Chapter 1

Introduction-Generalized Linear Models

1.1 The Basic Components

- Generalized linear models provide a unifying methodology for many common statistical analyses useful in biostatistics including:
 - \circ regression
 - o analysis of variance
 - \circ analysis of covariance
 - o log linear models
 - \circ logistic regression
 - \circ analysis of rates
 - o longitudinal data analysis

• The first component of a generalized linear model is the probability or random component which states that we have realized values y_1, y_2, \ldots, y_n of random variables Y_1, Y_2, \ldots, Y_n assumed independent with the probability density function of Y_i given by

$$f_{Y_i}(y_i; heta_i,\phi) = \exp\left\{rac{[y_i heta_i - b(heta_i)]}{a(\phi)} + c(y_i,\phi)
ight\}$$

 \circ It is easy to show that under weak conditions on f_{Y_i} :

$$\mu_i = E(Y_i) = b^{(1)}(\theta_i) \text{ where } b^{(1)}(\theta_i) = \frac{db(\theta)}{d\theta}\Big]_{\theta=\theta_i}$$

$$V_i = \text{var}(Y_i) = b^{(2)}(\theta_i) a(\phi) \text{ where } b^{(2)}(\theta_i) = \frac{d^2 b(\theta)}{d\theta^2} \Big|_{\theta = \theta_i}$$

- Thus the mean depends only on θ_i , the canonical parameter. The variance depends on a function of the canonical parameter (called the variance function) and the dispersion or scale parameter ϕ .
- These distributional assumptions constitute the probability or random component of a generalized linear model.

• **example:** For the normal distribution we have

$$(2\pi\sigma^{2})^{-\frac{1}{2}} \exp\left\{-\frac{(y_{i}-\mu_{i})^{2}}{2\sigma^{2}}\right\} = \exp\left\{-\frac{y_{i}^{2}}{2\sigma^{2}} + \frac{y_{i}\mu_{i}}{\sigma^{2}} - \frac{\mu_{i}^{2}}{2\sigma^{2}} - \frac{1}{2}\log(2\pi\sigma^{2})\right\}$$
$$= \exp\left\{\frac{y_{i}\mu_{i} - \frac{\mu_{i}^{2}}{2}}{\sigma^{2}} - \frac{y_{i}^{2}}{2\sigma^{2}} - \frac{1}{2}\log(2\pi\sigma^{2})\right\}$$

Thus:

$$\theta_i = \mu_i$$

$$b(\theta_i) = \frac{\mu_i^2}{2}$$

$$= \frac{\theta_i^2}{2}$$

$$c(y_i, \phi) = -\frac{y_i^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)$$

$$a(\phi) = \sigma^2$$

• As an example of the mean variance relationship we have for the normal distribution:

$$b(\theta_i) = \frac{\theta_i^2}{2} \Longrightarrow b^{(1)}(\theta_i) = \theta_i \text{ so that } E(Y_i) = \theta_i = \mu_i$$

 $b^{(2)}(\theta_i) = 1 \text{ so that } var(Y_i) = \sigma^2$

• The second component of a generalized linear model is the systematic component in which a linear predictor is specified as

$$\eta_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$$

- The β_j are unknown parameters and the x_{ij} are values of covariates.
- In the case of the normal distribution, we obtain analysis of variance, analysis of covariance and multiple regression.
- For the binomial we obtain logistic regression while for the Poisson we obtain log linear models for contingency tables and the analysis of rates.

1.1. THE BASIC COMPONENTS

- 5
- The third component of a generalized linear model consists of a link between the random and systematic components.
 - \circ The link is a function relating η and μ and is given by

$$\eta_i = g(\mu_i)$$

- Since $\mu_i = b^{(1)}(\theta_i)$ the link function also relates η_i to θ_i . The link function is required to be monotonic and differentiable.
- While there are many possible link functions the most important are the canonical links defined by

$$\eta_i = \theta_i$$

 \circ In this case the link function is just the function $(b^{(1)})^{-1}$ since

$$\eta_i = g(b^{(1)}(\theta_i)) = \theta_i \text{ implies } g = (b^{(1)})^{-1}$$

- The importance of the canonical links is that there are simple sufficient statistics for the β_j in this case.
- Note that in some expositions the link is defined as $g(\eta_i) = \mu_i$.
- \circ example: For the normal distribution we have $\theta_i = \eta_i$ which implies that

$$\theta_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$$

Since $\mu_i = \theta_i$ we have

$$\mu_i = E(Y_i) = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}$$

which is the usual general linear model for multiple regression, analysis of variance and analysis of covariance.

Summary: In a generalized linear model we have y_1, y_2, \ldots, y_n which are observed values of independent random variables Y_1, Y_2, \ldots, Y_n

• The distribution of Y_i is

$$f_{Y_i}(y_i; heta_i, \phi) = \exp\left\{rac{[y_i heta_i - b(heta_i)]}{a(\phi)} + c(y_i; \phi)
ight\}$$

• The systematic model is specified by a linear predictor of the form

$$\eta_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$$

• The link between η_i and $\mu_i = E(Y_i)$ is defined by

$$\eta_i = g(\mu_i)$$

The link is called a canonical link if $\theta_i = \eta_i$. In this case $g = (b^{(1)})^{-1}$.