with another variable in the model.

The forward-selection strategy is the reverse of the backward-elimination technique.
Instead of eliminating variables one-at-a-time, we add variables one-at-a-time until we
cannot find any variables that present strong evidence of their importance in the model.
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Estimate Std. Error t value Pr(>[t|)

(Intercept) 36.0483 0.9745 36.99 0.0000
cond_new 5.1763 0.9961 5.20 0.0000
stock_photo 1.1177 1.0192 1.10 0.2747
wheels 7.2984 0.5448 13.40 0.0000

R2, =0.7128 df =137

Table 8.7: The output for the regression model where price is the outcome
and the duration variable has been eliminated from the model.

Estimate Std. Error t value Pr(>]t|)

(Intercept) 36.7849 0.7066 52.06 0.0000
cond_new 5.5848 0.9245 6.04 0.0000
wheels 7.2328 0.5419 13.35 0.0000
R%, =0.7124 df =138

Table 8.8: The output for the regression model where price is the outcome
and the duration and stock photo variables have been eliminated from the
model.

@® Example 8.17 Construct a model for the mario_kart data set using the forward-

selection strategy.

We start with the model that includes no variables. Then we fit each of the possible
models with just one variable. That is, we fit the model including just the cond_new
predictor, then the model including just the stock_photo variable, then a model with
just duration, and a model with just wheels. Each of the four models (yes, we fit
four models!) provides a p-value for the coefficient of the predictor variable. Out of
these four variables, the wheels variable had the smallest p-value. Since its p-value
is less than 0.05 (the p-value was smaller than 2e-16), we add the Wii wheels variable
to the model. Once a variable is added in forward-selection, it will be included in all
models considered as well as the final model.

Since we successfully found a first variable to add, we consider adding another. We fit
three new models: (1) the model including just the cond_new and wheels variables
(output in Table 8.8), (2) the model including just the stock_photo and wheels
variables, and (3) the model including only the duration and wheels variables. Of
these models, the first had the lowest p-value for its new variable (the p-value corre-
sponding to cond_new was 1.4e-08). Because this p-value is below 0.05, we add the
cond_new variable to the model. Now the final model is guaranteed to include both
the condition and wheels variables.

We must then repeat the process a third time, fitting two new models: (1) the model
including the stock_photo, cond new, and wheels variables (output in Table 8.7)
and (2) the model including the duration, cond_new, and wheels variables. The
p-value corresponding to stock-photo in the first model (0.275) was smaller than
the p-value corresponding to duration in the second model (0.682). However, since
this smaller p-value was not below 0.05, there was not strong evidence that it should
be included in the model. Therefore, neither variable is added and we are finished.

The final model is the same as that arrived at using the backward-selection strategy.
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@® Example 8.18 As before, we could have used the Ri g; Criteria instead of examining

p-values in selecting variables for the model. Rather than look for variables with the
smallest p-value, we look for the model with the largest R? 4j- What would the result

of forward-selection be using the adjusted R? approach?

Using the forward-selection strategy, we start with the model with no predictors.
Next we look at each model with a single predictor. If one of these models has a
larger Rgdj than the model with no variables, we use this new model. We repeat this
procedure, adding one variable at a time, until we cannot find a model with a larger
R? qj- 1f we had done the forward-selection strategy using R? 4> We would have arrived
at the model including cond_new, stock_photo, and wheels, which is a slightly larger
model than we arrived at using the p-value approach and the same model we arrived

at using the adjusted R? and backwards-elimination.

Model selection strategies
The backward-elimination strategy begins with the largest model and eliminates
variables one-by-one until we are satisfied that all remaining variables are impor-
tant to the model. The forward-selection strategy starts with no variables included
in the model, then it adds in variables according to their importance until no other
important variables are found.

There is no guarantee that the backward-elimination and forward-selection strategies

will arrive at the same final model using the p-value or adjusted R? methods. If the
backwards-elimination and forward-selection strategies are both tried and they arrive at
different models, choose the model with the larger Rgdj as a tie-breaker; other tie-break
options exist but are beyond the scope of this book.

It is generally acceptable to use just one strategy, usually backward-elimination with

either the p-value or adjusted R? criteria. However, before reporting the model results, we
must verify the model conditions are reasonable.

8.3 Checking model assumptions using graphs

Multiple regression methods using the model

9= Bo + Prx1 + Boxo + - - + Bk

generally depend on the following four assumptions:

= W o=

the residuals of the model are nearly normal,
the variability of the residuals is nearly constant,
the residuals are independent, and

each variable is linearly related to the outcome.

Simple and effective plots can be used to check each of these assumptions. We will consider
the model for the auction data that uses the game condition and number of wheels as
predictors.
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Figure 8.9: A normal probability plot of the residuals is helpful in identifying
observations that might be outliers.

Normal probability plot. A normal probability plot of the residuals is shown in Fig-
ure 8.9. While the plot exhibits some minor irregularities, there are no outliers that
might be cause for concern. In a normal probability plot for residuals, we tend to
be most worried about residuals that appear to be outliers, since these indicate long
tails in the distribution of residuals.

Absolute values of residuals against fitted values. A plot of the absolute value of
the residuals against their corresponding fitted values (g;) is shown in Figure 8.10.
This plot is helpful to check the condition that the variance of the residuals is ap-
proximately constant. We don’t see any obvious deviations from constant variance in
this example.

Residuals in order of their data collection. A plot of the residuals in the order their
corresponding auctions were observed is shown in Figure 8.11. Such a plot is helpful in
identifying any connection between cases that are close to one another, e.g. we could
look for declining prices over time or if there was a time of the day when auctions
tended to fetch a higher price. Here we see no structure that indicates a problem.'?

Residuals against each predictor variable. We consider a plot of the residuals against
the cond_new variable and the residuals against the wheels variable. These plots are
shown in Figure 8.12. For the two-level condition variable, we are guaranteed not
to see any remaining trend, and instead we are checking that the variability doesn’t
fluctuate across groups. In this example, when we consider the residuals against the
wheels variable, we see some possible structure. There appears to be curvature in
the residuals, indicating the relationship is probably not linear.

12 An especially rigorous check would use time series methods. For instance, we could check whether
consecutive residuals are correlated. Doing so with these residuals yields no statistically significant corre-
lations.
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Figure 8.10: Comparing the absolute value of the residuals against the fitted
values (9;) is helpful in identifying deviations from the constant variance

assumption.
®
®
10 - - e o ° ° .
° 00 o ©
® ) ®
° ° ° ® e
e o ° o
1) . ® ® .° ® °
] () o )
3 o° e % ) o’
D P ® [ J L) % P
Q 0 - ® o ® ) P
@ ®eo © .o ® e %0 ¢ ~ o®
® ®
L] oo"‘.‘.o 009 °® e " %. 0..°
~ ® e oo o ‘. ®
° e_ o ¢ L) ®e
° e ° ®
® ® °
® °
_10 -
°
T T T T T T T T
0 20 40 60 80 100 120 140

Order of collection
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servations. If it seems that consecutive observations tend to be close to
each other, this indicates the independence assumption of the observations
would fail.
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differences in distribution shape or variability. For numerical predictors,
we also check for trends or other structure. We see some slight bowing in
the residuals against the wheels variable.
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It is necessary to summarize diagnostics for any model fit. If the diagnostics support
the model assumptions, this would improve credibility in the findings. If the diagnostic
assessment shows remaining underlying structure in the residuals, we should try to adjust
the model to account for that structure. If we are unable to do so, we may still report
the model but must also note its shortcomings. In the case of the auction data, we report
that there may be a nonlinear relationship between the total price and the number of
wheels included for an auction. This information would be important to buyers and sellers;
omitting this information could be a setback to the very people who the model might assist.

“All models are wrong, but some are useful” -George E.P. Box

The truth is that no model is perfect. However, even imperfect models can be
useful. Reporting a flawed model can be reasonable so long as we are clear and
report the model’s shortcomings.

Caution: Don’t report results when assumptions are grossly violated
While there is a little leeway in model assumptions, don’t go too far. If model as-
sumptions are very clearly violated, consider a new model, even if it means learning
more statistical methods or hiring someone who can help.

TIP: Confidence intervals in multiple regression
Confidence intervals for coefficients in multiple regression can be computed using
the same formula as in the single predictor model:

where t:lf is the appropriate t value corresponding to the confidence level and model
degrees of freedom, df =n —k — 1.

8.4 Logistic regression

In this section we introduce logistic regression as a tool for building models when there is
a categorical response variable with two levels. Logistic regression is a type of generalized
linear model (GLM) for response variables where regular multiple regression does not
work very well. In particular, the response variable in these settings often takes a form
where residuals look completely different from the normal distribution.

GLMs can be thought of as a two-stage modeling approach. We first model the
response variable using a probability distribution, such as the binomial or Poisson distri-
bution. Second, we model the parameter of the distribution using a collection of predictors
and a special form of multiple regression.

In Section 8.4 we will revisit the email data set from Chapter 1. These emails were
collected from a single email account, and we will work on developing a basic spam filter
using these data. The response variable, spam, has been encoded to take value 0 when a
message is not spam and 1 when it is spam. Our task will be to build an appropriate model
that classifies messages as spam or not spam using email characteristics coded as predictor
variables. While this model will not be the same as those used in large-scale spam filters,
it shares many of the same features.
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variable description

spam Specifies whether the message was spam.

to_multiple An indicator variable for if more than one person was listed in the To field
of the email.

cc An indicator for if someone was CCed on the email.

attach An indicator for if there was an attachment, such as a document or image.

dollar An indicator for if the word “dollar” or dollar symbol ($) appeared in the
email.

winner An indicator for if the word “winner” appeared in the email message.

inherit An indicator for if the word “inherit” (or a variation, like “inheritance”)
appeared in the email.

password An indicator for if the word “password” was present in the email.

format Indicates if the email contained special formatting, such as bolding, tables,
or links

re_subj Indicates whether “Re:” was included at the the start of the email subject.

exclaim_subj Indicates whether any exclamation point was included in the email subject.

Table 8.13: Descriptions for 11 variables in the email data set. Notice that
all of the variables are indicator variables, which take the value 1 if the
specified characteristic is present and 0 otherwise.

8.4.1 Email data

The email data set was first presented in Chapter 1 with a relatively small number of
variables. In fact, there are many more variables available that might be useful for classi-
fying spam. Descriptions of these variables are presented in Table 8.13. The spam variable
will be the outcome, and the other 10 variables will be the model predictors. While we
have limited the predictors used in this section to be categorical variables (where many
are represented as indicator variables), numerical predictors may also be used in logistic
regression. See the footnote for an additional discussion on this topic.'*

8.4.2 Modeling the probability of an event

TIP: Notation for a logistic regression model

The outcome variable for a GLM is denoted by Y;, where the index 7 is used to
represent observation i. In the email application, Y; will be used to represent
whether email 4 is spam (Y; = 1) or not (¥; = 0).

The predictor variables are represented as follows: z; ; is the value of variable 1 for
observation ¢, xg ; is the value of variable 2 for observation 7, and so on.

Logistic regression is a generalized linear model where the outcome is a two-level
categorical variable. The outcome, Y;, takes the value 1 (in our application, this represents
a spam message) with probability p; and the value 0 with probability 1 — p;. It is the
probability p; that we model in relation to the predictor variables.

13Recall from Chapter 7 that if outliers are present in predictor variables, the corresponding observations
may be especially influential on the resulting model. This is the motivation for omitting the numerical
variables, such as the number of characters and line breaks in emails, that we saw in Chapter 1. These
variables exhibited extreme skew. We could resolve this issue by transforming these variables (e.g. using a
log-transformation), but we will omit this further investigation for brevity.



8.4. LOGISTIC REGRESSION 369

(4.0,0.982) (6.0,0.998)
L0 .. _toom

(5.0, 0.993)

(2.0,0.88)

0.8

(1.0,0.73)

0.6

pi (0.0, 0.50)
0.4

(-1.0,0.27)

0.2

(-3.0, 0.8 ~2.0,0.12)

(-5.0, 0.007)

0.0

logit(p;)

Figure 8.14: Values of p; against values of logit(p;).

The logistic regression model relates the probability an email is spam (p;) to the
predictors 1 ;, T2, ..., Tk, through a framework much like that of multiple regression:

trans formation(p;) = Bo + f121,; + Paza,; + - - BeThi (8.19)

We want to choose a transformation in Equation (8.19) that makes practical and mathe-
matical sense. For example, we want a transformation that makes the range of possibilities
on the left hand side of Equation (8.19) equal to the range of possibilities for the right hand
side; if there was no transformation for this equation, the left hand side could only take
values between 0 and 1, but the right hand side could take values outside of this range. A
common transformation for p; is the logit transformation, which may be written as

logit(p;) = log, < b >

The logit transformation is shown in Figure 8.14. Below, we rewrite Equation (8.19) using
the logit transformation of p;:

log, (1 fip ) = Po+ brz1,i + Paxai + -+ e,

K2

In our spam example, there are 10 predictor variables, so k& = 10. This model isn’t very
intuitive, but it still has some resemblance to multiple regression, and we can fit this model
using software. In fact, once we look at results from software, it will start to feel like we're
back in multiple regression, even if the interpretation of the coefficients is more complex.
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@® Example 8.20 Here we create a spam filter with a single predictor: to_multiple.
This variable indicates whether more than one email address was listed in the 7o field
of the email. The following logistic regression model was fit using statistical software:

log (1 pi > = 212 — 1.81 x to_multiple
— bi

If an email is randomly selected and it has just one address in the To field, what is
the probability it is spam? What if more than one address is listed in the To field?
If there is only one email in the To field, then to_multiple takes value 0 and the

right side of the model equation equals -2.12. Solving for p;: % = 0.11. Just as
we labeled a fitted value of y; with a “hat” in single-variable and multiple regression,

we will do the same for this probability: p; = 0.11.

If there is more than one address listed in the 7o field, then the right side of the model
equation is —2.12 — 1.81 x 1 = —3.93, which corresponds to a probability p; = 0.02.

Notice that we could examine -2.12 and -3.93 in Figure 8.14 to estimate the probability
before formally calculating the value.
To convert from values on the regression-scale (e.g. -2.12 and -3.93 in Example 8.20),
use the following formula, which is the result of solving for p; in the regression model:
eBotBrzr it +Brtr i
pi = 1 + ePotbrizrit+Brar,i

As with most applied data problems, we substitute the point estimates for the parameters
(the ;) so that we may make use of this formula. In Example 8.20, the probabilities were
calculated as

—2.12 672.1271.81

e
1 + 212 =0.11 1 + e-212-181 =0.02

While the information about whether the email is addressed to multiple people is a help-
ful start in classifying email as spam or not, the probabilities of 11% and 2% are not
dramatically different, and neither provides very strong evidence about which particular
email messages are spam. To get more precise estimates, we’ll need to include many more
variables in the model.

We used statistical software to fit the logistic regression model with all ten predictors
described in Table 8.13. Like multiple regression, the result may be presented in a summary
table, which is shown in Table 8.15. The structure of this table is almost identical to that
of multiple regression; the only notable difference is that the p-values are calculated using
the normal distribution rather than the t distribution.

Just like multiple regression, we could trim some variables from the model using the
p-value. Using backwards elimination with a p-value cutoff of 0.05 (start with the full
model and trim the predictors with p-values greater than 0.05), we ultimately eliminate
the exclaim_subj, dollar, inherit, and cc predictors. The remainder of this section will
rely on this smaller model, which is summarized in Table 8.16.

() Exercise 8.21 Examine the summary of the reduced model in Table 8.16, and in
particular, examine the to_multiple row. Is the point estimate the same as we found
before, -1.81, or is it different? Explain why this might be.'*

14The new estimate is different: -2.87. This new value represents the estimated coefficient when we are
also accounting for other variables in the logistic regression model.
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Estimate Std. Error z value Pr(>|z)

(Intercept) -0.8362 0.0962 -8.69 0.0000
to_multiple -2.8836 0.3121 -9.24 0.0000
winner 1.7038 0.3254 5.24 0.0000
format -1.5902 0.1239  -12.84 0.0000
re_subj -2.9082 0.3708 -7.84 0.0000
exclaim_subj 0.1355 0.2268 0.60 0.5503
cc -0.4863 0.3054 -1.59 0.1113

attach 0.9790 0.2170 4.51 0.0000
dollar -0.0582 0.1589 -0.37 0.7144
inherit 0.2093 0.3197 0.65 0.5127
password -1.4929 0.5295 -2.82 0.0048

Table 8.15: Summary table for the full logistic regression model for the
spam filter example.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8595 0.0910 -9.44 0.0000
to_multiple -2.8372 0.3092 -9.18 0.0000
winner 1.7370 0.3218 5.40 0.0000
format -1.5569 0.1207  -12.90 0.0000
re_subj -3.0482 0.3630 -8.40 0.0000
attach 0.8643 0.2042 4.23 0.0000
password -1.4871 0.5290 -2.81 0.0049

Table 8.16: Summary table for the logistic regression model for the spam
filter, where variable selection has been performed.

Point estimates will generally change a little — and sometimes a lot — depending on
which other variables are included in the model. This is usually due to colinearity in the
predictor variables. We previously saw this in the Ebay auction example when we compared
the coefficient of cond_new in a single-variable model and the corresponding coefficient
in the multiple regression model that used three additional variables (see Sections 8.1.1
and 8.1.2).

@® Example 8.22 Spam filters are built to be automated, meaning a piece of software
is written to collect information about emails as they arrive, and this information is
put in the form of variables. These variables are then put into an algorithm that
uses a statistical model, like the one we’ve fit, to classify the email. Suppose we
write software for a spam filter using the reduced model shown in Table 8.16. If
an incoming email has the word “winner” in it, will this raise or lower the model’s
calculated probability that the incoming email is spam?

The estimated coefficient of winner is positive (1.7370). A positive coefficient esti-
mate in logistic regression, just like in multiple regression, corresponds to a positive
association between the predictor and response variables when accounting for the
other variables in the model. Since the response variable takes value 1 if an email is
spam and 0 otherwise, the positive coefficient indicates that the presence of “winner”
in an email raises the model probability that the message is spam.
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® Example 8.23 Suppose the same email from Example 8.22 was in HTML format,
meaning the format variable took value 1. Does this characteristic increase or de-
crease the probability that the email is spam according to the model?

