## 2.9 Vector Valued Random Variables

**Definition:** If **Y** is an  $n \times 1$  vector of random variables we define the expected value of **Y** as

$$E(\mathbf{Y}) = \begin{bmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_n) \end{bmatrix}$$

i.e.  $E(\mathbf{Y})$  is the  $n \times 1$  vector with *i*th coordinate equal to the expected value of the *i*th coordinate of  $\mathbf{Y}$ .

**Definition:** If **Y** is a  $n \times 1$  vector of random variables we define the variance covariance matrix of **Y** as

$$\operatorname{var}(\mathbf{Y}) = E\left\{ \left[\mathbf{Y} - E(\mathbf{Y})\right] \left[\mathbf{Y} - E(\mathbf{Y})\right]^{T} \right\}$$

Note that

$$\operatorname{var}(\mathbf{Y}) = E\left\{ \left[ \mathbf{Y} - E(\mathbf{Y}) \right] \left[ \mathbf{Y} - E(\mathbf{Y}) \right]^{T} \right\}$$
$$= E\left\{ \mathbf{Y}\mathbf{Y}^{T} \right\} - \left[ E(\mathbf{Y}) \right] \left[ E(\mathbf{Y}) \right]^{T}$$
$$= \left\{ \left( \operatorname{cov}(Y_{i}, Y_{j}) \right) \right\}$$

i.e. the i, j element of var  $(\mathbf{Y})$  is equal to  $\operatorname{cov}(Y_i, Y_j)$ .

Similarly, if **Y** is  $n \times 1$  and **X** is  $p \times 1$  then the covariance matrix of **Y** and **X** is the  $n \times p$  matrix defined as

$$\operatorname{cov}(\mathbf{Y}, \mathbf{X}) = E\left\{ \left[\mathbf{Y} - E(\mathbf{Y})\right] \left[\mathbf{X} - E(\mathbf{X})\right]^{T} \right\}$$

Note that

$$cov (\mathbf{Y}, \mathbf{X}) = E \{ [\mathbf{Y} - E(\mathbf{Y})] [\mathbf{X} - E(\mathbf{X})]^T \}$$
$$= E \{ \mathbf{Y} \mathbf{X}^T \} - [E(\mathbf{Y})] [E(\mathbf{X})]^T$$
$$= \{ (cov (Y_i, X_j)) \}$$

If X and Y are random variables of appropriate dimensions then

$$E(\mathbf{a} + \mathbf{BY}) = \mathbf{a} + \mathbf{B}E(\mathbf{Y})$$
$$var(\mathbf{a} + \mathbf{BY}) = \mathbf{B}var(\mathbf{Y})\mathbf{B}^{T}$$
$$cov(\mathbf{a} + \mathbf{BX}, \mathbf{c} + \mathbf{DY}) = \mathbf{B}cov(\mathbf{X}, \mathbf{Y})\mathbf{D}^{T}$$