2.10 Multivariate Normal Distribution

Definition: An n dimensional random vector \mathbf{Y} is said to have a multivariate normal (MVN) or Gaussian (G) distribution if

$$Y = \mu + BZ$$

where

- μ is a $n \times 1$ vector
- **B** is a $n \times m$ matrix
- **Z** is a vector of $m \leq n$ independent normal random variables

By the independence of the elements of \mathbf{Z} and their univariate normality we have the following forms for the density and moment generating function of \mathbf{Z} :

$$f_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-\frac{m}{2}} \exp\left\{-\frac{1}{2}\mathbf{z}^T\mathbf{z}\right\}$$
$$M_{\mathbf{Z}}(\mathbf{t}) = \exp\left\{\frac{1}{2}\mathbf{t}^T\mathbf{t}\right\}$$

Hence the joint moment generating function of \mathbf{Y} is

$$M_{\mathbf{Y}}(\mathbf{t}) = \exp\left\{\mathbf{t}^{T}\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}^{T}\boldsymbol{\Sigma}\mathbf{t}\right\}$$

where $\mathbf{B}\mathbf{B}^T = \Sigma$. Note that $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ represent the mean vector and covariance matrix of \mathbf{Y} . Since the moment generating function depends only on these two parameters it follows that the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ completely characterize the MVN distribution.

The following results about MVN random variables follow from the definition:

• If Y is MVN with mean μ and covariance matrix Σ denoted

$$\mathbf{Y} \sim \text{MVN}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$

then $\mathbf{X} = \mathbf{c} + \mathbf{D}\mathbf{Y}$ where \mathbf{c}, \mathbf{D} are known $p \times 1$ and $p \times n$ matrices, respectively, is MVN with mean $\mathbf{c} + \mathbf{D}\boldsymbol{\mu}$ and covariance matrix $\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^T$. Note that the mean and covariance expressions for \mathbf{X} follow from the general moment results. To show that \mathbf{X} is MVN, write $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}$ so that

$$\mathbf{X} = (\mathbf{c} + \mathbf{D}\boldsymbol{\mu}) + (\mathbf{D}\mathbf{B})\mathbf{Z}$$

• If $\mathbf{Y} \sim \text{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then any subset of coordinates of \mathbf{Y} is also MVN with mean and covariance matrix being the appropriate sub matrices of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. To show this, write

$$\mathbf{Y} = \left[egin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}
ight]$$

where \mathbf{Y}_1 is $p \times 1$, \mathbf{Y}_2 is $n - p \times 1$ and express \mathbf{Y}_1 as the following linear combination of \mathbf{Y}

$$\mathbf{Y}_1 = \left[egin{array}{ccc} \mathbf{I}_p & \mathbf{0} \end{array}
ight] \mathbf{Y}$$

Then from the result above \mathbf{Y}_1 is MVN with mean $\boldsymbol{\mu}_1$ and covariance matrix $\boldsymbol{\Sigma}_{11}$ where

$$\left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight] \quad ext{and} \quad \left[egin{array}{ccc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight]$$

represent the appropriate partitions of μ and Σ .

ullet If $\mathbf{Y} \sim \text{MVN}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$ and

$$\mathbf{Y} = \left[egin{array}{c} \mathbf{Y}_1 \ \mathbf{Y}_2 \end{array}
ight]$$

where \mathbf{Y}_1 is $p \times 1$, \mathbf{Y}_2 is $(n-p) \times 1$ then \mathbf{Y}_1 and \mathbf{Y}_2 are statistically independent if and only if $\mathbf{\Sigma}_{12} = \operatorname{cov}(\mathbf{Y}_1, \mathbf{Y}_2) = \mathbf{0}$. This result follows from the ability to factor the moment generating function of \mathbf{Y} if and only if $\mathbf{\Sigma}_{12} = \mathbf{0}$.

• It also follows that if subsets of a MVN variable are pairwise independent, then they are mutually independent as well.

Note that the density of a MVN variable has not yet been described. This is because unless rank $(\mathbf{B}) = n$ (in the definition of the MVN), the mass of \mathbf{Y} $(n \times 1)$ is concentrated on a subspace of \mathbf{R}^n . In fact, by definition, \mathbf{Y} lies in the space spanned by the columns of \mathbf{B} with probability one. Thus, if rank $(\mathbf{B}) < n$ the density of \mathbf{Y} with respect to Lebesgue measure in \mathbf{R}^n does not exist. As an example, consider n = 2 where the correlation between Y_1 and Y_2 is unity. Then all the mass is concentrated on the subspace consisting of the line through the origin with slope given by

$$\frac{\operatorname{var}(Y_1)}{\operatorname{var}(Y_2)}$$

If rank $(\mathbf{B}) = n$, then the density in \mathbf{R}^n with respect to n dimensional Lesbesque measure exists and has the form

$$f_{\mathbf{Y}}(\mathbf{y}) = (2\pi)^{-\frac{n}{2}} (\det(\mathbf{\Sigma}))^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})\right\}$$

Result: If Y is MVN with mean μ and covariance matrix Σ where

$$m{\mu} = \left[egin{array}{c} m{\mu}_1 \ m{\mu}_2 \end{array}
ight] \;\; ext{and} \;\; m{\Sigma} = \left[egin{array}{cc} m{\Sigma}_{11} & m{\Sigma}_{12} \ m{\Sigma}_{21} & m{\Sigma}_{22} \end{array}
ight]$$

Then the conditional distribution of \mathbf{Y}_2 given $\mathbf{Y}_1 = \mathbf{y}_2$ is also MVN with mean $\boldsymbol{\mu}^*$ and covariance matrix $\boldsymbol{\Sigma}^*$ where

$$\mu^* = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{y}_1 - \mu_1) \text{ and } \Sigma^* = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$$