Since HTML corresponds to a value of 1 in the format variable and the coefficient of
this variable is negative (-1.5569), this would lower the probability estimate returned
from the model.

8.4.3 Practical decisions in the email application

Examples 8.22 and 8.23 highlight a key feature of logistic and multiple regression. In the
spam filter example, some email characteristics will push an email’s classification in the
direction of spam while other characteristics will push it in the opposite direction.

If we were to implement a spam filter using the model we have fit, then each future
email we analyze would fall into one of three categories based on the email’s characteristics:

1. The email characteristics generally indicate the email is not spam, and so the resulting
probability that the email is spam is quite low, say, under 0.05.

2. The characteristics generally indicate the email is spam, and so the resulting proba-
bility that the email is spam is quite large, say, over 0.95.

3. The characteristics roughly balance each other out in terms of evidence for and against
the message being classified as spam. Its probability falls in the remaining range,
meaning the email cannot be adequately classified as spam or not spam.

If we were managing an email service, we would have to think about what should be
done in each of these three instances. In an email application, there are usually just two
possibilities: filter the email out from the regular inbox and put it in a “spambox”, or let
the email go to the regular inbox.

() Exercise 8.24 The first and second scenarios are intuitive. If the evidence strongly
suggests a message is not spam, send it to the inbox. If the evidence strongly suggests
the message is spam, send it to the spambox. How should we handle emails in the
third category?'®

() Exercise 8.25 Suppose we apply the logistic model we have built as a spam filter
and that 100 messages are placed in the spambox over 3 months. If we used the
guidelines above for putting messages into the spambox, about how many legitimate
(non-spam) messages would you expect to find among the 100 messages?'®

Almost any classifier will have some error. In the spam filter guidelines above, we
have decided that it is okay to allow up to 5% of the messages in the spambox to be real
messages. If we wanted to make it a little harder to classify messages as spam, we could
use a cutoff of 0.99. This would have two effects. Because it raises the standard for what
can be classified as spam, it reduces the number of good emails that are classified as spam.

15Tn this particular application, we should err on the side of sending more mail to the inbox rather than
mistakenly putting good messages in the spambox. So, in summary: emails in the first and last categories
go to the regular inbox, and those in the second scenario go to the spambox.

16First, note that we proposed a cutoff for the predicted probability of 0.95 for spam. In a worst case
scenario, all the messages in the spambox had the minimum probability equal to about 0.95. Thus, we
should expect to find about 5 or fewer legitimate messages among the 100 messages placed in the spambox.
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However, it will also fail to correctly classify an increased fraction of spam messages. No
matter the complexity and the confidence we might have in our model, these practical
considerations are absolutely crucial to making a helpful spam filter. Without them, we
could actually do more harm than good by using our statistical model.

8.4.4 Diagnostics for the email classifier

Logistic regression conditions
There are two key conditions for fitting a logistic regression model:

1. The model relating the parameter p; to the predictors =1 ;, 24, ..., Tk,; closely
resembles the true relationship between the parameter and the predictors.

2. Each outcome Y; is independent of the other outcomes.

The first condition of the logistic regression model is not easily checked without a
fairly sizable amount of data. Luckily, we have 3,921 emails in our data set! Let’s first
visualize these data by plotting the true classification of the emails against the model’s
fitted probabilities, as shown in Figure 8.17. The vast majority of emails (spam or not)
still have fitted probabilities below 0.5.

1 (spam) ' I

0 (not spam) “ i . L || .

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability

Figure 8.17: The predicted probability that each of the 3,912 emails is spam
is classified by their grouping, spam or not. Noise (small, random vertical
shifts) have been added to each point so that points with nearly identical
values aren’t plotted exactly on top of one another. This makes it possible
to see more observations.

This may at first seem very discouraging: we have fit a logistic model to create a spam
filter, but no emails have a fitted probability of being spam above 0.75. Don’t despair; we
will discuss ways to improve the model through the use of better variables in Section 8.4.5.

We'd like to assess the quality of our model. For example, we might ask: if we look
at emails that we modeled as having a 10% chance of being spam, do we find about 10%
of them actually are spam? To help us out, we’ll borrow an advanced statistical method
called natural splines that estimates the local probability over the region 0.00 to 0.75
(the largest predicted probability was 0.73, so we avoid extrapolating). All you need to
know about natural splines to understand what we are doing is that they are used to fit
flexible lines rather than straight lines.
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Figure 8.18: The solid black line provides the empirical estimate of the prob-
ability for observations based on their predicted probabilities (confidence
bounds are also shown for this line), which is fit using natural splines. A
small amount of noise was added to the observations in the plot to allow
more observations to be seen.

The curve fit using natural splines is shown in Figure 8.18 as a solid black line. If
the logistic model fits well, the curve should closely follow the dashed y = z line. We
have added shading to represent the confidence bound for the curved line to clarify what
fluctuations might plausibly be due to chance. Even with this confidence bound, there
are weaknesses in the first model assumption. The solid curve and its confidence bound
dips below the dashed line from about 0.1 to 0.3, and then it drifts above the dashed line
from about 0.35 to 0.55. These deviations indicate the model relating the parameter to the
predictors does not closely resemble the true relationship.

We could evaluate the second logistic regression model assumption — independence of
the outcomes — using the model residuals. The residuals for a logistic regression model
are calculated the same way as with multiple regression: the observed outcome minus the
expected outcome. For logistic regression, the expected value of the outcome is the fitted
probability for the observation, and the residual may be written as

e; =Y; — p;

We could plot these residuals against a variety of variables or in their order of collection,
as we did with the residuals in multiple regression. However, since we know the model
will need to be revised to effective classify spam and you have already seen similar residual
plots in Section 8.3, we won’t investigate the residuals here.
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8.4.5 Improving the set of variables for a spam filter

If we were building a spam filter for an email service that managed many accounts (e.g.
Gmail or Hotmail), we would spend much more time thinking about additional variables
that could be useful in classifying emails as spam or not. We also would use transformations
or other techniques that would help us include strongly skewed numerical variables as
predictors.

Take a few minutes to think about additional variables that might be useful in iden-
tifying spam. Below is a list of variables we think might be useful:

(1) An indicator variable could be used to represent whether there was prior two-way
correspondence with a message’s sender. For instance, if you sent a message to
john@example.com and then John sent you an email, this variable would take value
1 for the email that John sent. If you had never sent John an email, then the variable
would be set to 0.

(2) A second indicator variable could utilize an account’s past spam flagging information.
The variable could take value 1 if the sender of the message has previously sent
messages flagged as spam.

(3) A third indicator variable could flag emails that contain links included in previous
spam messages. If such a link is found, then set the variable to 1 for the email.
Otherwise, set it to 0.

The variables described above take one of two approaches. Variable (1) is specially designed
to capitalize on the fact that spam is rarely sent between individuals that have two-way
communication. Variables (2) and (3) are specially designed to flag common spammers or
spam messages. While we would have to verify using the data that each of the variables is
effective, these seem like promising ideas.

Table 8.19 shows a contingency table for spam and also for the new variable described
in (1) above. If we look at the 1,090 emails where there was correspondence with the sender
in the preceding 30 days, not one of these message was spam. This suggests variable (1)
would be very effective at accurately classifying some messages as not spam. With this
single variable, we would be able to send about 28% of messages through to the inbox with
confidence that almost none are spam.

prior correspondence

no yes Total
not spam 367 0 367
spam 2464 1090 3554
Total 2831 1090 3921

Table 8.19: A contingency table for spam and a new variable that represents
whether there had been correspondence with the sender in the preceding
30 days.

The variables described in (2) and (3) would provide an excellent foundation for dis-
tinguishing messages coming from known spammers or messages that take a known form
of spam. To utilize these variables, we would need to build databases: one holding email
addresses of known spammers, and one holding URLs found in known spam messages. Our
access to such information is limited, so we cannot implement these two variables in this
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textbook. However, if we were hired by an email service to build a spam filter, these would
be important next steps.

In addition to finding more and better predictors, we would need to create a customized
logistic regression model for each email account. This may sound like an intimidating task,
but its complexity is not as daunting as it may at first seem. We’ll save the details for a
statistics course where computer programming plays a more central role.

For what is the extremely challenging task of classifying spam messages, we have made
a lot of progress. We have seen that simple email variables, such as the format, inclusion
of certain words, and other circumstantial characteristics, provide helpful information for
spam classification. Many challenges remain, from better understanding logistic regression
to carrying out the necessary computer programming, but completing such a task is very
nearly within your reach.



8.5. EXERCISES 377

8.5 Exercises

8.5.1 Introduction to multiple regression

8.1 Baby weights, Part I. The Child Health and Development Studies investigate a range of
topics. One study considered all pregnancies between 1960 and 1967 among women in the Kaiser
Foundation Health Plan in the San Francisco East Bay area. Here, we study the relationship
between smoking and weight of the baby. The variable smoke is coded 1 if the mother is a
smoker, and 0 if not. The summary table below shows the results of a linear regression model for
predicting the average birth weight of babies, measured in ounces, based on the smoking status of
the mother.'”

Estimate Std. Error t value Pr(>[t|)
(Intercept) 123.05 0.65 189.60 0.0000
smoke -8.94 1.03 -8.65 0.0000

The variability within the smokers and non-smokers are about equal and the distributions are
symmetric. With these conditions satisfied, it is reasonable to apply the model. (Note that we
don’t need to check linearity since the predictor has only two levels.)

(a) Write the equation of the regression line.

(b) Interpret the slope in this context, and calculate the predicted birth weight of babies born to
smoker and non-smoker mothers.

(c) Is there a statistically significant relationship between the average birth weight and smoking?

8.2 Baby weights, Part II. Exercise 8.1 introduces a data set on birth weight of babies.
Another variable we consider is parity, which is O if the child is the first born, and 1 otherwise.
The summary table below shows the results of a linear regression model for predicting the average
birth weight of babies, measured in ounces, from parity.

Estimate Std. Error t value Pr(>[t|)
(Intercept) 120.07 0.60 199.94 0.0000
parity -1.93 1.19 -1.62 0.1052

(a) Write the equation of the regression line.

(b) Interpret the slope in this context, and calculate the predicted birth weight of first borns and
others.

(c) Is there a statistically significant relationship between the average birth weight and parity?

17Child Health and Development Studies, Baby weights data set.
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8.3 Baby weights, Part III. We considered the variables smoke and parity, one at a time, in
modeling birth weights of babies in Exercises 8.1 and 8.2. A more realistic approach to modeling
infant weights is to consider all possibly related variables at once. Other variables of interest
include length of pregnancy in days (gestation), mother’s age in years (age), mother’s height in
inches (height), and mother’s pregnancy weight in pounds (weight). Below are three observations
from this data set.

bwt gestation parity age height weight smoke

1 120 284 0 27 62 100 0
113 282 0 33 64 135 0
1236 117 297 0 38 65 129 0

The summary table below shows the results of a regression model for predicting the average birth
weight of babies based on all of the variables included in the data set.

Estimate Std. Error t value Pr(>[t|)

(Intercept) -80.41 14.35 -5.60 0.0000
gestation 0.44 0.03 15.26 0.0000
parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170

height 1.15 0.21 5.63 0.0000
weight 0.05 0.03 1.99 0.0471
smoke -8.40 0.95 -8.81 0.0000

(a) Write the equation of the regression line that includes all of the variables.

—
=3
=

Interpret the slopes of gestation and age in this context.

—
o
~

The coefficient for parity is different than in the linear model shown in Exercise 8.2. Why
might there be a difference?

(d) Calculate the residual for the first observation in the data set.

—
@

) The variance of the residuals is 249.28, and the variance of the birth weights of all babies
in the data set is 332.57. Calculate the R* and the adjusted R?. Note that there are 1,236
observations in the data set.
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8.4 Absenteeism. Researchers interested in the relationship between absenteeism from school
and certain demographic characteristics of children collected data from 146 randomly sampled stu-
dents in rural New South Wales, Australia, in a particular school year. Below are three observations

from this data set.

eth sex Irn days
1 0 1 1 2
2 0 1 1 11
146 1 0 0 37

The summary table below shows the results of a linear regression model for predicting the average
number of days absent based on ethnic background (eth: 0 - aboriginal, 1 - not aboriginal), sex
(sex: O - female, 1 - male), and learner status (1rn: 0 - average learner, 1 - slow learner).'®

Estimate Std. Error t value Pr(>[t|)

(Intercept) 18.93 2.57 7.37 0.0000
eth -9.11 2.60 -3.51 0.0000

sex 3.10 2.64 1.18 0.2411

Irn 2.15 2.65 0.81 0.4177

f\/\
DGO
REJIRC)

) Write the equation of the regression line.

Interpret each one of the slopes in this context.

male, a slow learner, and missed 2 days of school.

Calculate the residual for the first observation in the data set: a student who is aboriginal,

(d) The variance of the residuals is 240.57, and the variance of the number of absent days for all
students in the data set is 264.17. Calculate the R? and the adjusted R?. Note that there are
146 observations in the data set.

8.5 GPA. A survey of 55 Duke University students asked about their GPA, number of hours
they study at night, number of nights they go out, and their gender. Summary output of the
regression model is shown below. Note that male is coded as 1.

Estimate Std. Error t value Pr(>[t|)

(Intercept) 3.45 0.35 9.85 0.00
studyweek 0.00 0.00 0.27 0.79
sleepnight 0.01 0.05 0.11 0.91
outnight 0.05 0.05 1.01 0.32
gender -0.08 0.12 -0.68 0.50

(a) Calculate a 95% confidence interval for the coefficient of gender in the model, and interpret it

in the context of the data.

(b) Would you expect a 95% confidence interval for the slope of the remaining variables to include

0?7 Explain

18W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth Edition. Data can also
be found in the R MASS package. New York: Springer, 2002.


http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
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8.6 Cherry trees. Timber yield is approximately equal to the volume of a tree, however, this
value is difficult to measure without first cutting the tree down. Instead, other variables, such as
height and diameter, may be used to predict a tree’s volume and yield. Researchers wanting to
understand the relationship between these variables for black cherry trees collected data from 31
such trees in the Allegheny National Forest, Pennsylvania. Height is measured in feet, diameter
in inches (at 54 inches above ground), and volume in cubic feet.'’

Estimate Std. Error t value Pr(>]t|)

(Intercept) -57.99 8.64 -6.71 0.00
height 0.34 0.13 2.61 0.01
diameter 4.71 0.26 17.82 0.00

(a) Calculate a 95% confidence interval for the coefficient of height, and interpret it in the context
of the data.

(b) One tree in this sample is 79 feet tall, has a diameter of 11.3 inches, and is 24.2 cubic feet in
volume. Determine if the model overestimates or underestimates the volume of this tree, and
by how much.

8.5.2 Model selection

8.7 Baby weights, Part I'V. Exercise 8.3 considers a model that predicts a newborn’s weight
using several predictors. Use the regression table below, which summarizes the model, to answer
the following questions. If necessary, refer back to Exercise 8.3 for a reminder about the meaning
of each variable.

Estimate Std. Error t value Pr(>[t|)

(Intercept) -80.41 14.35 -5.60 0.0000
gestation 0.44 0.03 15.26 0.0000
parity -3.33 1.13 -2.95 0.0033

age -0.01 0.09 -0.10 0.9170

height 1.15 0.21 5.63 0.0000
weight 0.05 0.03 1.99 0.0471
smoke -8.40 0.95 -8.81 0.0000

(a) Determine which variables, if any, do not have a significant linear relationship with the outcome
and should be candidates for removal from the model. If there is more than one such variable,
indicate which one should be removed first.

(b) The summary table below shows the results of the model with the age variable removed.
Determine if any other variable(s) should be removed from the model.

Estimate Std. Error t value Pr(>[t|)

(Intercept) -80.64 14.04 -5.74 0.0000
gestation 0.44 0.03 15.28 0.0000
parity -3.29 1.06 -3.10 0.0020
height 1.15 0.20 5.64 0.0000
weight 0.05 0.03 2.00 0.0459
smoke -8.38 0.95 -8.82 0.0000

19D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.
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8.8 Absenteeism, Part II. Exercise 8.4 considers a model that predicts the number of days
absent using three predictors: ethnic background (eth), gender (sex), and learner status (1rn). Use
the regression table below to answer the following questions. If necessary, refer back to Exercise 8.4
for additional details about each variable.

Estimate Std. Error t value Pr(>[t])

(Intercept) 18.93 2.57 7.37 0.0000
eth -9.11 2.60 -3.51 0.0000
sex 3.10 2.64 1.18 0.2411
Irn 2.15 2.65 0.81 0.4177

(a) Determine which variables, if any, do not have a significant linear relationship with the outcome
and should be candidates for removal from the model. If there is more than one such variable,
indicate which one should be removed first.

(b) The summary table below shows the results of the regression we refit after removing learner
status from the model. Determine if any other variable(s) should be removed from the model.

Estimate Std. Error t value Pr(>[t])

(Intercept) 19.98 2.22 9.01 0.0000
eth -9.06 2.60 -3.49 0.0006
sex 2.78 2.60 1.07 0.2878

8.9 Baby weights, Part V. Exercise 8.3 provides regression output for the full model (including
all explanatory variables available in the data set) for predicting birth weight of babies. In this
exercise we consider a forward-selection algorithm and add variables to the model one-at-a-time.
The table below shows the p-value and adjusted R? of each model where we include only the
corresponding predictor. Based on this table, which variable should be added to the model first?

variable gestation parity age height weight smoke
p-value 22x107'° 0.1052 0.2375 2.97x 102 82x10° 22x10°'°
Ridj 0.1657 0.0013  0.0003 0.0386 0.0229 0.0569

8.10 Absenteeism, Part I11. Exercise 8.4 provides regression output for the full model, includ-
ing all explanatory variables available in the data set, for predicting the number of days absent
from school. In this exercise we consider a forward-selection algorithm and add variables to the
model one-at-a-time. The table below shows the p-value and adjusted R? of each model where we
include only the corresponding predictor. Based on this table, which variable should be added to
the model first?

variable ethnicity sex learner status
p-value 0.0007 0.3142 0.5870
R2 0.0714  0.0001 0

adj




382 CHAPTER 8. MULTIPLE AND LOGISTIC REGRESSION

8.5.3 Checking model assumptions using graphs

8.11 Baby weights, Part V. Exercise 8.7 presents a regression model for predicting the average
birth weight of babies based on length of gestation, parity, height, weight, and smoking status of
the mother. Determine if the model assumptions are met using the plots below. If not, describe
how to proceed with the analysis.
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8.12 GPA and 1Q). A regression model for predicting GPA from gender and IQ was fit, and
both predictors were found to be statistically significant. Using the plots given below, determine
if this regression model is appropriate for these data.
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8.5.4 Logistic regression

8.13 Possum classification, Part I. The common brushtail possum of the Australia region is a
bit cuter than its distant cousin, the American opossum (see Figure 7.5 on page 318). We consider
104 brushtail possums from two regions in Australia, where the possums may be considered a
random sample from the population. The first region is Victoria, which is in the eastern half of
Australia and traverses the southern coast. The second region consists of New South Wales and
Queensland, which make up eastern and northeastern Australia.

