Chapter 2

Vector Spaces and Matrices

2.1 Definitions

Definition: A (real) vector space consists of a non empty set V and two
operations.

e The first operation, addition, is defined for pairs of elements in V, x
and y, and yields an element in V, denoted by x +y.

e The second operation, scalar multiplication, is defined for the pair
a, a real number, and an element x € V, and yields an element in
V denoted by ax.



CHAPTER 2. VECTOR SPACES AND MATRICES

Eight properties are assumed to hold for x,y,z € V,a, 5,1 € R:

(1) x+y=y+x
(2) (x+y)+z=x+(y+72)
(3) There is an element in V denoted 0 such that

O+x=x4+0=x

(4) For each x € V there is an element in V denoted —x such that
X+ (—x)=(—x)+x=0

(5) a(x+y) =ax+ ay for all «
(6) (a+ B)x = ax + Bx for all a, B
(7) 1x

(8) a(fx) = (af)x for all a, B
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e The elements of V are called vectors and the elements in R are called
scalars.

e Elements of V will be denoted by bold faced roman letters, i.e. x.

e Although a vector space is defined as the triple consisting of the set
V and the two operations, we will abuse notation slightly by referring
to V as a vector space rather than V,+, -, where - refers to scalar
multiplication.

If V is a vector space then it is easy to show that

e Ox=0
e (—)x=—x

e a0=0
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example 1: V = set of all ordered pairs of real numbers i.e.

V:Rzz{(arl,a:Q): xr1 € R,JJZ ER}

o “+” is defined by x +y = (21 + y1, T2 + 1)

e “ax” is defined by ax = (az1, axs)

example 2: V = set of all ordered n tuples of real numbers i.e. V =
R".

* “+7 defined by x +y = (z1 +y1, 22+ 2, .-, Tn + Yn)

e “ax” defined by ax = (az1, azxs,...,az,)
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2.2 Geometry of Euclidean Space

When V = R” elements of the vector space and the operations of addi-
tion and scalar multiplication may be represented by geometric vectors.
Geometric vectors correspond to the notion of a vector in R” as a directed
line segment.

Definition: If P and @) represent points in R" a located vector begin-
—
ning at P and ending at () is represented by PQ).

— —
e Two located vectors PQ) and RS are said to be equivalent if Q—P =
S—R

_)
e Every located vector P(Q) is equivalent to the located vector begﬁning
at the origin O = (0,0, ...,0) and ending at @ — P i.e. to O(Q — P)

— —
e Two located vectors P() and RS are said to be
o Parallel if there is a real number ¢ # 0 such that Q — P =
c¢(S — R)

o In the same direction if Q— P = ¢(S— R) for some real number
c> 0.

o In the opposite direction if Q — P = ¢(S — R) for some real
number ¢ < 0
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Definition: A geometric vector in R" corresponding to an algebraic vec-
tor in R" (i.e., an ordered n tuple x = (z1,...,,)) is the equivalence
_)

class of all directed line segments P@ in R" that are formed by points P
and @ whose coordinates (p1,...,pn), (q1,--.,qs) respectively, satisfy the
equations

pi—gi=2z; 1<i<n

e A single member of this class of directed line segments is typically
chosen to represent the entire class namely the one in which P =
(0,...,0).

e The operations “vector addition” and “scalar multiplication” on al-
gebraic vectors correspond to simple operations on geometric vectors.

e An interpretation of the sum of geometric vectors is the vector cor-
responding to the diagonal of a parallelogram constructed in the
_)

— —
“plane” determined by the two vectors OP and OQ having OP and
_)
OQ) for adjacent sides. The diagonal is chosen with one end at the
origin.
e Scalar multiplications of a vector corresponds to a change in length
and possibly a reversal in direction of the associated geomit}'ic vector.

The geometric vector associated with aP is denoted a OP.
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— —
Definition: The scalar product of OP and OQ is
— — n
OP o OQ=}_ pigi
i=1
Scalar products have the following four properties
— — — —
e OP o OQ=0Q o OP
— — — — — — —
¢ ORo(OP + 0Q) =OR o OP + OR o 0OQ
— — — —
e (cOR)o OQ=c(OR o OQ)

— — — —
° OP_) o OP= 0 if and only if OP is the vector O. Otherwise OP
o OP> 0

Definition: The norm or length of O—Js is defined as

| OP || =V/OP o OP
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Definition: The distance between O—I)D and O?é is defined as
— —
| OP —0Q |

Distances have the following properties:

— — — —
¢ |[OP-0Q [ =]0Q—-OP]
— —
 [cOP[[=]c|[ OP |
— — — — — —
¢ |OP+0Q | =1 OP —0Q | if and only if OP o OQ= 0
— — — —
Definition: If OP o OQ= 0 we say that OP and O(Q) are perpendicular
or orthogonal.