We use logistic regression to differentiate between possums in these two regions. The outcome
variable, called population, takes value 1 when a possum is from Victoria and 0 when it is from
New South Wales or Queensland. We consider five predictors: sex_male (an indicator for a
possum being male), head_length, skull_width, total_length, and tail length. Each variable
is summarized in a histogram. The full logistic regression model and a reduced model after variable
selection are summarized in the table.

60 15
2 40 5 5
S S 10 S
g g g
r 20 r 5 s
0 L | 0 e
0 1 85 90 95 100
(Female) <ox male (Male) head_length (in mm) skull_width (in mm)
20 &0
3 3 15 2 40
g g g
g g g 20
w w 5 w
0 r T T T 1 o r T T T T 1 O L |
75 80 85 90 95 32 34 36 38 40 42 0 ) ) 1 )
total_length (in cm) tail_length (in cm) (Not VICtO"?J)opulation (Victoria)
Full Model Reduced Model
Estimate SE Z Pr(>|Z]) Estimate SE Z  Pr(>|Z])
(Intercept) 39.2349  11.5368 3.40 0.0007 33.5095  9.9053 3.38 0.0007
sex_male -1.2376 0.6662 -1.86 0.0632 -1.4207 0.6457 -2.20 0.0278
head_length -0.1601 0.1386  -1.16 0.2480
skull_width -0.2012 0.1327 -1.52 0.1294 -0.2787  0.1226  -2.27 0.0231
total_length 0.6488 0.1531 4.24 0.0000 0.5687  0.1322 4.30 0.0000
tail_-length -1.8708 0.3741  -5.00 0.0000 -1.8057 0.3599 -5.02 0.0000

(a) Examine each of the predictors. Are there any outliers that are likely to have a very large
influence on the logistic regression model?

(b) The summary table for the full model indicates that at least one variable should be eliminated
when using the p-value approach for variable selection: head_length. The second component
of the table summarizes the reduced model following variable selection. Explain why the
remaining estimates change between the two models.



8.5. EXERCISES 385

8.14 Challenger disaster, Part I. On January 28, 1986, a routine launch was anticipated for
the Challenger space shuttle. Seventy-three seconds into the flight, disaster happened: the shuttle
broke apart, killing all seven crew members on board. An investigation into the cause of the
disaster focused on a critical seal called an O-ring, and it is believed that damage to these O-rings
during a shuttle launch may be related to the ambient temperature during the launch. The table
below summarizes observational data on O-rings for 23 shuttle missions, where the mission order
is based on the temperature at the time of the launch. Temp gives the temperature in Fahrenheit,
Damaged represents the number of damaged O-rings, and Undamaged represents the number of
O-rings that were not damaged.

Shuttle Mission 1 2 3 4 5 6 7 8 9 10 11 12

Temperature 53 57 58 63 66 67 67 67 68 69 70 70
Damaged 5 1 1 1 0 0 0 0 0 0 1 0
Undamaged 1 5 5 5 6 6 6 6 6 6 5 6

Shuttle Mission 13 14 15 16 17 18 19 20 21 22 23

Temperature 70 Y0 72 73 75 75 76 76 78 79 81
Damaged 1 0 0 0 0 1 0 0 0 0 0
Undamaged 5 6 6 6 6 5 6 6 6 6 6

(a) Each column of the table above represents a different shuttle mission. Examine these data
and describe what you observe with respect to the relationship between temperatures and
damaged O-rings.

(b) Failures have been coded as 1 for a damaged O-ring and 0 for an undamaged O-ring, and
a logistic regression model was fit to these data. A summary of this model is given below.
Describe the key components of this summary table in words.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2963 3.54 0.0004
Temperature -0.2162 0.0532 -4.07 0.0000

(c) Write out the logistic model using the point estimates of the model parameters.

(d) Based on the model, do you think concerns regarding O-rings are justified? Explain.

8.15 Possum classification, Part I1. A logistic regression model was proposed for classifying
common brushtail possums into their two regions in Exercise 8.13. Use the results of the summary
table for the reduced model presented in Exercise 8.13 for the questions below. The outcome
variable took value 1 if the possum was from Victoria and 0 otherwise.

(a) Write out the form of the model. Also identify which of the following variables are positively
associated (when controlling for other variables) with a possum being from Victoria: skull_
width, total_length, and tail_length.

(b) Suppose we see a brushtail possum at a zoo in the US, and a sign says the possum had been
captured in the wild in Australia, but it doesn’t say which part of Australia. However, the sign
does indicate that the possum is male, its skull is about 63 mm wide, its tail is 37 cm long,
and its total length is 83 cm. What is the reduced model’s computed probability that this
possum is from Victoria? How confident are you in the model’s accuracy of this probability
calculation?
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8.16 Challenger disaster, Part I1. Exercise 8.14 introduced us to O-rings that were identified
as a plausible explanation for the breakup of the Challenger space shuttle 73 seconds into takeoff
in 1986. The investigation found that the ambient temperature at the time of the shuttle launch
was closely related to the damage of O-rings, which are a critical component of the shuttle. See
this earlier exercise if you would like to browse the original data.

1.0 1
0.8 1
0.6
0.4
0.2 1

Probability of damage

0.0 4 0

50 55 60 65 70 75 80

Temperature (Fahrenheit)

(a) The data provided in the previous exercise are shown in the plot. The logistic model fit to
these data may be written as

log ( P ) = 11.6630 — 0.2162 x T'emperature

1—p

where p is the model-estimated probability that an O-ring will become damaged. Use the
model to calculate the probability that an O-ring will become damaged at each of the following
ambient temperatures: 51, 53, and 55 degrees Fahrenheit. The model-estimated probabilities
for several additional ambient temperatures are provided below, where subscripts indicate the

temperature:
pes = 0.084 pe7 = 0.056 peo = 0.037 pr1 = 0.024

(b) Add the model-estimated probabilities from part (a) on the plot, then connect these dots using
a smooth curve to represent the model-estimated probabilities.

(c¢) Describe any concerns you may have regarding applying logistic regression in this application,
and note any assumptions that are required to accept the model’s validity.
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End of chapter exercise

solutions

1 Introduction to data

1.1 (a) Treatment: 10/43 = 0.23 — 23%. Con-
trol: 2/46 = 0.04 — 4%. (b) There is a 19%
difference between the pain reduction rates in
the two groups. At first glance, it appears pa-
tients in the treatment group are more likely to
experience pain reduction from the acupuncture
treatment. (c¢) Answers may vary but should be
sensible. Two possible answers: 'Though the
groups’ difference is big, I'm skeptical the re-
sults show a real difference and think this might
be due to chance. >The difference in these rates
looks pretty big, so I suspect acupuncture is hav-
ing a positive impact on pain.

1.3 (a-i) 143,196 eligible study subjects born
in Southern California between 1989 and 1993.
(a-ii) Measurements of carbon monoxide, ni-
trogen dioxide, ozone, and particulate matter
less than 10pum (PMjig) collected at air-quality-
monitoring stations as well as length of gesta-
tion. These are continuous numerical variables.
(a-iii) The research question: “Is there an as-
sociation between air pollution exposure and
preterm births?” (b-i) 600 adult patients aged
18-69 years diagnosed and currently treated for
asthma. (b-ii) The variables were whether or
not the patient practiced the Buteyko method
(categorical) and measures of quality of life, ac-
tivity, asthma symptoms and medication reduc-
tion of the patients (categorical, ordinal). It
may also be reasonable to treat the ratings on a
scale of 1 to 10 as discrete numerical variables.
(b-iii) The research question: “Do asthmatic pa-

tients who practice the Buteyko method experi-
ence improvement in their condition?”

1.5 (a) 50 x 3 = 150. (b) Four continuous
numerical variables: sepal length, sepal width,
petal length, and petal width. (c) One categor-
ical variable, species, with three levels: setosa,
versicolor, and virginica.

1.7 (a) Population of interest: all births in
Southern California. Sample: 143,196 births be-
tween 1989 and 1993 in Southern California. If
births in this time span can be considered to
be representative of all births, then the results
are generalizable to the population of Southern
California. However, since the study is observa-
tional, the findings do not imply causal relation-
ships. (b) Population: all 18-69 year olds diag-
nosed and currently treated for asthma. Sam-
ple: 600 adult patients aged 18-69 years diag-
nosed and currently treated for asthma. Since
the sample consists of voluntary patients, the
results cannot necessarily be generalized to the
population at large. However, since the study
is an experiment, the findings can be used to
establish causal relationships.

1.9 (a) Explanatory: number of study hours
per week. Response: GPA. (b) There is a
slight positive relationship between the two vari-
ables. One respondent reported a GPA above
4.0, which is a data error. There are also a few
respondents who reported unusually high study
hours (60 and 70 hours/week). The variabil-
ity in GPA also appears to be larger for stu-
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dents who study less than those who study more.
Since the data become sparse as the number of
study hours increases, it is somewhat difficult
to evaluate the strength of the relationship and
also the variability across different numbers of
study hours. (c) Observational. (d) Since this
is an observational study, a causal relationship
is not implied.

1.11 (a) Observational. (b) The professor sus-
pects students in a given section may have simi-
lar feelings about the course. To ensure each sec-
tion is reasonably represented, she may choose
to randomly select a fixed number of students,
say 10, from each section for a total sample size
of 40 students. Since a random sample of fixed
size was taken within each section in this sce-
nario, this represents stratified sampling.

1.13 Sampling from the phone book would miss
unlisted phone numbers, so this would result
in bias. People who do not have their num-
bers listed may share certain characteristics, e.g.
consider that cell phones are not listed in phone
books, so a sample from the phone book would
not necessarily be a representative of the popu-
lation.

1.15 The estimate will be biased, and it will
tend to overestimate the true family size. For
example, suppose we had just two families: the
first with 2 parents and 5 children, and the sec-
ond with 2 parents and 1 child. Then if we draw
one of the six children at random, 5 times out
of 6 we would sample the larger family

1.17 (a) No, this is an observational study.
(b) This statement is not justified; it implies a
causal association between sleep disorders and
bullying. However, this was an observational
study. A better conclusion would be “School
children identified as bullies are more likely to
suffer from sleep disorders than non-bullies.”

1.19 (a) Experiment, as the treatment was as-
signed to each patient. (b) Response: Duration
of the cold. Explanatory: Treatment, with 4
levels: placebo, 1g, 39, 3g with additives. (c) Pa-
tients were blinded. (d) Double-blind with re-
spect to the researchers evaluating the patients,
but the nurses who briefly interacted with pa-
tients during the distribution of the medica-
tion were not blinded. We could say the study
was partly double-blind. (e) No. The patients
were randomly assigned to treatment groups
and were blinded, so we would expect about an
equal number of patients in each group to not
adhere to the treatment.

APPENDIX A. END OF CHAPTER EXERCISE SOLUTIONS

1.21 (a) Experiment. (b) Treatment is exercise
twice a week. Control is no exercise. (c) Yes, the
blocking variable is age. (d) No. (e) This is an
experiment, so a causal conclusion is reasonable.
Since the sample is random, the conclusion can
be generalized to the population at large. How-
ever, we must consider that a placebo effect is
possible. (f) Yes. Randomly sampled people
should not be required to participate in a clinical
trial, and there are also ethical concerns about
the plan to instruct one group not to partici-
pate in a healthy behavior, which in this case is
exercise.

1.23 (a) Positive association: mammals with
longer gestation periods tend to live longer as
well. (b) Association would still be positive.
(c) No, they are not independent. See part (a).

1.25 (a) 1/linear and 3/nonlinear. (b) 4/some
curvature (nonlinearity) may be present on the
right side. “Linear” would also be acceptable
for the type of relationship for plot 4. (c) 2.

1.27 (a) Decrease: the new score is smaller
than the mean of the 24 previous scores.
(b) Calculate a weighted mean. Use a weight
of 24 for the old mean and 1 for the new mean:
(24 x 74+ 1 x64)/(24 + 1) = 73.6. There are
other ways to solve this exercise that do not use
a weighted mean. (c¢) The new score is more
than 1 standard deviation away from the previ-
ous mean, so increase.

1.29 Both distributions are right skewed and
bimodal with modes at 10 and 20 cigarettes;
note that people may be rounding their an-
swers to half a pack or a whole pack. The me-
dian of each distribution is between 10 and 15
cigarettes. The middle 50% of the data (the
IQR) appears to be spread equally in each group
and have a width of about 10 to 15. There are
potential outliers above 40 cigarettes per day. It
appears that more respondents who smoke only
a few cigarettes (0 to 5) on the weekdays than
on weekends.

1.31 (a) TamtWeekends — 207 i‘athﬁekdays =
16. (b) SamtWeekends = 07 SamtWeekdays — 4.18.
In this very small sample, higher on weekdays.

1.33 (a) Both distributions have the same me-
dian, 6, and the same IQR. (b) Same IQR, but
second distribution has higher median. (c) Sec-
ond distribution has higher median. IQRs are
equal. (d) Second distribution has higher me-
dian and larger IQR.
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1.37 Descriptions will vary a little. (a) 2. Uni-
modal, symmetric, centered at 60, standard de-
viation of roughly 3. (b) 3. Symmetric and ap-
proximately evenly distributed from 0 to 100.
(¢) 1. Right skewed, unimodal, centered at
about 1.5, with most observations falling be-
tween 0 and 3. A very small fraction of obser-
vations exceed a value of 5.

1.39 The histogram shows that the distribu-
tion is bimodal, which is not apparent in the
box plot. The box plot makes it easy to iden-
tify more precise values of observations outside
of the whiskers.

1.41 (a) The median is better; the mean is sub-
stantially affected by the two extreme observa-
tions. (b) The IQR is better; the standard de-
viation, like the mean, is substantially affected
by the two high salaries.

1.43 The distribution is unimodal and symmet-
ric with a mean of about 25 minutes and a stan-
dard deviation of about 5 minutes. There does
not appear to be any counties with unusually
high or low mean travel times. Since the dis-
tribution is already unimodal and symmetric, a
log transformation is not necessary.

1.45 Answers will vary. There are pockets of
longer travel time around DC, Southeastern NY,
Chicago, Minneapolis, Los Angeles, and many
other big cities. There is also a large section
of shorter average commute times that overlap
with farmland in the Midwest. Many farmers’
homes are adjacent to their farmland, so their
commute would be 0 minutes, which may ex-
plain why the average commute time for these
counties is relatively low.

1.47 (a) We see the order of the categories
and the relative frequencies in the bar plot.
(b) There are no features that are apparent in
the pie chart but not in the bar plot. (c¢) We
usually prefer to use a bar plot as we can also
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see the relative frequencies of the categories in
this graph.

1.49 The vertical locations at which the ideo-
logical groups break into the Yes, No, and Not
Sure categories differ, which indicates the vari-
ables are dependent.

1.51 (a) False. Instead of comparing counts,
we should compare percentages. (b) True. (c)
False. We cannot infer a causal relationship
from an association in an observational study.
However, we can say the drug a person is on af-
fects his risk in this case, as he chose that drug
and his choice may be associated with other vari-
ables, which is why part (b) is true. The differ-
ence in these statements is subtle but important.
(d) True.

1.53 (a) Proportion who had heart attack:
% ~ 0.035 (b) Expected number of cardio-
vascular problems in the rosiglitazone group if
having cardiovascular problems and treatment
were independent can be calculated as the num-
ber of patients in that group multiplied by the
overall rate of cardiovascular problems in the
study: 67,593 X gp'ter ~ 2370. (c-i) Ho: In-
dependence model. The treatment and cardio-
vascular problems are independent. They have
no relationship, and the difference in incidence
rates between the rosiglitazone and pioglitazone
groups is due to chance. Ha: Alternate model.
The treatment and cardiovascular problems are
not independent. The difference in the incidence
rates between the rosiglitazone and pioglitazone
groups is not due to chance, and rosiglitazone
is associated with an increased risk of serious
cardiovascular problems. (c-ii) A higher num-
ber of patients with cardiovascular problems in
the rosiglitazone group than expected under the
assumption of independence would provide sup-
port for the alternative hypothesis. This would
suggest that rosiglitazone increases the risk of
such problems. (c-iii) In the actual study, we ob-
served 2,593 cardiovascular events in the rosigli-
tazone group. In the 1,000 simulations under
the independence model, we observed somewhat
less than 2,593 in all but one or two simulations,
which suggests that the actual results did not
come from the independence model. That is,
the analysis provides strong evidence that the
variables are not independent, and we reject the
independence model in favor of the alternative.
The study’s results provide strong evidence that
rosiglitazone is associated with an increased risk
of cardiovascular problems.
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2 Probability

2.1 (a) False. These are independent trials.
(b) False. There are red face cards. (c¢) True. A
card cannot be both a face card and an ace.

2.3 (a) 10 tosses. Fewer tosses mean more vari-
ability in the sample fraction of heads, mean-
ing there’s a better chance of getting at least
60% heads. (b) 100 tosses. More flips means
the observed proportion of heads would often
be closer to the average, 0.50, and therefore also
above 0.40. (c) 100 tosses. With more flips,
the observed proportion of heads would often be
closer to the average, 0.50. (d) 10 tosses. Fewer
flips would increase variability in the fraction of
tosses that are heads.

2.5 (a) 0.5'° = 0.00098. (b) 0.5'° = 0.00098.
(c) P(at least one tails) = 1 — P(no tails) =
1—(0.5') ~ 1 —0.001 = 0.999.

2.7 (a) No, there are voters who are both
politically Independent and also swing voters.
(b) Venn diagram below:

Independen
: Swing

0.53

(c) 24%. (d) Add up the corresponding dis-
joint sections in the Venn diagram: 0.24 +
0.11 + 0.12 = 0.47. Alternatively, use the Gen-
eral Addition Rule: 0.35 + 0.23 — 0.11 = 0.47.
(e) 1 — 047 = 0.53. (f) P(Independent) x
P(swing) = 0.35 x 0.23 = 0.08, which does not
equal P(Independent and swing) = 0.11, so the
events are dependent. If you stated that this
difference might be due to sampling variability
in the survey, that answer would also be rea-
sonable (we’ll dive into this topic more in later
chapters).

2.9 (a) If the class is not graded on a curve,
they are independent. If graded on a curve,
then neither independent nor disjoint (unless
the instructor will only give one A, which is a
situation we will ignore in parts (b) and (c)).
(b) They are probably not independent: if you
study together, your study habits would be re-
lated, which suggests your course performances
are also related. (c) No. See the answer to
part (a) when the course is not graded on a

curve. More generally: if two things are un-
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related (independent), then one occurring does
not preclude the other from occurring.

2.11 (a) 0.16 4+ 0.09 = 0.25. (b) 0.17 4+ 0.09 =
0.26. (c) Assuming that the education level of
the husband and wife are independent: 0.25 x
0.26 = 0.065. You might also notice we actually
made a second assumption: that the decision
to get married is unrelated to education level.
(d) The husband/wife independence assumption
is probably not reasonable, because people often
marry another person with a comparable level
of education. We will leave it to you to think
about whether the second assumption noted in
part (c) is reasoanble.

2.13 (a) Invalid. Sum is greater than 1.
(b) Valid. Probabilities are between 0 and 1,
and they sum to 1. In this class, every student
gets a C. (c) Invalid. Sum is less than 1. (d) In-
valid. There is a negative probability. (e) Valid.
Probabilities are between 0 and 1, and they sum
to 1. (f) Invalid. There is a negative probability.

2.15 (a) No, but we could if A and B are inde-
pendent. (b-i) 0.21. (b-ii) 0.3+0.7—0.21 = 0.79.
(b-iii) Same as P(A): 0.3. (c¢) No, because 0.1
# 0.21, where 0.21 was the value computed un-
der independence from part (a). (d) P(A|B) =
0.1/0.7 = 0.143.

2.17 (a) 0.60 + 020 — 0.18 = 0.62.
(b) 0.18/0.20 = 0.90. (c) 0.11/0.33 ~ 0.33.
(d) No, otherwise the final answers of parts (b)
and (c) would have been equal. (e) 0.06/0.34 ~
0.18.

2.19 (a) 162/248 = 0.65. (b) 181/252 = 0.72
(c¢) Under the assumption of a dating choices be-
ing independent of hamburger preference, which
on the surface seems reasonable: 0.65 x 0.72 =
0.468. (d) (252+6 —1)/500 = 0.514

2.21 (a) The tree diagram:

os T 0.8*0.86 = 0.688
,,Y,%S,~,,,-,,,<
. No 034 b g014=0112
,,,,,, L -..--0.2*0.65=0.13

no, 0.2 <
’,\‘,0,,035, 0.2*0.35 = 0.07

(b) P(Can Constructlpass) =

P(can construct and pass) __

P(pass)
0.8%0.86 _ 0.688
888 ~0.84.

0.8x0.86 + 0.2x0.65 ~ 0.



2.23 First draw a tree diagram:

Then compute the probability: P(HIV|+) =
P(HIV and +) 0.259%0.997
P(¥ 0.259%0.99740.741X0.074

)
0.2582 __
02582 — (.8247.

2.25 A tree diagram of the situation:

,99?'}',‘/,93, 9:??,, 0.02*0.98 = 0.0196
yes, 0.02

negative, 0.02 4 62+0.02 = 0.0004

positive, 026 gg+0.26 = 0.2548
no, 0.98

negative, 0.74

,,,,,,,, L-0---- 0.98%0.74 = 0.7252

P(lupus and positive)
P(positive)

= 0.0714. Even when a patient

P(lupus|positive) =
0.0196
0.0196+0.2548
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tests positive for lupus, there is only a 7.14%
chance that he actually has lupus. While House
is not exactly right — it is possible that the pa-
tient has lupus — his implied skepticism is war-
ranted.

2.27 (a) 0.3. (b) 0.3. (¢) 0.3. (d) 0.3 x 0.3 =
0.09. (e) Yes, the population that is being sam-
pled from is identical in each draw.

2.29 (a) 2/9. (b) 3/9 = 1/3. (c) (3/10) x
(2/9) = 0.067. (d) No. In this small population
of marbles, removing one marble meaningfully
changes the probability of what might be drawn
next.

2.31 For 1 leggings (L) and 2 jeans (J), there
are three possible orderings: LJJ, JLJ, and JJL.
The probability for LJJ is (5/24) x (7/23) x
(6/22) = 0.0173. The other two orderings have
the same probability, and these three possi-
ble orderings are disjoint events. Final answer:
0.0519.

2.33 (a) 13. (b) No. The students are not a
random sample.

2.35 (a) The table below summarizes the probability model:
Event X P(X) X - P(X) (X — E(X))2 (X — E(X)2 . P(X)
3 hearts | 50 | 13 x 12 x Ll =o0.0120 0.65 (0.65 — 3.59)2 = 8.6436 | 8.6436 x 0.0129 = 0.1115
3 blacks 25 % X % X 2—4 =0.1176 2.94 (2.94 — 3.59)2 = 0.4225 0.4225 X 0.1176 = 0.0497
Else 0 1 — (0.0129 + 0.1176) = 0.8695 0 0 — 3A59)2 = 12.8881 12.8881 X 0.8695 = 11.2062
E(X) = $3.59 V(X) = 11.3674

SD(X) = /V(X) = 3.37

(b) E(X—5) = E(X)—5=3.59—5 = —$1.41. The standard deviation is the same as the standard
deviation of X: $3.37. (c) No. The expected earnings is negative, so on average you would lose

money playing the game.

2.37
Event X P(X) | X -P(X)
Boom 018 | 0.18 x 1 =0.06
Normal 0.09 % 0.09 x % =0.03
Recession | -0.12 | % —0.12 x § = —0.04
E(X)=0.05

The expected return is a 5% increase in value
for a single year.

2.39 (a) Expected: -$0.16. Variance: 8.95.
SD: $2.99. (b) Expected: -$0.16. SD: $1.73.
(c) Expected values are the same, but the SDs
differ. The SD from the game with tripled win-
nings/losses is larger, since the three indepen-
dent games might go in different directions (e.g.
could win one game and lose two games). So

the three independent games is lower risk, but
in this context it just means we are likely to lose
a more stable amount since the expected value
is still negative.

2.41 A fair game has an expected value of zero:
$5 % 0.46 + z x 0.54 = 0. Solving for z: -$4.26.
You would bet $4.26 for the Padres to make the
game fair.

2.43 (a) Expected: $3.90. SD: $0.34. (b) Ex-
pected: $27.30. SD: $0.89. If you computed
part (b) using part (a), you should have ob-
tained an SD of $0.90.

2.45 Approximate answers are OK. Answers
are only estimates based on the sample.
(a) (29 + 32)/144 = 0.42. (b) 21/144 = 0.15.
(c) (26 + 12+ 15)/144 = 0.37.
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3 Distributions of random variables

3.1 (a) 8.85%. (b) 6.94%. (c) 58.86%.
(d) 4.56%.
-135 0 ‘ ‘ 0 148
(a) (b)
04 15 T2 0 2
(c) (d)

462,0 = 119), Quant:

3.3 (a) Verbal: N(u =
). (b) Zvr = 1.33, Zgr =

N(p = 584,0 = 151
0.57.

(c) She scored 1.33 standard deviations above
the mean on the Verbal Reasoning section and
0.57 standard deviations above the mean on
the Quantitative Reasoning section. (d) She
did better on the Verbal Reasoning section
since her Z score on that section was higher.
(e) Percyr = 0.9082 =~ 91%, Percor =
0.7157 =~ 72%. (f) 100% — 91% = 9% did better
than her on VR, and 100% — 72% = 28% did
better than her on QR. (g) We cannot compare
the raw scores since they are on different scales.
Comparing her percentile scores is more appro-
priate when comparing her performance to oth-
ers. (h) Answer to part (b) would not change
as Z scores can be calculated for distributions
that are not normal. However, we could not an-
swer parts (¢)-(f) since we cannot use the normal
probability table to calculate probabilities and
percentiles without a normal model.

3.5 (a) Z = 0.84, which corresponds to 711 on
QR. (b) Z = —0.52, which corresponds to 400
on VR.

3.7 (a) Z =12 — 0.1151. (b) Z = —1.28 —
70.6°F or colder.

3.9 (a) N(25,2.78). (b) Z = 1.08 — 0.1401.
(c¢) The answers are very close because only the
units were changed. (The only reason why they
are a little different is because 28°C is 82.4°F,
not precisely 83°F.)
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3.11 (a) Z = 0.67. (b) u = $1650, x = $1800.
(c) 0.67 = 18001650, 5 — $223.88.

3.13 Z = 1.56 — 0.0594, i.e. 6%.

3.15 (a) Z =0.73 — 0.2327. (b) If you are bid-
ding on only one auction and set a low maximum
bid price, someone will probably outbid you. If
you set a high maximum bid price, you may win
the auction but pay more than is necessary. If
bidding on more than one auction, and you set
your maximum bid price very low, you probably
won’t win any of the auctions. However, if the
maximum bid price is even modestly high, you
are likely to win multiple auctions. (c¢) An an-
swer roughly equal to the 10th percentile would
be reasonable. Regrettably, no percentile cut-
off point guarantees beyond any possible event
that you win at least one auction. However, you
may pick a higher percentile if you want to be
more sure of winning an auction. (d) Answers
will vary a little but should correspond to the
answer in part (c). We use the 10"" percentile:
Z = —1.28 — $69.80.

3.17 14/20 = 70% are within 1 SD. Within 2
SD: 19/20 = 95%. Within 3 SD: 20/20 = 100%.
They follow this rule closely.

3.19 The distribution is unimodal and symmet-
ric. The superimposed normal curve approxi-
mates the distribution pretty well. The points
on the normal probability plot also follow a rel-
atively straight line. There is one slightly dis-
tant observation on the lower end, but it is not
extreme. The data appear to be reasonably ap-
proximated by the normal distribution.

3.21 (a) No. The cards are not independent.
For example, if the first card is an ace of clubs,
that implies the second card cannot be an ace
of clubs. Additionally, there are many possible
categories, which would need to be simplified.
(b) No. There are six events under considera-
tion. The Bernoulli distribution allows for only
two events or categories. Note that rolling a
die could be a Bernoulli trial if we simply to
two events, e.g. rolling a 6 and not rolling a 6,
though specifying such details would be neces-
sary.

3.23 (a) (1 — 0.471)% x 0.471 = 0.1318.
(b) 0.471% = 0.1045. (c) p = 1/0.471 = 2.12,
o =238 (d) p=1/0.30 = 3.33, 0 = 2.79.
(e) When p is smaller, the event is rarer, mean-
ing the expected number of trials before a suc-



cess and the standard deviation of the waiting
time are higher.

3.25 (a) 0.875% x 0.125 = 0.096. (b) p = 8,
o = T7.48.

3.27 (a) Yes. The conditions are satisfied: in-
dependence, fixed number of trials, either suc-
cess or failure for each trial, and probability of
success being constant across trials. (b) 0.200.
(c) 0.200. (d) 0.002440.0284+0.1323 = 0.1631.
(e) 1 —0.0024 = 0.9976.

3.29 (a) p =35, 0 =3.24. (b) Yes. Z = 3.00.
Since 45 is more than 2 standard deviations from
the mean, it would be considered unusual. Note
that the normal model is not required to apply
this rule of thumb. (c¢) Using a normal model:
0.0010. This does indeed appear to be an un-
usual observation. If using a normal model with
a 0.5 correction, the probability would be calcu-
lated as 0.0017.

3.31 Want to find the probabiliy that there will
be 1,786 or more enrollees. Using the normal
model: 0.0582. With a 0.5 correction: 0.0559.

3.33 (a) 1 — 0.75° = 0.5781. (b) 0.1406.
(c) 0.4219. (d) 1 — 0.25% = 0.9844.

3.35 (a) Geometric distribution: 0.109. (b) Bi-
nomial: 0.219. (c) Binomial: 0.137. (d) 1 —
0.875% = 0.551. (e) Geometric: 0.084. (f) Us-
ing a binomial distribution with n = 6 and
p = 0.125, we see that u = 4, 0 = 1.06, and
Z = —1.89. Since this is within 2 SD, it may
not be considered unusual, though this is a bor-
derline case, so we might say the observations is

4 Foundations for inference

4.1 (a) Mean. Each student reports a numeri-
cal value: a number of hours. (b) Mean. Each
student reports a number, which is a percent-
age, and we can average over these percentages.
(c) Proportion. Each student reports Yes or No,
so this is a categorical variable and we use a
proportion. (d) Mean. Each student reports a
number, which is a percentage like in part (b).
(e) Proportion. Each student reports whether or
not he got a job, so this is a categorical variable
and we use a proportion.

4.3 (a) Mean: 13.65. Median: 14. (b) SD:
1.91. IQR: 15 — 13 = 2. (¢) Z1s = 1.23, which
is not unusual since it is within 2 SD of the
mean. Zig = 2.23, which is generally consid-
ered unusual. (d) No. Point estimates that are
based on samples only approximate the popu-
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somewhat unusual.

3.37 0 wins (-$3): 0.1458. 1 win (-$1): 0.3936.
2 wins (+%1): 0.3543. 3 wins (+3$3): 0.1063.

Anna Ben Carl Damian Eddy
3.39 (a) 1/ x1/4x 1/3 x 1/2 x 1/1=
1/5! = 1/120. (b) Since the probabilities must
add to 1, there must be 5! = 120 possible order-
ings. (c) 8! = 40,320.

3.41 (a) Geometric: (5/6)* x (1/6) = 0.0804.
Note that the geometric distribution is just a
special case of the negative binomial distribu-
tion when there is a single success on the last
trial. (b) Binomial: 0.0322. (c) Negative bino-
mial: 0.0193.

3.43 (a) Negative binomial with n = 4 and
p = 0.55, where a success is defined here as a
female student. The negative binomial setting
is appropriate since the last trial is fixed but the
order of the first 3 trials is unknown. (b) 0.1838.
(c) (?) = 3. (d) In the binomial model there are
no restrictions on the outcome of the last trial.
In the negative binomial model the last trial is
fixed. Therefore we are interested in the number
of ways of orderings of the other k — 1 successes
in the first n — 1 trials.

3.45 (a) Poisson with A =75. (b) p= A =75,
o = VX =866. (c) Z = —1.73. Since 60
is within 2 standard deviations of the mean,
it would not generally be considered unusual.
Note that we often use this rule of thumb even
when the normal model does not apply.

3.47 Using Poisson with A = 75: 0.0402.

lation parameter, and they vary from one sam-
ple to another. (e) We use the SE, which is
1.91/4/100 = 0.191 for this sample’s mean.

4.5 (a) SE = 2.89. (b) Z = 1.73, which indi-
cates that the two values are not unusually dis-
tant from each other when accounting for the
uncertainty in John’s point estimate.

4.7 (a) We are 95% confident that US residents
spend an average of 3.53 to 3.83 hours per day
relaxing or pursuing activities they enjoy after
an average work day. (b) 95% of such random
samples will yield a 95% CI that contains the
true average hours per day that US residents
spend relaxing or pursuing activities they enjoy
after an average work day. (c) They can be a
little less confident in capturing the parameter,
so the interval will be a little slimmer.
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4.9 A common way to decrease the width of
the interval without losing confidence is to in-
crease the sample size. It may also be possible
to use a more advanced sampling method, such
as stratified sampling, though the required anal-
ysis is beyond the scope of this course, and such
a sampling method may be difficult in this con-
text.

4.11 (a) False. Provided the data distribution
is not very strongly skewed (n = 64 in this sam-
ple, so we can be slightly lenient with the skew),
the sample mean will be nearly normal, allow-
ing for the method normal approximation de-
scribed. (b) False. Inference is made on the
population parameter, not the point estimate.
The point estimate is always in the confidence
interval. (c) True. (d) False. The confidence
interval is not about a sample mean. (e) False.
To be more confident that we capture the pa-
rameter, we need a wider interval. Think about
needing a bigger net to be more sure of catching
a fish in a murky lake. (f) True. Optional ex-
planation: This is true since the normal model
was used to model the sample mean. The mar-
gin of error is half the width of the interval, and
the sample mean is the midpoint of the interval.
(g) False. In the calculation of the standard
error, we divide the standard deviation by the
square root of the sample size. To cut the SE
(or margin of error) in half, we would need to
sample 22 = 4 times the number of people in the
initial sample.

4.13 Independence: sample from < 10% of
population. We must assume it is a simple ran-
dom sample to move forward; in practice, we
would investigate whether this is the case, but
here we will just report that we are making this
assumption. Notice that there are no students
who have had no exclusive relationships in the
sample, which suggests some student responses
are likely missing (perhaps only positive values
were reported). The sample size is at least 30.
The skew is strong, but the sample is very large
so this is not a concern. 90% CI: (2.79, 3.25).
We are 90% confident that the average num-
ber of exclusive relationships that Duke students
have been in is between 2.79 and 3.25.

4.15 (a) Ho : p = 8 (On average, New Yorkers
sleep 8 hours a night.) Ha : u < 8 (On average,
New Yorkers sleep less than 8 hours a night.)
(b) Ho : p = 15 (The average amount of com-
pany time each employee spends not working is
15 minutes for March Madness.) Ha : p > 15
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(The average amount of company time each em-
ployee spends not working is greater than 15
minutes for March Madness.)