Pythagorean Theorem: If O_J)D and O_Cb are orthogonal then

— — — —
1OP+0Q|*=| OP|*+] 0Q |
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— —
Let OP be any ve_c‘)cor and let OQ be any non zero vector. Let C be
the point such that C'P is orthogonal to OQ). Then

— — — — —
e OC=c0OQ and OP — OC' is orthogonal to OQ
e The number c is unique and is given by
— —
OP o OQ
C= ——
1 0Q |

— —
e c is called the component of OP along OQ

. . _> _> . _> .
e The projection of OP along OQ) is ¢ OQ where c is the component.

Cauchy-Schartz Inequality For any two vectors O_]S and 0_6)2 we have
that
— — — —
[OPoOQ[<||OP | 0Q |

— —
Triangle Inequality For any two vectors OP and OQ we have that

— — — —
[OP+0Q| <[ OP|+]0Q |
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e From the Cauchy-Schwartz Inequality we have that
OP o OC
—1< ° 0F

<————=—<+1
oe |l oQ |

e Thus there is a unique 6, 0 < 6 < 7 such that
— —
OP o OQ
— - —

1 oQ ||l 0Q |

cos(f) =

) — —
e 0 is called the angle between OP and OQ
Some miscellaneous geometric concepts are:

N
e The set of points X such that || OX — OP || < k is called the open
_)

ball of radius k centered at OP. If < is replaced by < we get the
closed ball and if < is replaced by = we get a sphere.

e The line through P and () is defined as the set of all X such that
X=AP+(1-2)Q

The line passing through O and P is the set of all points which satisfy
X = AP

e The plane through points P, P, ..., P, is the set of all points X
such that

k
X =Y AjP; where
— ;

k
A =1
J =1
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The plane through O, P;, P, ..., P, is the set of all points X such
that

k
X =2 NPb
j=1
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2.3 Subspaces of Vector Spaces

Definition: If W is a non-empty subset of a vector space V closed under
addition and scalar multiplication then W is called a subspace of V.

Note: If W is a subspace of V, then W is itself a vector space.

example 1: If V is a vector space, both {0} and V are subspaces. V is
the largest subspace in that it contains every other subspace and {0} is
the smallest in the sense that it is contained in every subspace of V.

example 2: Any line in R? (or R3) which passes through the origin is a
subspace of R? (respectively R?).

example 3: Let V = R" and let
W, ={(z1,22,...,2,0,...,0): 2z € R; 1 <k <1}

Then W; is a subspace of V, and for 1 <7 <n —1, we have W; C W,
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Definition: Let {xi,...,x,} be a set of vectors in a vector space V.
The vector x € V is a linear combination of the vectors {xi,...,x,}
if there are scalars aq, ..., a, such that

X = o1X1 + -+ apX,

Theorem 2.1: Let x1,...,X, be elements of a vector space V and let
W be the subset of V consisting of all linear combinations of x1,...,x,
ie.

n
W:{Zaixi: a; € R; 1§i§n}
i=1
Then W is a subspace of V.

Definition: Let x1, ..., x, be vectors of the space V. The subspace of all
linear combinations of these vectors will be denoted Sp(xj,...,x%,) and
the x;’s will be called generators of this subspace.

Definition: If W is a subspace of V and y1,...,y, are vectors in W
such that W = Sp(y1,...,yn) then we say that the y;’s are generators
of W or that W is generated or spanned by the set {yi,...,y.}
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example 1: Let V= R" and ¢; = (0,0,...,1,...,0); 1 <i<mn. (ie.,
e; is the ith standard unit vector in R"). Then V = Sp(ey, ..., e,).

example 2: Let V = R? and ey, ey, e3 be the standard unit vectors in
R? Let f; = (1,1,0) and f5 = (1,1,1). Consider the following subspaces:

W, = Sp(0); W2 = Sp(f1); W3 = Sp(fs)

W, = Sp(ey,e2); W5 = Sp(fi,e1); Wg = Sp(fi, e3)

Now W5 and W3 are lines through the origin in the direction of f; and fs,
respectively, and W1 = WoN'Wj3. Also, Wy = W3 and Wy = W,4N W
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e The idea of a subspace being spanned by a set of vectors can be
extended to a subspace being spanned by a set of other subspaces.

e Select a (finite) set of generators from each of the subspaces, form
their set union and consider the subspace of linear combinations of
these vectors.