4.17 First, the hypotheses should be about the
population mean (u) not the sample mean. Sec-
ond, the null hypothesis should have an equal
sign and the alternative hypothesis should be
about the null hypothesized value, not the ob-
served sample mean. The correct way to set up
these hypotheses is shown below:

Ho : =2 hours
Hy > 2 hours

The one-sided test indicates that we our only
interested in showing that 2 is an underesti-
mate. Here the interest is in only one direction,
so a one-sided test seems most appropriate. If
we would also be interested if the data showed
strong evidence that 2 was an overestimate, then
the test should be two-sided.

4.19 (a) This claim does not seem plausible
since 3 hours (180 minutes) is not in the in-
terval. (b) 2.2 hours (132 minutes) is in the
95% confidence interval, so we do not have evi-
dence to say she is wrong. However, it would be
more appropriate to use the point estimate of
the sample. (c) A 99% confidence interval will
be wider than a 95% confidence interval, mean-
ing it would enclose this smaller interval. This
means 132 minutes would be in the wider inter-
val, and we would not reject her claim based on
a 99% confidence level.

4.21 Independence: The sample is presumably
a simple random sample, though we should ver-
ify that is the case. Generally, this is what is
meant by “random sample”, though it is a good
idea to actually check. For all following ques-
tions and solutions, it may be assumed that
“random sample” actually means “simple ran-
dom sample”. 75 ball bearings is smaller than
10% of the population of ball bearings. The
sample size is at least 30. The data are only
slightly skewed. Under the assumption that the
random sample is a simple random sample, T
will be normally distributed. Ho : p = 7 hours.
Hy : p # 7 hours. Z = —1.04 — p-value=
2x0.1492 = 0.2984. Since the p-value is greater
than 0.05, we fail to reject Ho. The data do
not provide convincing evidence that the aver-
age lifespan of all ball bearings produced by this
machine is different than 7 hours. (Comment on
using a one-sided alternative: the worker may be



interested in learning if the ball bearings under-
performs or over-performs the manufacturer’s
claim, which is why we suggest a two-sided test.)

4.23 (a) Independence: The sample is random
and 64 patients would almost certainly make up
less than 10% of the ER residents. The sample
size is at least 30. No information is provided
about the skew. In practice, we would ask to
see the data to check this condition, but here we
will make the assumption that the skew is not
very strong. (b) Ho : p = 128. Hya : p # 128.
Z = 2.15 — p-value = 2 x 0.0158 = 0.0316.
Since the p-value is less than o = 0.05, we re-
ject Ho. The data provide convincing evidence
that the the average ER wait time has increased
over the last year. (c) Yes, it would change. The
p-value is greater than 0.01, meaning we would
fail to reject Hop at o = 0.01.

4.25 Ho:p=130. Hy : p#130. Z=1.39 —
p-value = 2 x 0.0823 = 0.1646, which is larger
than o = 0.05. The data do not provide con-
vincing evidence that the true average calorie
content in bags of potato chips is different than
130 calories.

4.27 (a) Ho: Anti-depressants do not help
symptoms of Fibromyalgia. Ha: Anti-
depressants do treat symptoms of Fibromyalgia.
Remark: Diana might also have taken special
note if her symptoms got much worse, so a more
scientific approach would have been to use a
two-sided test. While parts (b)-(d) use the one-
sided version, your answers will be a little dif-
ferent if you used a two-sided test. (b) Conclud-
ing that anti-depressants work for the treatment
of Fibromyalgia symptoms when they actually
do not. (c) Concluding that anti-depressants
do not work for the treatment of Fibromyalgia
symptoms when they actually do. (d) If she
makes a Type 1 error, she will continue taking
medication that does not actually treat her dis-
order. If she makes a Type 2 error, she will stop
taking medication that could treat her disorder.

4.29 (a) If the null hypothesis is rejected in er-
ror, then the regulators concluded that the ad-
verse effect was higher in those taking the drug
than those who did not take the drug when in
reality the rates are the same for the two groups.
(b) If the null hypothesis is not rejected but
should have been, then the regulators failed to
identify that the adverse effect was higher in
those taking the drug. (c) Answers may vary
a little. If all 403 drugs are actually okay, then
about 403 x 0.05 ~ 20 drugs will have a Type
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1 error. Of the 42 suspect drugs, we would ex-
pect about 20/42 would represent an error while
about 22/42 ~ 52% would actually be drugs
with adverse effects. (d) There is not enough
information to tell.

4.31 (a) Independence: The sample is random.
In practice, we should ask whether 70 customers
is less than 10% of the population (we’ll assume
this is the case for this exercise). The sample
size is at least 30. No information is provided
about the skew, so this is another item we would
typically ask about. For now, we’ll assume the
skew is not very strong. (b) Ho : p=18. Ha :
w > 18. Z = 3.46 — p-value = 0.0003, which
is less than a = 0.05, so we reject Hp. There
is strong evidence that the average revenue per
customer is greater than $18. (c) (18.65, 19.85).
(d) Yes. The hypothesis test reject the notion
that p = 18, and this value is not in the confi-
dence interval. (e) Even though the increase in
average revenue per customer appears to be sig-
nificant, the restaurant owner may want to con-
sider other criteria, such as total profits. With
a longer happy hour, the revenue over the entire
evening may actually drop since lower prices are
offered for a longer time. Also, costs usually rise
when prices are lowered. A better measure to
consider may be an increase in total profits for
the entire evening.

4.33 (a) The distribution is unimodal and
strongly right skewed with a median between 5
and 10 years old. Ages range from 0 to slightly
over 50 years old, and the middle 50% of the
distribution is roughly between 5 and 15 years
old. There are potential outliers on the higher
end. (b) When the sample size is small, the
sampling distribution is right skewed, just like
the population distribution. As the sample size
increases, the sampling distribution gets more
unimodal, symmetric, and approaches normal-
ity. The variability also decreases. This is con-
sistent with the Central Limit Theorem.

4.35 The centers are the same in each plot, and
each data set is from a nearly normal distribu-
tion (see Section 4.2.6), though the histograms
may not look very normal since each represents
only 100 data points. The only way to tell which
plot corresponds to which scenario is to examine
the variability of each distribution. Plot B is the
most variable, followed by Plot A, then Plot C.
This means Plot B will correspond to the origi-
nal data, Plot A to the sample means with size
5, and Plot C to the sample means with size 25.
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4.37 (a) Right skewed. There is a long tail on
the higher end of the distribution but a much
shorter tail on the lower end. (b) Less than,
as the median would be less than the mean
in a right skewed distribution. (c¢) We should
not. (d) Even though the population distribu-
tion is not normal, the conditions for inference
are reasonably satisfied, with the possible ex-
ception of skew. If the skew isn’t very strong
(we should ask to see the data), then we can
use the Central Limit Theorem to estimate this
probability. For now, we’ll assume the skew
isn’t very strong, though the description sug-
gests it is at least moderate to strong. Use
N(1.3,SE; = 0.3/v/60): Z = 2.58 — 0.0049.
(e) Tt would decrease it by a factor of 1/v/2.

4.39 (a) Z = -3.33 — 0.0004. (b) The
population SD is known and the data are
nearly normal, so the sample mean will be
nearly normal with distribution N(u,o/\/n),
ie. N(25,0.0055). (c) Z = —10.54 — ~ 0.
(d) See below:

!, | — Population
Sampling (n = 10)

Vo= -

T T T T T T 1
241 2.44 2.47 2.50 2.53 2.56 2.59

(e) We could not estimate (a) without a nearly
normal population distribution. We also could
not estimate (c¢) since the sample size is not suffi-
cient to yield a nearly normal sampling distribu-
tion if the population distribution is not nearly
normal.

4.41 (a) We cannot use the normal model for
this calculation, but we can use the histogram.
About 500 songs are shown to be longer than 5
minutes, so the probability is about 500/3000 =
0.167. (b) Two different answers are reasonable.
Option 1gince the population distribution is only
slightly skewed to the right, even a small sample
size will yield a nearly normal sampling distribu-
tion. We also know that the songs are sampled
randomly and the sample size is less than 10%
of the population, so the length of one song in
the sample is independent of another. We are
looking for the probability that the total length
of 15 songs is more than 60 minutes, which
means that the average song should last at least
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60/15 = 4 minutes. Using SE = 1.62//15,
Z = 1.31 — 0.0951. ©P!°" 2Gince the popula-
tion distribution is not normal, a small sample
size may not be sufficient to yield a nearly nor-
mal sampling distribution. Therefore, we can-
not estimate the probability using the tools we
have learned so far. (¢) We can now be confi-
dent that the conditions are satisfied. Z = 0.92
— 0.1788.

4.43 (a) Ho : p2009 = p2ooa- Ha @ pr2o0e #
142004 - (b) T2009 — T2004 = —3.6 spam emails per
day. (c¢) The null hypothesis was not rejected,
and the data do not provide convincing evidence
that the true average number of spam emails per
day in years 2004 and 2009 are different. The
observed difference is about what we might ex-
pect from sampling variability alone. (d) Yes,
since the hypothesis of no difference was not re-
jected in part (c).

4.45 (a) Ho : p2oo9 = p2ooa. Ha : p2oos #
p2004. (b) -7%. (c) The null hypothesis was re-
jected. The data provide strong evidence that
the true proportion of those who once a month
or less frequently delete their spam email was
higher in 2004 than in 2009. The difference is so
large that it cannot easily be explained as being
due to chance. (d) No, since the null difference,
0, was rejected in part (c).

4.47 (a) Scenario I is higher. Recall that a
sample mean based on less data tends to be
less accurate and have larger standard errors.
(b) Scenario I is higher. The higher the confi-
dence level, the higher the corresponding margin
of error. (c¢) They are equal. The sample size
does not affect the calculation of the p-value for
a given Z score. (d) Scenario I is higher. If
the null hypothesis is harder to reject (lower «),
then we are more likely to make a Type 2 error.

4.49 10 > 2.58 x % — n > 692.5319. He

should survey at least 693 customers.

4.51 (a) The null hypothesis would be that the
mean this year is also 128 minutes. The alterna-
tive hypothesis would be that the mean is differ-
ent from 128 minutes. (b) First calculate the SE:
% = 4.875. Next, identify the Z scores that
would result in rejecting Ho: Ziower = —1.96,
Zupper = 1.96. In each case, calculate the corre-
sponding sample mean cutoff: Ziower = 118.445
and Typper = 137.555. (c) Construct Z scores
for the values from part (b) but using the sup-
posed true distribution (i.e. g = 135), i.e. not
using the null value (u = 128). The probability
of correctly rejecting the null hypothesis would



be 0.000340.3015 = 0.3018 using these two cut-
offs, and the probability of a Type 2 error would

5 Inference for numerical data

5.1 (a) For each observation in one data set,
there is exactly one specially-corresponding ob-
servation in the other data set for the same geo-
graphic location. The data are paired. (b) Hp :
paifs = 0 (There is no difference in average
daily high temperature between January 1, 1968
and January 1, 2008 in the continental US.)
Ha : paisg > 0 (Average daily high tempera-
ture in January 1, 1968 was lower than average
daily high temperature in January, 2008 in the
continental US.) If you chose a two-sided test,
that would also be acceptable. If this is the case,
note that your p-value will be a little bigger than
what is reported here in part (d). (c¢) Indepen-
dence: locations are random and represent less
than 10% of all possible locations in the US.
The sample size is at least 30. We are not given
the distribution to check the skew. In prac-
tice, we would ask to see the data to check this
condition, but here we will move forward under
the assumption that it is not strongly skewed.
(d) Z = 1.60 — p-value = 0.0548. (e) Since
the p-value > « (since not given use 0.05), fail
to reject Hyp. The data do not provide strong
evidence of temperature warming in the conti-
nental US. However it should be noted that the
p-value is very close to 0.05. (f) Type 2, since we
may have incorrectly failed to reject Hy. There
may be an increase, but we were unable to de-
tect it. (g) Yes, since we failed to reject Ho,
which had a null value of 0.

5.3 (a) (-0.03, 2.23). (b) We are 90% confident
that the average daily high on January 1, 2008
in the continental US was 0.13 degrees lower to
2.13 degrees higher than the average daily high
on January 1, 1968. (c) No, since 0 is included
in the interval.

5.5 (a) Each of the 36 mothers is related to
exactly one of the 36 fathers (and vice-versa),
so there is a special correspondence between
the mothers and fathers. (b) Ho : pairs = 0.
Ha @ paifs # 0. Independence: random sam-
ple from less than 10% of population. Sam-
ple size of at least 30. The skew of the differ-
ences is, at worst, slight. Z = 2.72 — p-value
= 0.0066. Since p-value < 0.05, reject Hy. The
data provide strong evidence that the average
IQ scores of mothers and fathers of gifted chil-
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then be 1 — 0.3018 = 0.6982.

dren are different, and the data indicate that
mothers’ scores are higher than fathers’ scores
for the parents of gifted children.

5.7 Independence: Random samples that are
less than 10% of the population. Both samples
are at least of size 30. In practice, we’d ask for
the data to check the skew (which is not pro-
vided), but here we will move forward under the
assumption that the skew is not extreme (there
is some leeway in the skew for such large sam-
ples). Use z* = 1.65. 90% CI: (0.16, 5.84). We
are 90% confident that the average score in 2008
was 0.16 to 5.84 points higher than the average
score in 2004.

5.9 (a) Ho : 2008 = H2004 —> 2004 — 2008 = 0
(Average math score in 2008 is equal to average
math score in 2004) HA I 2008 75 M2004 —
12004 — p200s 7 0 (Average math score in 2008
is different than average math score in 2004.)
Conditions necessary for inference were checked
in Exercise 5.7. Z = —1.74 — p-value = 0.0818.
Since the p-value < «, reject Hyo. The data pro-
vide strong evidence that the average math score
for 13 year old students has changed between
2004 and 2008. (b) Yes, a Type 1 error is pos-
sible. We rejected Hyp, but it is possible Hy is
actually true. (c) No, since we rejected Hp in

part (a).

5.11 (a) We are 95% confident that those on
the Paleo diet lose 0.891 pounds less to 4.891
pounds more than those in the control group.
(b) No. The value representing no difference
between the diets, 0, is included in the con-
fidence interval. (c¢) The change would have
shifted the confidence interval by 1 pound, yield-
ing CI = (0.109, 5.891), which does not include
0. Had we observed this result, we would have
rejected Hy.

5.13 Independence and sample size conditions
are satisfied. Almost any degree of skew is rea-
sonable with such large samples. Compute the
joint SE: \/SE?, + SEZ, = 0.114. The 95% CL
(-11.32, -10.88). We are 95% confident that the
average body fat percentage in men is 11.32%
to 10.88% lower than the average body fat per-
centage in women.
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515 (a) df = 6 —1 = 5, t§ = 2.02 (col-
umn with two tails of 0.10, row with df = 5).
(b) df =21 -1 =5, t3p = 2.53 (column with
two tails of 0.02, row with df = 20). (c) df = 28,
the = 2.05. (d) df = 11, ], = 3.11.

5.17 The mean is the midpoint: z = 20. Iden-
tify the margin of error: M E = 1.015, then use
t35 = 2.03 and SE = s/y/n in the formula for
margin of error to identify s = 3.

5.19 (a) Ho: p = 8 (New Yorkers sleep 8 hrs
per night on average.) Ha: pu < 8 (New York-
ers sleep less than 8 hrs per night on average.)
(b) Independence: The sample is random and
from less than 10% of New Yorkers. The sample
is small, so we will use a t distribution. For this
size sample, slight skew is acceptable, and the
min/max suggest there is not much skew in the
data. T'=—1.75. df =25—1=24. (c) 0.025 <
p-value < 0.05. If in fact the true population
mean of the amount New Yorkers sleep per night
was 8 hours, the probability of getting a ran-
dom sample of 25 New Yorkers where the aver-
age amount of sleep is 7.73 hrs per night or less
is between 0.025 and 0.05. (d) Since p-value <
0.05, reject Hy. The data provide strong evi-
dence that New Yorkers sleep less than 8 hours
per night on average. (e) No, as we rejected Ho.

5.21 tjg is 1.73 for a one-tail. We want the
lower tail, so set -1.73 equal to the T score, then
solve for Z: 56.91.

5.23 No, he should not move forward with the
test since the distributions of total personal in-
come are very strongly skewed. When sample
sizes are large, we can be a bit lenient with skew.
However, such strong skew observed in this exer-
cise would require somewhat large sample sizes,
somewhat higher than 30.

5.25 (a) These data are paired. For example,
the Friday the 13th in say, September 1991,
would probably be more similar to the Fri-
day the 6th in September 1991 than to Fri-
day the 6th in another month or year. (b) Let
Bdiff = Wsicth — Wthirteenth- Ho @ paigy = 0.
Ha : paiss # 0. (c) Independence: The months
selected are not random. However, if we think
these dates are roughly equivalent to a simple
random sample of all such Friday 6th/13th date
pairs, then independence is reasonable. To pro-
ceed, we must make this strong assumption,
though we should note this assumption in any
reported results. With fewer than 10 observa-
tions, we would need to use the t distribution
to model the sample mean. The normal prob-
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ability plot of the differences shows an approx-
imately straight line. There isn’t a clear rea-
son why this distribution would be skewed, and
since the normal quantile plot looks reasonable,
we can mark this condition as reasonably sat-
isfied. (d) T =494 fordf =10—-1=9 —
p-value < 0.01. (e) Since p-value < 0.05, re-
ject Hyp. The data provide strong evidence that
the average number of cars at the intersection
is higher on Friday the 6"" than on Friday the
13", (We might believe this intersection is rep-
resentative of all roads, i.e. there is higher traf-
fic on Friday the 6" relative to Friday the 13*.
However, we should be cautious of the required
assumption for such a generalization.) (f) If the
average number of cars passing the intersection
actually was the same on Friday the 6" and
13", then the probability that we would observe
a test statistic so far from zero is less than 0.01.
(g) We might have made a Type 1 error, i.e.
incorrectly rejected the null hypothesis.