Definition: Let Wy, ..., W,, be subspaces of V. The set spanned by
Wi, ..., W, (called the sum of Wy,..., W,) is denoted W; + ...+ W,
and is defined as the set

Wi+.. +W, ={y e V: y =yi+y2+---+y, for y; € W;; 1 <i<n}
Note that if W1, Wy, ..., W,, are subspaces of V then
Wi+ Wyt + W,

is also a subspace of V.
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example 1: Let V = R? and ey, ey, e3 be the standard unit vectors in
R3. If W, = Sp(el) and Wy = Sp(eg, e3) then V = W; + W,.

Note that the sum of subspaces is not their set union. W+ W3 always
contains W1 U W5 but W; U W, equals W1+ W5 only in the special case
in which W; C W5 or Wy C Wy

Theorem 2.2 Let V be a vector space and W1, Wy be subspaces of V
spanned by {xi,...,%x,} and {yi,...,¥s}, respectively. If each x; is a
linear combination of the y;’s, then W; C Wo.

Corollary 2.3 Let W; = Sp(xy,...,%,) and Ws = Sp(y1,...,yn) be
subspaces of V. Then if each y; is a linear combination of the x;’s and
each x; is a linear combination of the y;’s, we have W; = Wj.
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2.4 Linear Dependence

Definition: The vectors xi,Xs,...,X, in V are said to be linearly de-
pendent if real numbers aj,as, ..., a, exist such that at least one is
different from zero and

a1X] + agXg + - -+ apx, =0
If this is not the case, we say that the vectors are linearly independent.

Note that the vectors x1, X, . .., X, are linearly independent if and only
if any equation of the form

a1X1 + a9Xo + - - + X, = 0 implies a1 =as =--- =, =0

Theorem 2.4 The vectors xi,Xo,...,X, are linearly dependent if and
only if at least one of the vectors is a linear combination of the others.

Corollary 2.5 Let {x1,X3,...,X,} be a linearly independent set of vec-
tors in V and let x € V. Then {x1,Xs,...,X,,Xx} are linearly dependent
if and only x is a linear combination of x1,Xs,..., X, .

example Let e, ey, e3 be standard unit vectors in R? and x = e; +
ey. The sets {e1,eq, es}, {e1, e3,x} are linearly independent. However,
{e1, e2,x} is a linearly dependent set.
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2.5 Direct Sums of Subspaces

The concept of linear independence can also be extended to subspaces.
Suppose W1 and W3 are two subspaces of V each different than 0 such
that any pair of vectors x; € W and x9 € W3 are linearly independent.

Theorem 2.6 Let W; and W3y be subspaces of V. Then the following
conditions are equivalent:

1. Wi W, = {0}

2. x1 € Wy,x9 € Wy and x;+x3 =0 implies x; = x2 = 0. (i.e., any
pair of non-zero vectors x; € W1, xs € W are linearly independent,)

Definition: Let W; and W, be subspaces of the vector space V. If
Wi N Wy = {0}, the space W1 + Wy is called the direct sum of W,
and W,. The notation W1 @ Wy is used for the direct sum of W; and
Wo.

Definition: If W; and W5 are subspaces of V such that V= W; & W,,
we say that W7 and Wy are complements of one another in V.

example: If V = R? then W; = Sp(e;) has an infinite number of
complements. i.e. if {e;,x} is linearly independent, then V. = W; @

Sp(x).
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2.6 Bases and Dimension of a Vector Space

Definition: The set {xy,...,x,} of vectors in a vector space V is called
a (finite) basis of V if

e the vectors xy,...,x, are linearly independent

e V=Sp(xi,...,Xp)

example 1: e, ..., e, form a basis of R".
example 2: f; = (1,0),f, = (1,1) form a basis for R2.

Theorem 2.7 If {x,...,X,} is a basis for V, then any vector x € V can
be uniquely expressed as a linear combination of the x;’s.