5.27 (a) Ho : paisr = 0. Ha : paify # 0.
T = =2.71. df = 5. 0.02 < p-value < 0.05.
Since p-value < 0.05, reject Hp. The data pro-
vide strong evidence that the average number of
traffic accident related emergency room admis-
sions are different between Friday the 6" and
Friday the 13'®. Furthermore, the data indicate
that the direction of that difference is that ac-
cidents are lower on Friday the 6! relative to
Friday the 13", (b) (-6.49, -0.17). (c) This is
an observational study, not an experiment, so
we cannot so easily infer a causal intervention
implied by this statement. It is true that there
is a difference. However, for example, this does
not mean that a responsible adult going out on
Friday the 13'" has a higher chance of harm than
on any other night.

5.29 (a) Chicken fed linseed weighed an aver-
age of 218.75 grams while those fed horsebean
weighed an average of 160.20 grams. Both dis-
tributions are relatively symmetric with no ap-
parent outliers. There is more variability in the
weights of chicken fed linseed. (b) Ho : s =
who. Ha @ s # pre. We leave the conditions to
you to consider. T = 3.02, df = min(11,9) =9
— 0.01 < p-value < 0.02. Since p-value < 0.05,
reject Hp. The data provide strong evidence
that there is a significant difference between the
average weights of chickens that were fed linseed
and horsebean. (c) Type 1, since we rejected
Hy. (d) Yes, since p-value > 0.01, we would
have failed to reject Hp.



5.31 Ho:pc =ps. Ha: pc # ps. T = 3.27,
df = 11 — p-value < 0.01. Since p-value < 0.05,
reject Ho. The data provide strong evidence
that the average weight of chickens that were
fed casein is different than the average weight
of chickens that were fed soybean (with weights
from casein being higher). Since this is a ran-
domized experiment, the observed difference are
can be attributed to the diet.

5.33 Ho:pur =pc. Ha : pr # pe. T = 2.24,
df = 21 — 0.02 < p-value < 0.05. Since p-
value < 0.05, reject Hyp. The data provide strong
evidence that the average food consumption by
the patients in the treatment and control groups
are different. Furthermore, the data indicate pa-
tients in the distracted eating (treatment) group
consume more food than patients in the control

group.

5.35 Let Udiff = Mpre — MUpost- Hy : Kdiff = 0:
Treatment has no effect. Ha : pgifs > 0: Treat-
ment is effective in reducing Pd T scores, the
average pre-treatment score is higher than the
average post-treatment score. Note that the
reported values are pre minus post, so we are
looking for a positive difference, which would
correspond to a reduction in the psychopathic
deviant T score. Conditions are checked as
follows. Independence: The subjects are ran-
domly assigned to treatments, so the patients
in each group are independent. All three sam-
ple sizes are smaller than 30, so we use t
tests.Distributions of differences are somewhat
skewed. The sample sizes are small, so we can-
not reliably relax this assumption. (We will pro-
ceed, but we would not report the results of this
specific analysis, at least for treatment group
1.) For all three groups: df = 13. Th = 1.89
(0.025 < p-value < 0.05), T> = 1.35 (p-value =
0.10), 73 = —1.40 (p-value > 0.10). The only
significant test reduction is found in Treatment
1, however, we had earlier noted that this re-
sult might not be reliable due to the skew in
the distribution. Note that the calculation of
the p-value for Treatment 3 was unnecessary:
the sample mean indicated a increase in Pd T
scores under this treatment (as opposed to a de-
crease, which was the result of interest). That
is, we could tell without formally completing the
hypothesis test that the p-value would be large
for this treatment group.

5.37 H[)I H1 = 2 = -+ = UG- HA: The aver-
age weight varies across some (or all) groups.
Independence: Chicks are randomly assigned
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to feed types (presumably kept separate from
one another), therefore independence of obser-
vations is reasonable. Approx. normal: the
distributions of weights within each feed type
appear to be fairly symmetric. Constant vari-
ance: Based on the side-by-side box plots, the
constant variance assumption appears to be rea-
sonable. There are differences in the actual com-
puted standard deviations, but these might be
due to chance as these are quite small samples.
F5,65 = 15.36 and the p-value is approximately
0. With such a small p-value, we reject Hp. The
data provide convincing evidence that the aver-
age weight of chicks varies across some (or all)
feed supplement groups.

5.39 (a) Ho: The mean MET for each group
is equal to the others. Ha: At least one pair of
means is different. (b) Independence: We don’t
have any information on how the data were col-
lected, so we cannot assess independence. To
proceed, we must assume the subjects in each
group are independent. In practice, we would
inquire for more details. Approx. normal: The
data are bound below by zero and the standard
deviations are larger than the means, indicat-
ing very strong strong skew. However, since
the sample sizes are extremely large, even ex-
treme skew is acceptable. Constant variance:
This condition is sufficiently met, as the stan-
dard deviations are reasonably consistent across

groups. (c) See below, with the last column
omitted:
Df Sum Sq Mean Sq F value
coffee 1 10508 2627 5.2
Residuals 0734 25564819 50
Total 50738 25575327

(d) Since p-value is very small, reject Hyp. The
data provide convincing evidence that the av-
erage MET differs between at least one pair of
groups.

5.41 (a) Ho: Average GPA is the same for all
majors. Ha: At least one pair of means are dif-
ferent. (b) Since p-value > 0.05, fail to reject
Hy. The data do not provide convincing evi-
dence of a difference between the average GPAs
across three groups of majors. (c) The total de-
grees of freedom is 195+ 2 = 197, so the sample
size is 197 + 1 = 198.

5.43 (a) False. As the number of groups in-
creases, so does the number of comparisons and
hence the modified significance level decreases.
(b) True. (c) True. (d) False. We need obser-
vations to be independent regardless of sample
size.
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5.45 (a) Ho: Average score difference is the
same for all treatments. H4: At least one pair
of means are different. (b) We should check
conditions. If we look back to the earlier ex-
ercise, we will see that the patients were ran-
domized, so independence is satisfied. There
are some minor concerns about skew, especially
with the third group, though this may be ac-
ceptable. The standard deviations across the
groups are reasonably similar. Since the p-value
is less than 0.05, reject Ho. The data provide
convincing evidence of a difference between the
average reduction in score among treatments.
(c) We determined that at least two means
are different in part (b), so we now conduct
K = 3 x 2/2 = 3 pairwise t tests that each use

6 Inference for categorical data

6.1 (a) False. Doesn’t satisfy success-failure
condition. (b) True. The success-failure condi-
tion is not satisfied. In most samples we would
expect p to be close to 0.08, the true popula-
tion proportion. While p can be much above
0.08, it is bound below by 0, suggesting it would
take on a right skewed shape. Plotting the sam-
pling distribution would confirm this suspicion.
(c) False. SE; = 0.0243, and p = 0.12 is only
% = 1.65 SEs away from the mean, which
would not be considered unusual. (d) True.
p = 0.12 is 2.32 standard errors away from
the mean, which is often considered unusual.
(e) False. Decreases the SE by a factor of 1/v/2.

6.3 (a) True. See the reasoning of 6.1(b).
(b) True. We take the square root of the sample
size in the SE formula. (c) True. The inde-
pendence and success-failure conditions are sat-
isfied. (d) True. The independence and success-
failure conditions are satisfied.

6.5 (a) False. A confidence interval is con-
structed to estimate the population proportion,
not the sample proportion. (b) True. 95% CI:
70% + 8%. (c) True. By the definition of a
confidence interval. (d) True. Quadrupling the
sample size decreases the SE and ME by a fac-
tor of 1/v/4. (e) True. The 95% CI is entirely
above 50%.

6.7 With a random sample from < 10% of
the population, independence is satisfied. The
success-failure condition is also satisfied. M E =

2y fR0=R) 1,96, /2285044 — 00397 ~ 4%

600

6.9 (a) Proportion of graduates from this uni-
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a =0.05/3 = 0.0167 for a significance level. Use
the following hypotheses for each pairwise test.
Hy: The two means are equal. Ha: The two
means are different. The sample sizes are equal
and we use the pooled SD, so we can compute
SE = 3.7 with the pooled df = 39. The p-value
only for Trmt 1 vs. Trmt 3 may be statistically
significant: 0.01 < p-value < 0.02. Since we
cannot tell, we should use a computer to get the
p-value, 0.015, which is statistically significant
for the adjusted significance level. That is, we
have identified Treatment 1 and Treatment 3 as
having different effects. Checking the other two
comparisons, the differences are not statistically
significant.

versity who found a job within one year of
graduating. p = 348/400 = 0.87. (b) This
is a random sample from less than 10% of
the population, so the observations are inde-
pendent. Success-failure condition is satisfied:
348 successes, 52 failures, both well above 10.
(c) (0.8371, 0.9029). We are 95% confident that
approximately 84% to 90% of graduates from
this university found a job within one year of
completing their undergraduate degree. (d) 95%
of such random samples would produce a 95%
confidence interval that includes the true pro-
portion of students at this university who found
a job within one year of graduating from college.
(e) (0.8267, 0.9133). Similar interpretation as
before. (f) 99% CI is wider, as we are more
confident that the true proportion is within the
interval and so need to cover a wider range.

6.11 (a) No. The sample only represents stu-
dents who took the SAT, and this was also an
online survey. (b) (0.5289, 0.5711). We are 95%
confident that 53% to 57% of high school se-
niors are fairly certain that they will participate
in a study abroad program in college. (¢) 90%
of such random samples would produce a 90%
confidence interval that includes the true pro-
portion. (d) Yes. The interval lies entirely above
50%.

6.13 (a) This is an appropriate setting for a
hypothesis test. Ho : p = 0.50. Ha : p > 0.50.
Both independence and the success-failure con-
dition are satisfied. Z = 1.12 — p-value =
0.1314. Since the p-value > a = 0.05, we fail
to reject Hy. The data do not provide strong



evidence in favor of the claim. (b) Yes, since we
did not reject Hop in part (a).

6.15 (a) Ho : p = 0.38. Hy : p # 0.38. In-
dependence (random sample, < 10% of popula-
tion) and the success-failure condition are satis-
fied. Z = —20 — p-value =~ 0. Since the p-value
is very small, we reject Ho. The data provide
strong evidence that the proportion of Ameri-
cans who only use their cell phones to access
the internet is different than the Chinese pro-
portion of 38%, and the data indicate that the
proportion is lower in the US. (b) If in fact 38%
of Americans used their cell phones as a primary
access point to the internet, the probability of
obtaining a random sample of 2,254 Americans
where 17% or less or 59% or more use their only
their cell phones to access the internet would
be approximately 0. (c) (0.1545, 0.1855). We
are 95% confident that approximately 15.5% to
18.6% of all Americans primarily use their cell
phones to browse the internet.

6.17 (a) Ho: p=0.5. Ha : p > 0.5. Indepen-
dence (random sample, < 10% of population)
is satisfied, as is the success-failure conditions
(using po = 0.5, we expect 40 successes and 40
failures). Z = 2.91 — p-value = 0.0018. Since
the p-value < 0.05, we reject the null hypothe-
sis. The data provide strong evidence that the
rate of correctly identifying a soda for these peo-
ple is significantly better than just by random
guessing. (b) If in fact people cannot tell the dif-
ference between diet and regular soda and they
randomly guess, the probability of getting a ran-
dom sample of 80 people where 53 or more iden-
tify a soda correctly would be 0.0018.

6.19 (a) Independence is satisfied (random
sample from < 10% of the population), as is the
success-failure condition (20 smokers, 80 non-
smokers). The 95% CI: (0.145, 0.255). We are
95% confident that 14.5% to 25.5% of all stu-
dents at this university smoke. (b) We want
2*SE to be no larger than 0.02 for a 95% con-
fidence level. We use z* = 1.96 and plug in the
point estimate p = 0.2 within the SE formula:
1.964/0.2(1 — 0.2)/n < 0.02. The sample size n
should be at least 1,537.

6.21 The margin of error, which is computed
as 2z"SE, must be smaller than 0.01 for a
90% confidence level. We use z* = 1.65 for
a 90% confidence level, and we can use the
point estimate p = 0.52 in the formula for SE.

1.651/0.52(1 — 0.52)/n < 0.01. Therefore, the

sample size n must be at least 6,796.
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6.23 This is not a randomized experiment, and
it is unclear whether people would be affected
by the behavior of their peers. That is, indepen-
dence may not hold. Additionally, there are only
5 interventions under the provocative scenario,
so the success-failure condition does not hold.
Even if we consider a hypothesis test where we
pool the proportions, the success-failure condi-
tion will not be satisfied. Since one condition is
questionable and the other is not satisfied, the
difference in sample proportions will not follow
a nearly normal distribution.

6.25 (a) False. The entire confidence interval is
above 0. (b) True. (c) True. (d) True. (e) False.
It is simply the negated and reordered values: (-
0.06,-0.02).

6.27 (a) (0.23, 0.33). We are 95% confident
that the proportion of Democrats who support
the plan is 23% to 33% higher than the propor-
tion of Independents who do. (b) True.

6.29 (a) College grads: 23.7%. Non-college
grads: 33.7%. (b) Let pce and pnca represent
the proportion of college graduates and non-
college graduates who responded “do not know”.
Hy : pcc = pncc. Ha : pcc # pncoc. Inde-
pendence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p = 235/827 = 0.284), is also satis-
fied. Z = —3.18 — p-value = 0.0014. Since the
p-value is very small, we reject Ho. The data
provide strong evidence that the proportion of
college graduates who do not have an opinion
on this issue is different than that of non-college
graduates. The data also indicate that fewer
college grads say they “do not know” than non-
college grads (i.e. the data indicate the direction
after we reject Hp).

6.31 (a) College grads: 35.2%. Non-college
grads: 33.9%. (b) Let pce and pnca rep-
resent the proportion of college graduates and
non-college grads who support offshore drilling.
Hy : pcc = pnoa. Ha : pcc # pncg. In-
dependence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p = 286/827 = 0.346), is also satis-
fied. Z = 0.39 — p-value = 0.6966. Since the
p-value > « (0.05), we fail to reject Ho. The
data do not provide strong evidence of a differ-
ence between the proportions of college gradu-
ates and non-college graduates who support off-
shore drilling in California.



402

6.33 Subscript ¢ means control group. Sub-
script  means truck drivers. (a) Ho : pc =
pr. Ha : pc # pr. Independence is satis-
fied (random samples, < 10% of the popula-
tion), as is the success-failure condition, which
we would check using the pooled proportion
(p = 70/495 = 0.141). Z = —1.58 — p-value
= 0.1164. Since the p-value is high, we fail to
reject Hp. The data do not provide strong evi-
dence that the rates of sleep deprivation are dif-
ferent for non-transportation workers and truck
drivers.

6.35 (a) Summary of the study:

Virol. failure

Yes No Total
Nevaripine 26 94 120
Treatment inavir 10 110 120
Total 36 204 240

(b) Ho : py = pr. There is no difference in vi-
rologic failure rates between the Nevaripine and
Lopinavir groups. Ha : py # pr. There is
some difference in virologic failure rates between
the Nevaripine and Lopinavir groups. (c) Ran-
dom assignment was used, so the observations in
each group are independent. If the patients in
the study are representative of those in the gen-
eral population (something impossible to check
with the given information), then we can also
confidently generalize the findings to the pop-
ulation. The success-failure condition, which
we would check using the pooled proportion
(p = 36/240 = 0.15), is satisfied. Z = 3.04 — p-
value = 0.0024. Since the p-value is low, we re-
ject Ho. There is strong evidence of a difference
in virologic failure rates between the Nevarip-
ine and Lopinavir groups do not appear to be
independent.

6.37 (a) False. The chi-square distribution
has one parameter called degrees of freedom.
(b) True. (c) True. (d) False. As the degrees
of freedom increases, the shape of the chi-square
distribution becomes more symmetric.

6.39 (a) Ho: The distribution of the format
of the book used by the students follows the
professor’s predictions. Ha: The distribution
of the format of the book used by the stu-
dents does not follow the professor’s predictions.
(b) Erard copy = 126 x 0.60 = 75.6. Eprint =
126 x 0.25 = 31.5. FEoniine = 126 x 0.15 = 18.9.
(¢) Independence: The sample is not random.
However, if the professor has reason to believe
that the proportions are stable from one term
to the next and students are not affecting each
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other’s study habits, independence is probably
reasonable. Sample size: All expected counts
are at least 5. Degrees of freedom: df = k—1 =
3—1 = 2is more than 1. (d) X? = 2.32, df = 2,
p-value > 0.3. (e) Since the p-value is large,
we fail to reject Hy. The data do not provide
strong evidence indicating the professor’s pre-
dictions were statistically inaccurate.

6.41 (a). Two-way table:

Quit

Treatment Yes No Total

Patch + support group 40 110 150

Only patch 30 120 150

Total 70 230 300

. _ (row 1 total)x(col 1 total)
(1261)70ET0w1950l1 - . tabl? total -
L5 = 35 This is lower than

the observed value. (b-ii)  Erows,cols

(row 2 total)X(col 2 total) _ 150%x230 __ :

table total - 300 = 115. This

is lower than the observed value.

6.43 Hp: The opinion of college grads and non-
grads is not different on the topic of drilling for
oil and natural gas off the coast of California.
H4: Opinions regarding the drilling for oil and
natural gas off the coast of California has an
association with earning a college degree.

Erow 1l,col 1 — 151.5 Erow 1,col 2 — 134.5
Erow 2,col 1 — 162.1 Erow 2,col 2 — 143.9
Erow 3,col 1 — 124.5 Erow 3,col 2 — 110.5

Independence: The samples are both random,
unrelated, and from less than 10% of the popu-
lation, so independence between observations is
reasonable. Sample size: All expected counts
are at least 5. Degrees of freedom: df =
(R-1)x(C-1)=@B-1)x(2-1) = 2
which is greater than 1. X2 = 11.47, df = 2
— 0.001 < p-value < 0.005. Since the p-value
< a, we reject Hg. There is strong evidence
that there is an association between support for
off-shore drilling and having a college degree.

6.45 (a) Ho : There is no relationship between
gender and how informed Facebook users are
about adjusting their privacy settings. Ha :
There is a relationship between gender and how
informed Facebook users are about adjusting
their privacy settings. (b) The expected counts:

Erow l,col 1 = 296.6 Erow 1,col 2 = 369.3
Erow 2,col 1 — 54.8 Erow 2.col 2 = 68.2
Erow 3,col 1 = 7.6 Erow 3,col 2 = 9.4

The sample is random, all expected counts are
above 5,and df = (3—-1)x (2—-1)=2>1, s0
we may proceed with the test.



6.47 It is not appropriate. There are only 9
successes in the sample, so the success-failure
condition is not met.

6.49 (a) Ho : p = 0.69. Ha : p # 0.69.
(b) p = 3£ = 0.57. (c) The success-failure condi-
tion is not satisfied; note that it is appropriate
to use the null value (po = 0.69) to compute
the expected number of successes and failures.
(d) Answers may vary. Each student can be
represented with a card. Take 100 cards, 69
black cards representing those who follow the
news about Egypt and 31 red cards represent-
ing those who do not. Shuffle the cards and
draw with replacement (shuffling each time in
between draws) 30 cards representing the 30
high school students. Calculate the proportion
of black cards in this sample, psim, i.e. the pro-
portion of those who follow the news in the sim-
ulation. Repeat this many times (e.g. 10,000
times) and plot the resulting sample propor-
tions. The p-value will be two times the propor-
tion of simulations where pgsim < 0.57. (Note:

7 Introduction to linear regression

7.1 (a) The residual plot will show randomly
distributed residuals around 0. The variance is
also approximately constant. (b) The residuals
will show a fan shape, with higher variability for
smaller z. There will also be many points on the
right above the line. There is trouble with the
model being fit here.

7.3 (a) Strong relationship, but a straight line
would not fit the data. (b) Strong relationship,
and a linear fit would be reasonable. (c) Weak
relationship, and trying a linear fit would be
reasonable. (d) Moderate relationship, but a
straight line would not fit the data. (e) Strong
relationship, and a linear fit would be reason-
able. (f) Weak relationship, and trying a linear
fit would be reasonable.

7.5 (a) Exam 2 since there is less of a scatter in
the plot of final exam grade versus exam 2. No-
tice that the relationship between Exam 1 and
the Final Exam appears to be slightly nonlinear.
(b) Exam 2 and the final are relatively close to
each other chronologically, or Exam 2 may be
cumulative so has greater similarities in mate-
rial to the final exam. Answers may vary for
part (b).

7.7 (a) R=—0.7 — (4). (b) R =0.45 — (3).
(c) R=0.06 — (1). (d) R =0.92 > (2).
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we would generally use a computer to perform
these simulations.) (e) The p-value is about
0.001 + 0.005 + 0.020 + 0.035 + 0.075 = 0.136,
meaning the two-sided p-value is about 0.272.
Your p-value may vary slightly since it is based
on a visual estimate. Since the p-value is greater
than 0.05, we fail to reject Ho. The data do
not provide strong evidence that the proportion
of high school students who followed the news
about Egypt is different than the proportion of
American adults who did.

6.51 The subscript ,, corresponds to provoca-
tive and cor, to conservative. (a) Ho : Ppr = Peon.-
Ha @ ppr # DPeon- (b) -0.35. (c) The left tail
for the p-value is calculated by adding up the
two left bins: 0.005 + 0.015 = 0.02. Doubling
the one tail, the p-value is 0.04. (Students may
have approximate results, and a small number
of students may have a p-value of about 0.05.)
Since the p-value is low, we reject Hy. The data
provide strong evidence that people react differ-
ently under the two scenarios.

7.9 (a) The relationship is positive, weak, and
possibly linear. However, there do appear to
be some anomalous observations along the left
where several students have the same height
that is notably far from the cloud of the other
points. Additionally, there are many students
who appear not to have driven a car, and they
are represented by a set of points along the bot-
tom of the scatterplot. (b) There is no obvious
explanation why simply being tall should lead a
person to drive faster. However, one confound-
ing factor is gender. Males tend to be taller
than females on average, and personal experi-
ences (anecdotal) may suggest they drive faster.
If we were to follow-up on this suspicion, we
would find that sociological studies confirm this
suspicion. (c¢) Males are taller on average and
they drive faster. The gender variable is indeed
an important confounding variable.

7.11 (a) There is a somewhat weak, positive,
possibly linear relationship between the distance
traveled and travel time. There is clustering
near the lower left corner that we should take
special note of. (b) Changing the units will not
change the form, direction or strength of the re-
lationship between the two variables. If longer
distances measured in miles are associated with
longer travel time measured in minutes, longer
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distances measured in kilometers will be associ-
ated with longer travel time measured in hours.
(c) Changing units doesn’t affect correlation:
R = 0.636.

7.13 (a) There is a moderate, positive, and
linear relationship between shoulder girth and
height. (b) Changing the units, even if just for
one of the variables, will not change the form,
direction or strength of the relationship between
the two variables.

7.15 In each part, we may write the husband
ages as a linear function of the wife ages: (a)
agen = agew + 3; (b) agenr = agew — 2; and
(c) ager = agew /2. Therefore, the correlation
will be exactly 1 in all three parts. An alter-
native way to gain insight into this solution is
to create a mock data set, such as a data set of
5 women with ages 26, 27, 28, 29, and 30 (or
some other set of ages). Then, based on the de-
scription, say for part (a), we can compute their
husbands’ ages as 29, 30, 31, 32, and 33. We can
plot these points to see they fall on a straight
line, and they always will. The same approach
can be applied to the other parts as well.

7.17 (a) There is a positive, very strong, linear
association between the number of tourists and
spending. (b) Explanatory: number of tourists
(in thousands). Response: spending (in millions
of US dollars). (¢) We can predict spending for a
given number of tourists using a regression line.
This may be useful information for determin-
ing how much the country may want to spend
in advertising abroad, or to forecast expected
revenues from tourism. (d) Even though the re-
lationship appears linear in the scatterplot, the
residual plot actually shows a nonlinear relation-
ship. This is not a contradiction: residual plots
can show divergences from linearity that can be
difficult to see in a scatterplot. A simple linear
model is inadequate for modeling these data. It
is also important to consider that these data are
observed sequentially, which means there may
be a hidden structure that it is not evident in
the current data but that is important to con-
sider.

7.19 (a) First calculate the slope: b1 = R X
Sy/sz = 0.636 x 113/99 = 0.726. Next, make
use of the fact that the regression line passes
through the point (Z,7): § = bo + b1 X Z. Plug
in z, 4, and b1, and solve for bp: 51. Solution:
travel time = 51 + 0.726 x distance. (b) b1:
For each additional mile in distance, the model
predicts an additional 0.726 minutes in travel
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time. bp: When the distance traveled is 0 miles,
the travel time is expected to be 51 minutes. It
does not make sense to have a travel distance
of 0 miles in this context. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) R? = 0.636% = 0.40.
About 40% of the variability in travel time is
accounted for by the model, i.e. explained by
the distance traveled. (d) travel time = 51 +
0.726 x distance = 51 4+ 0.726 x 103 ~ 126
minutes. (Note: we should be cautious in our
predictions with this model since we have not
yet evaluated whether it is a well-fit model.)
(e) e, = yi — §; = 168 — 126 = 42 minutes. A
positive residual means that the model underes-
timates the travel time. (f) No, this calculation
would require extrapolation.

7.21 The relationship between the variables is
somewhat linear. However, there are two appar-
ent outliers. The residuals do not show a ran-
dom scatter around 0. A simple linear model
may not be appropriate for these data, and we
should investigate the two outliers.

7.23 (a) VR? = 0.849. Since the trend is
negative, R is also negative: R = —0.849.
(b) bo = —0.537. b1 = 55.34. (c) For a neigh-
borhood with 0% reduced-fee lunch, we would
expect 55.34% of the bike riders to wear hel-
mets. (d) For every additional percentage point
of lunch, there is a decrease of 0.537 percentage
points in helmet. (e) § = 40x(—0.537)+55.34 =
33.86, e = 40 — §j = 6.14. There are 6.14% more
bike riders wearing helmets than predicted by
the regression model in this neighborhood.

7.25 (a) The outlier is in the upper-left corner.
Since it is horizontally far from the center of the
data, it is an influential point. Since the slope
of the regression line would be very different if
fit without this point, it is a point with high
leverage. (b) The outlier is located in the lower-
left corner. It is horizontally far from the rest
of the data, so it is a high-leverage point. The
line again would look notably different if the fit
excluded this point, meaning it the outlier is in-
fluential. (c) The outlier is in the upper-middle
of the plot. Since it is near the horizontal center
of the data, it is not a high-leverage point. This
means it also will have little or no influence on
the slope of the regression line.

7.27 (a) There is a negative, moderate-to-
strong, somewhat linear relationship between
percent of families who own their home and the
percent of the population living in urban areas



in 2010. There is one outlier: a state where
100% of the population is urban. The variability
in the percent of homeownership also increases
as we move from left to right in the plot. (b) The
outlier is located in the bottom right corner, hor-
izontally far from the center of the other points,
so it is a point with high leverage. It is an influ-
ential point since excluding this point from the
analysis would greatly affect the slope of the re-
gression line.

7.29 (a) The relationship is positive, moderate-
to-strong, and linear. There are a few out-
liers but no points that appear to be influen-
tial. (b) weight = —105.0113 + 1.0176 x height.
Slope: For each additional centimeter in height,
the model predicts the average weight to be
1.0176 additional kilograms (about 2.2 pounds).
Intercept: People who are 0 centimeters tall are
expected to weigh -105.0113 kilograms. This
is obviously not possible. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) Ho: The true slope
coefficient of height is zero (81 = 0). Ho: The
true slope coefficient of height is greater than
zero (B1 > 0). A two-sided test would also be
acceptable for this application. The p-value for
the two-sided alternative hypothesis (81 # 0)
is incredibly small, so the p-value for the one-
sided hypothesis will be even smaller. That
is, we reject Ho. The data provide convincing
evidence that height and weight are positively

8 Multiple and logistic regression

8.1 (a) baby_weight = 123.05 — 8.94 x smoke
(b) The estimated body weight of babies born
to smoking mothers is 8.94 ounces lower than
babies born to non-smoking mothers. Smoker:
123.05 —8.94 x 1 = 114.11 ounces. Non-smoker:
123.05 — 8.94 x 0 = 123.05 ounces. (c) Ho:
B1 =0. Ha: p1 # 0. T = —8.65, and the
p-value is approximately 0. Since the p-value
is very small, we reject Hy. The data provide
strong evidence that the true slope parameter is
different than 0 and that there is an association
between birth weight and smoking. Further-
more, having rejected Ho, we can conclude that
smoking is associated with lower birth weights.

8.3 (a) baby_weight = —80.41 + 0.44 x
gestation — 3.33 X parity — 0.01 X age +
1.15 x height 4+ 0.05 x weight — 8.40 x smoke.
(b) Bgestation: The model predicts a 0.44 ounce
increase in the birth weight of the baby for each
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correlated. The true slope parameter is indeed
greater than 0. (d) R? = 0.72% = 0.52. Approx-
imately 52% of the variability in weight can be
explained by the height of individuals.

7.31 (a) Hy: ﬂl = 0. Hg: 61 > 0. A two-sided
test would also be acceptable for this applica-
tion. The p-value, as reported in the table, is
incredibly small. Thus, for a one-sided test, the
p-value will also be incredibly small, and we re-
ject Hp. The data provide convincing evidence
that wives’ and husbands’ heights are positively
correlated. (b) heighty, = 43.5755 + 0.2863 x
heightr. (c) Slope: For each additional inch
in husband’s height, the average wife’s height is
expected to be an additional 0.2863 inches on
average. Intercept: Men who are 0 inches tall
are expected to have wives who are, on average,
43.5755 inches tall. The intercept here is mean-
ingless, and it serves only to adjust the height
of the line. (d) The slope is positive, so R must
also be positive. R = 1/0.09 = 0.30. (e) 63.2612.
Since R? is low, the prediction based on this re-
gression model is not very reliable. (f) No, we
should avoid extrapolating.

7.33 (a) 25.75. (b) Hot 51 = 0. HAZ ﬂl 7& 0.
A one-sided test also may be reasonable for this
application. T' = 2.23, df = 23 — p-value be-
tween 0.02 and 0.05. So we reject Ho. There is
an association between gestational age and head
circumference. We can also say that the associ-
aation is positive.

additional day of pregnancy, all else held con-
stant. Bage: The model predicts a 0.01 ounce
decrease in the birth weight of the baby for each
additional year in mother’s age, all else held con-
stant. (c) Parity might be correlated with one
of the other variables in the model, which com-
plicates model estimation. (d) baby-weight =
120.58. e = 120 — 120.58 = —0.58. The
model over-predicts this baby’s birth weight.
(e) R* = 0.2504. R, = 0.2468.

adj
8.5 (a) (-0.32,0.16). We are 95% confident that
male students on average have GPAs 0.32 points
lower to 0.16 points higher than females when
controlling for the other variables in the model.
(b) Yes, since the p-value is larger than 0.05 in
all cases (not including the intercept).

8.7 (a) There is not a significant relationship
between the age of the mother. We should con-
sider removing this variable from the model.



406

(b) All other variables are statistically signifi-
cant at the 5% level.

8.9 Based on the p-value alone, either gestation
or smoke should be added to the model first.
However, since the adjusted R? for the model
with gestation is higher, it would be preferable
to add gestation in the first step of the forward-
selection algorithm. (Other explanations are
possible. For instance, it would be reasonable
to only use the adjusted R?.)

8.11 Nearly normal residuals: The normal
probability plot shows a nearly normal distri-
bution of the residuals, however, there are some
minor irregularities at the tails. With a data set
so large, these would not be a concern.
Constant variability of residuals: The scatter-
plot of the residuals versus the fitted values does
not show any overall structure. However, val-
ues that have very low or very high fitted val-
ues appear to also have somewhat larger out-
liers. In addition, the residuals do appear to
have constant variability between the two parity
and smoking status groups, though these items
are relatively minor.

Independent residuals: The scatterplot of resid-
uals versus the order of data collection shows a
random scatter, suggesting that there is no ap-
parent structures related to the order the data
were collected.

Linear relationships between the response vari-
able and numerical explanatory variables: The
residuals vs. height and weight of mother are
randomly distributed around 0. The residuals
vs. length of gestation plot also does not show
any clear or strong remaining structures, with
the possible exception of very short or long ges-
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tations. The rest of the residuals do appear to
be randomly distributed around 0.

All concerns raised here are relatively mild.
There are some outliers, but there is so much
data that the influence of such observations will
be minor.

8.13 (a) There are a few potential outliers, e.g.
on the left in the total_length variable, but
nothing that will be of serious concern in a data
set this large. (b) When coefficient estimates
are sensitive to which variables are included in
the model, this typically indicates that some
variables are collinear. For example, a pos-
sum’s gender may be related to its head length,
which would explain why the coefficient (and p-
value) for sex_male changed when we removed
the head_length variable. Likewise, a possum’s
skull width is likely to be related to its head
length, probably even much more closely related
than the head length was to gender.

8.15 (a) The logistic model relating p; to the

predictors may be written as log( ﬁi) =

1-p;

33.5095 — 1.4207 x sex_male; — 0.2787 x
skull_width; + 0.5687 X total_length;. Only
total_length has a positive association with a
possum being from Victoria. (b) p = 0.0062.
While the probability is very near zero, we have
not run diagnostics on the model. We might
also be a little skeptical that the model will re-
main accurate for a possum found in a US zoo.
For example, perhaps the zoo selected a possum
with specific characteristics but only looked in
one region. On the other hand, it is encour-
aging that the possum was caught in the wild.
(Answers regarding the reliability of the model
probability will vary.)



Appendix B

Distribution tables

B.1 Normal Probability Table

The area to the left of Z represents the percentile of the observation. The normal probability table
always lists percentiles.

negative Z positive Z

To find the area to the right, calculate 1 minus the area to the left.

1.0000 - 0.6664 = 0.3336

A4 =\

For additional details about working with the normal distribution and the normal probability
table, see Section 3.1, which starts on page 118.
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negative Z
Second decimal place of Z
0.09 0.08 0.07 0.06 0.05 [ 0.04 0.03 0.02 0.01 0.00 Z
0.0002  0.0003  0.0003 0.0003 0.0003 | 0.0003 0.0003 0.0003 0.0003 0.0003 | —3.4
0.0003  0.0004 0.0004 0.0004 0.0004 | 0.0004 0.0004 0.0005 0.0005 0.0005 | —3.3
0.0005  0.0005 0.0005 0.0006 0.0006 | 0.0006 0.0006 0.0006 0.0007 0.0007 | —3.2
0.0007  0.0007  0.0008 0.0008 0.0008 | 0.0008 0.0009 0.0009 0.0009 0.0010 | —3.1
0.0010  0.0010  0.0011  0.0011  0.0011 | 0.0012 0.0012 0.0013  0.0013 0.0013 | —3.0
0.0014  0.0014 0.0015 0.0015 0.0016 | 0.0016 0.0017 0.0018 0.0018 0.0019 | —2.9
0.0019  0.0020 0.0021  0.0021  0.0022 | 0.0023 0.0023 0.0024 0.0025 0.0026 | —2.8
0.0026  0.0027  0.0028  0.0029  0.0030 | 0.0031 0.0032 0.0033 0.0034 0.0035 | —2.7
0.0036  0.0037 0.0038  0.0039  0.0040 | 0.0041 0.0043 0.0044 0.0045 0.0047 | —2.6
0.0048  0.0049 0.0051  0.0052 0.0054 | 0.0055 0.0057 0.0059 0.0060 0.0062 | —2.5
0.0064  0.0066  0.0068 0.0069 0.0071 | 0.0073 0.0075 0.0078  0.0080 0.0082 | —2.4
0.0084  0.0087 0.0089 0.0091  0.0094 | 0.0096 0.0099 0.0102 0.0104 0.0107 | —2.3
0.0110  0.0113 0.0116 0.0119 0.0122 | 0.0125 0.0129 0.0132 0.0136 0.0139 | —2.2
0.0143  0.0146  0.0150 0.0154 0.0158 | 0.0162 0.0166 0.0170  0.0174 0.0179 | —2.1
0.0183 0.0188  0.0192  0.0197  0.0202 | 0.0207 0.0212 0.0217 0.0222 0.0228 | —2.0
0.0233  0.0239  0.0244 0.0250 0.0256 | 0.0262 0.0268 0.0274 0.0281  0.0287 | —1.9
0.0294 0.0301  0.0307 0.0314 0.0322 | 0.0329 0.0336 0.0344 0.0351 0.0359 | —1.8
0.0367 0.0375 0.0384 0.0392  0.0401 | 0.0409 0.0418 0.0427 0.0436 0.0446 | —1.7
0.0455  0.0465 0.0475 0.0485 0.0495 | 0.0505 0.0516 0.0526  0.0537 0.0548 | —1.6
0.0559  0.0571  0.0582  0.0594 0.0606 | 0.0618 0.0630 0.0643 0.0655 0.0668 | —1.5
0.0681  0.0694 0.0708 0.0721  0.0735 | 0.0749 0.0764 0.0778 0.0793 0.0808 | —1.4
0.0823  0.0838 0.0853  0.0869 0.0885 | 0.0901 0.0918 0.0934 0.0951 0.0968 | —1.3
0.0985 0.1003 0.1020 0.1038 0.1056 | 0.1075 0.1093 0.1112 0.1131 0.1151 | —1.2
0.1170  0.1190 0.1210 0.1230  0.1251 | 0.1271  0.1292 0.1314 0.1335 0.1357 | —1.1
0.1379  0.1401  0.1423  0.1446  0.1469 | 0.1492 0.1515 0.1539  0.1562 0.1587 | —1.0
0.1611 0.1635 0.1660 0.1685 0.1711 | 0.1736 0.1762 0.1788 0.1814 0.1841 | —0.9
0.1867 0.1894  0.1922  0.1949  0.1977 | 0.2005 0.2033  0.2061  0.2090 0.2119 | —0.8
0.2148  0.2177 0.2206  0.2236  0.2266 | 0.2296  0.2327 0.2358 0.2389 0.2420 | —0.7
0.2451  0.2483 0.2514  0.2546  0.2578 | 0.2611  0.2643 0.2676 0.2709 0.2743 | —0.6
0.2776  0.2810  0.2843  0.2877  0.2912 | 0.2946  0.2981  0.3015 0.3050 0.3085 | —0.5
0.3121  0.3156  0.3192  0.3228 0.3264 | 0.3300 0.3336 0.3372  0.3409 0.3446 | —0.4
0.3483  0.3520 0.3557 0.3594 0.3632 | 0.3669 0.3707 0.3745 0.3783 0.3821 | —0.3
0.3859  0.3897 0.3936  0.3974  0.4013 | 0.4052 0.4090 0.4129 0.4168 0.4207 | —0.2
0.4247  0.4286  0.4325 0.4364  0.4404 | 0.4443 0.4483 0.4522 0.4562 0.4602 | —0.1
0.4641  0.4681 0.4721  0.4761 0.4801 | 0.4840  0.4880 0.4920 0.4960 0.5000 | —0.0

*For Z < —3.50, the probability is less than or equal to 0.0002.



B.1. NORMAL PROBABILITY TABLE

positive Z

409

Second decimal place of Z

Z 0.00 0.01 0.02 0.03 0.04 [ 0.05 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199  0.5239  0.5279  0.5319  0.5359
0.1 0.5398  0.5438  0.5478 0.5517  0.5557 | 0.5596  0.5636  0.5675 0.5714  0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103  0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628  0.6664  0.6700 | 0.6736 0.6772 0.6808 0.6844  0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123  0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324  0.7357  0.7389 | 0.7422 0.7454 0.7486  0.7517  0.7549
0.7 | 07580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365  0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 | 0.8531  0.8554 0.8577  0.8599  0.8621
1.1 0.8643 0.8665 0.8686  0.8708  0.8729 | 0.8749 0.8770 0.8790 0.8810  0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980  0.8997  0.9015
1.3 | 09032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162  0.9177
1.4 | 09192 0.9207 0.9222 0.9236  0.9251 | 0.9265 0.9279  0.9292  0.9306  0.9319
1.5 | 09332 0.9345 0.9357 0.9370 0.9382 | 0.9394 0.9406 0.9418 0.9429  0.9441
1.6 | 09452 0.9463 0.9474 0.9484 0.9495 | 0.9505 0.9515 0.9525 0.9535  0.9545
1.7 | 09554 0.9564 0.9573 0.9582  0.9591 | 0.9599 0.9608 0.9616 0.9625  0.9633
1.8 | 09641 0.9649 0.9656 0.9664 0.9671 | 0.9678 0.9686  0.9693  0.9699  0.9706
1.9 | 09713 0.9719 0.9726 0.9732 0.9738 | 0.9744 0.9750 0.9756 0.9761  0.9767
2.0 | 09772 0.9778 0.9783  0.9788  0.9793 | 0.9798 0.9803  0.9808 0.9812  0.9817
2.1 0.9821  0.9826  0.9830 0.9834 0.9838 | 0.9842 0.9846  0.9850 0.9854  0.9857
2.2 | 0.9861 0.9864 0.9868 0.9871  0.9875 | 0.9878 0.9881 0.9884 0.9887  0.9890
2.3 | 0.9893 0.9896 0.9898  0.9901 0.9904 | 0.9906 0.9909  0.9911 0.9913  0.9916
2.4 1 09918 0.9920 0.9922  0.9925 0.9927 | 0.9929  0.9931  0.9932  0.9934  0.9936
2.5 | 0.9938 0.9940 0.9941  0.9943 0.9945 | 0.9946  0.9948  0.9949  0.9951  0.9952
2.6 | 09953 0.9955 0.9956  0.9957 0.9959 | 0.9960 0.9961  0.9962  0.9963  0.9964
2.7 | 0.9965 0.9966  0.9967  0.9968  0.9969 | 0.9970  0.9971  0.9972  0.9973  0.9974
2.8 | 0.9974 0.9975 0.9976  0.9977  0.9977 | 0.9978  0.9979  0.9979  0.9980  0.9981
2.9 | 09981 0.9982 0.9982 0.9983 0.9984 | 0.9984 0.9985 0.9985 0.9986  0.9986
3.0 | 0.9987 0.9987 0.9987 0.9988  0.9988 | 0.9989  0.9989  0.9989  0.9990  0.9990
3.1 0.9990  0.9991  0.9991  0.9991  0.9992 | 0.9992 0.9992 0.9992  0.9993  0.9993
3.2 | 0.9993  0.9993  0.9994 0.9994 0.9994 | 0.9994 0.9994  0.9995 0.9995  0.9995
3.3 | 0.9995 0.9995 0.9995 0.9996 0.9996 | 0.9996  0.9996  0.9996  0.9996  0.9997
3.4 | 09997 0.9997  0.9997  0.9997  0.9997 | 0.9997  0.9997  0.9997  0.9997  0.9998

*For Z > 3.50, the probability is greater than or equal to 0.9998.
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B.2 t Distribution Table

T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
One talil One tail Two tails

Figure B.1: Three t distributions.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 3.08 6.31 12.71 31.82 63.66
1.89 2.92 4.30 6.96 9.92
1.64 2.35 3.18 4.54 5.84
1.53 2.13 2.78 3.75 4.60
1.48 2.02 2.57 3.36 4.03
1.44 1.94 2.45 3.14 3.71
1.41 1.89 2.36 3.00 3.50
1.40 1.86 2.31 2.90 3.36

9 1.38 1.83 2.26 2.82 3.25
10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75

W~ DO W




B.2. T DISTRIBUTION TABLE

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 31 1.31 1.70 2.04 2.45 2.74

32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70
41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 241 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 241 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68
60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63
100 1.29 1.66 1.98 2.36 2.63
150 1.29 1.66 1.98 2.35 2.61
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
o [ 1.28 1.65 1.96 2.33 2.58
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B.3 Chi-Square Probability Table

[ I I |
0 5 10 15

Figure B.2: Areas in the chi-square table always refer to the right tail.

Upper tail 0.3 0.2 0.1 0.05| 0.02 0.01 0.006 0.001
df 2 2.41 3.22 4.61 5.99 7.82 9.21 10.60  13.82
3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27
4 4.88 5.99 7.78 9.49 | 11.67 13.28 14.86  18.47
5 6.06 7.29 9.24 11.07 | 13.39 15.09 16.75  20.52
6 7.23 8.56 10.64 12.59 | 15.03 16.81 18.55  22.46
7 8.38 9.80 12.02 14.07 | 16.62 18.48  20.28  24.32
8 9.52 11.03 13.36 15.51 | 18.17 20.09 21.95 26.12
9 | 10.66 12.24 14.68 16.92 | 19.68 21.67 23.59  27.88
10 | 11.78 13.44 1599 1831 | 21.16 23.21  25.19  29.59
11 | 1290 14.63 17.28 19.68 | 22.62 24.72 26.76  31.26
12 | 14.01 1581 1855 21.03 | 24.05 26.22 2830 3291
13 | 1512 16.98 19.81 22.36 | 25.47 27.69 29.82  34.53
14 | 16.22 18.15 21.06 23.68 | 26.87 29.14 31.32  36.12
15 | 1732 19.31 2231 25.00 | 28.26 30.58 32.80 37.70
16 | 18.42 20.47 23.54 26.30 | 29.63 32.00 34.27 39.25
17 | 19.51 21.61 2477 27.59 | 31.00 33.41 3572  40.79
18 | 20.60 2276 25.99 28.87 | 32.35 34.81 37.16 42.31
19 | 21.69 2390 2720 30.14 | 33.69 36.19 38.58  43.82
20 | 22.77  25.04 28.41 31.41 | 35.02 37.57 40.00 45.31
25 | 28.17 30.68 34.38 37.65 | 41.57 44.31 46.93  52.62
30 | 33.53 36.25 40.26 43.77 | 47.96 50.89  53.67  59.70
40 | 44.16 47.27 51.81 55.76 | 60.44 63.69  66.77  73.40
50 | 54.72 58.16 63.17 67.50 | 72.61 76.15 79.49  86.66
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t distribution, 222-225

A°, 76

Addition Rule, 70

adjusted R* (R24), 359, 358-359
alternative hypothesis (Ha), 172

analysis of variance (ANOVA), 236, 236-246,

338
anecdotal evidence, 9
associated, 8

backward-elimination, 361
bar plot, 35

segmented bar plot, 38
Bayes’ Theorem, 91, 89-93
Bayesian statistics, 93
bias, 11
blind, 19
blocking, 17
blocks, 17
Bonferroni correction, 245
box plot, 28

side-by-side box plot, 40

case, 4

categorical, 6

Central Limit Theorem, 167, 185—188
normal data, 170-172, 222

chi-square distribution, 276

chi-square table, 276

cohort, 13

collections, 71

collinear, 358

column totals, 35

complement, 76

condition, 82

conditional probability, 82, 81-83, 93

confidence interval, 165, 165-170, 367
confidence level, 168-169
interpretation, 170
using normal model, 189-190

confident, 165

confounder, 14

confounding factor, 14

confounding variable, 14

contingency table, 35
column proportion, 36
column totals, 35
row proportions, 36
row totals, 35

continuous, 6

control, 17

control group, 2, 19

convenience sample, 11

correlation, 322, 322

data, 1
approval ratings, 287-288
baby_smoke, 217-220
cancer in dogs, herbicide, 271-273
cars, 20
Congress approval rating, 268
county, 4-8, 12, 32-35, 40-42
CPR and blood thinner, 293-297
discrimination, 42—-46
dolphins and mercury, 225-227
drug_use, 79-83
email, 35-40, 71, 73-74, 367-376
email50, 3-4, 20-31
FCID, 104-106
health care, 269
mario_kart, 181-182, 354-367
medical consultant, 288-290
midterm elections, 334-336
MLB batting, 237-2412
possum, 317-321
racial make-up of jury, 273275, 279, 292
runl0, 159-174
runl0Samp, 159-174, 215-217
S&P500 stock data, 280-283
SAT prep company, 228230
school sleep, 177-180, 182-183
search algorithm, 283-287
smallpox, 83-86
stem cells, heart function, 232-235
stroke, 1-3, 6
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supreme court, 263-265
textbooks, 212-215
two exam comparison, 231-232
white fish and mercury, 228
data density, 23
data fishing, 238
data matrix, 4
data snooping, 238
deck of cards, 72
degrees of freedom (df)
t distribution, 222
chi-square, 276
regression, 359
density, 105
dependent, 8, 12
deviation, 25
df, see degrees of freedom (df)
discrete, 6
disjoint, 70, 70-72
distribution, 21, 105
Bernoulli, 133, 133-134
binomial, 137, 137-143
normal approximation, 141-143
geometric, 135, 134-136
negative binomial, 144, 144-147
normal, 118, 118-132
Poisson, 147, 147-148
dot plot, 21
double-blind, 19

effect size, 211
error, 163

event, 71, 7T1-72
E(X), 96
expectation, 95-97
expected value, 96
experiment, 13, 17
explanatory, 12
exponentially, 135
extrapolation, 329

F test, 240

face card, 72
factorial, 138

failure, 133

false negative, 89
false positive, 89

first quartile, 28
forward-selection, 361
frequency table, 35
full model, 359

gambler’s fallacy, 86
General Addition Rule, 73

INDEX

General Multiplication Rule, 84
generalized linear model, 148, 367
Greek

alpha («), 176

beta (3), 315

lambda (\), 148

mu (u), 22, 96

sigma (o), 26, 98

high leverage, 334

histogram, 23

hollow histogram, 40, 104-105

hypothesis, 172

hypothesis testing, 172-185
decision errors, 176
p-value, 177, 177-180
significance level, 176, 184—185
using normal model, 190-192

independent, 8, 12, 77

independent and identically distributed (iid), 135
indicator variable, 330, 354, 368

influential point, 334

intensity map, 32, 32-35

interquartile range, 28, 29

IQR, 28

joint probability, 80, 80-81

Law of Large Numbers, 69

least squares criterion, 325

least squares line, 325

least squares regression, 324-328
extrapolation, 329
interpreting parameters, 328-329
R-squared (R?), 329, 329-330

levels, 6

linear combination, 100

linear regression, 315

logistic regression, 367, 367-376

logit transformation, 369

long tail, 24

lurking variable, 14

margin of error, 170, 189, 193-194, 266267
marginal probability, 80, 80-81
mean, 21
average, 21
weighted mean, 23
mean square between groups (MSG), 240
mean square error (MSE), 240
median, 28
midterm election, 334
Milgram, Stanley, 133
modality
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bimodal, 24
multimodal, 24
unimodal, 24

mode, 24

model selection, 359-363

mosaic plot, 38

multiple comparisons, 245

multiple regression, 332, 356, 354-367

model assumptions, 363-367
Multiplication Rule, 78
mutually exclusive, 70, 70-72

n choose k, 138
natural splines, 373
negative association, 8
nominal, 6
non-response, 11
non-response bias, 11
normal curve, 118

normal probability plot, 128, 128-132

normal probability table, 121
null hypothesis (Hop), 172
null value, 173

numerical, 6

observational study, 13
observational unit, 4
one-sided, 178

ordinal, 6

outcome, 69

outlier, 29

p-value, 177
interpretation example, 179

paired, 213

paired data, 212-215

parameter, 119, 315

patients, 19

percentile, 28, 121

permutation test, 295

pie chart, 40

placebo, 13, 19

placebo effect, 19

point estimate, 161, 160-164
difference of means, 215-216
difference of proportions, 268
single mean, 161
single proportion, 264

point-slope, 327

pooled estimate, 272

pooled standard deviation, 235

population, 9, 9-12

population mean, 161

population parameters, 161

positive association, 8

power, 195

practically significant, 196
predictor, 315

primary, 86

probability, 69, 68-93
probability density function, 105
probability distribution, 74
probability of a success, 133
probability sample, see sample
prosecutor’s fallacy, 239
prospective study, 14

Qi1, 28
Qs, 28
quantile-quantile plot, 128
quartile
first quartile, 28
third quartile, 28

random process, 69, 69-70
random variable, 95, 95103
randomization, 44
randomized experiment, 13, 17
rate, 148

relative frequency table, 35
replicate, 17

representative, 11

residual, 242, 319, 319-321
residual plot, 321

response, 12

retrospective studies, 14
robust estimates, 30

row totals, 35

running mean, 161

S, 76

s, 26

sample, 9, 9-12
cluster, 16

cluster sample, 16
convenience sample, 11
non-response, 11
non-response bias, 11
random sample, 10-12
simple random sampling, 14
strata, 16
stratified sampling, 16
sample mean, 161
sample proportion, 133
sample space, 76
sample statistic, 30
sampling distribution, 162
sampling variation, 161
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scatterplot, 7, 20
SE, 163
secondary, 86
sets, 71
side-by-side box plot, 40
significance level, 176, 184185
multiple comparisons, 243-246
simple random sample, 11
simulation, 44
skew
example: extreme, 31

example: moderate, 160, 175, 179, 185

example: slight to moderate, 42
example: strong, 185, 213, 218
example: very strong, 24, 130, 188
left skewed, 23
long tail, 24
right skewed, 23
strong skew, 29
strongly skewed guideline, 188
symmetric, 23
tail, 23
standard deviation, 26, 98
standard error
difference in means, 216
difference in proportions, 268
single mean, 164
single proportion, 264
standard error (SE), 163
standard normal distribution, 119
statistically significant, 196
stepwise, 361
strata, 16
study participants, 19
success, 133
success-failure condition, 264
suits, 72
sum of squared errors (SSE), 240
sum of squares between groups, 240
sum of squares total (SST'), 240
summary statistic, 3, 7, 30
symmetric, 23

T score (T), 229

t table, 223

table proportions, 81
tail, 23

test statistic, 192

the outcome of interest, 82
third quartile, 28

time series, 325, 364
time series data, 187
transformation, 31
treatment group, 2, 19

tree diagram, 86, 8693
trial, 133

two-sided, 178

Type 1 Error, 176
Type 2 Error, 176

unbiased, 188
unit of observation, 4

variability, 25, 28
variable, 4
variance, 26, 98
Venn diagrams, 72
volunteers, 19

weighted mean, 23
whiskers, 29

with replacement, 94
without replacement, 94

Z, 120
Z score, 120
7 test, 311
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