Definition: If {xi,...,x,} is a basis for the vector space V, the scalar
«; in the unique representation of x is called the ¢th coordinate of x
(relative to this basis.)
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example: V = R? Let e, e; be standard unit vectors in R? and f =
(1,1) Then V = Sp(ey, f1) and ey, f; are linearly independent so {ej, f;}
is a basis. Now if x = (—1)e; + (—3)es then (—1, —3) are the coordinates
of x relative to the basis {e;, ea}. However the coordinates of x relative
to the basis {eq, f1} are (2, —3).

Note that V = Sp(ey, ez, 1) but {e1, ez, f1} are linearly dependent so
they do not form a basis (i.e. 1le; + lex + (—1)f; = 0).

Note also that you can express a vector X in terms of “coordinates” rel-
ative to a set of generators that are not a basis, however the “coordinates”
are not uniquely determined i.e.

X = (—1)91 + (—3)62 + (O)fl
x = (+2)e;+ (—3)es + (—3)f;
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Theorem 2.8 Any two bases for a vector space V contain the same
number of vectors.

example: Let x € V and let x4, ---,x, and yq,---,y, be two bases for
V. Then
n n
x =Y ax; and x =) B}y,

i=1 j=1
But

n
y; = _Zl’mxi
1=

(Z 7]zxz>

5j7jixi)

so that

M=

n
Z o;X; =
i=1

<.
I
—_

/‘\/‘—\Q

1 M: I M:

(5;%’@) X;

Thus o; = 37 Bjvji relates the representation in terms of the two bases.
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Corollary 2.9 Let V be a vector space with basis x1,---,%, if m > n,
then any set of m vectors of V is linearly dependent.

Definition: A vector space V with a finite basis is said to have dimension
n if the number of vectors in the (any) basis is n. We say V has dimension
n and write dim (V) = n. The space {0} is said to have dimension zero.

Theorem 2.10 Any linearly independent set of vectors of a finite dimen-
sional vector space can be enlarged to a basis.

Theorem 2.11 Let V be a (finite dimensional) vector space with sub-
spaces W; and Wy. Then

(1) dim(W;) < dim (V) and any basis for W; can be enlarged to a basis
for V

(2) If V.= W; ® Wy then a basis for V is obtained by combining any
basis for W; with any basis for Wy. Also dim (V) = dim (W;) +
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2.7 Inner Product Spaces

Definition: An inner product space consists of a vector space V, together
with a real valued function (x,y) called the inner product on V which
is defined for each ordered pair of vectors x,y in V and which has the
following four properties:

x,y) = (y,x) (symmetry)

(1) ¢

(2) (x,x) > 0 with equality if and only if x = 0 (positive definite)

(3) (x+y,2z) = (x,2)+(y, z) and (X,y+2z) = (X,y)+(x, z) (bilinearity)
(4) ¢

Ax,y) = (x,Ay) = Ax,y) (homogeneity)
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Definition: Let V be an inner product space. Then

(1) The length of a vector x € V is the non-negative real number /(x, X),
denoted ||x||, and called the norm of x

(2) Two vectors x,y € V are said to be orthogonal if (x,y) = 0. We
write in this case x 1Ly

(3) The distance between two vectors x,y € V is the real number
d(x,y) = |x =yl = lly = x|

(4) If x and y are vectors in V the projection of y on x is the vector

= ()
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Definition: Let V = R" with basis {ej, e, ...,e,}. The standard inner
product in R" is defined by

(y,x) =101 + asfo + -+ + anfn

where a1, a9, 4+ ay, 81, B, -+ -, B, are the coordinates of x and y, re-
spectively, relative to the basis {ey,...,e,}.

example 1: Let V = R? and (-,-) be the standard inner product. Then
the definition of length, distance, orthogonality and projection correspond
to the usual definition in Euclidean geometry. If x = e; 4+ e then

x| = Vix,x)
_ VT
= V2
(e1,€9) = 1-040-1
= 0 so that e; L e
d(x,e1) = [lx — e
= J(x—e;,x—e])
_ VT

=1

The projection of x onto e; is

X = <<X’e1>>e1:e1

(e1,e1)
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example 2: Let V = R" with basis {x3,...,%,} and define (x,y) by

a1+ afBa+ - -+ apfy

where aq, ao, - -+, oy, B1, B2, - - -, By are the coordinates of x and y relative
to the basis {x1,...,x,}. The standard inner product in R" is a special
case when

X; =€ 1§Z§Tl

Note, however, that when

{Xl,...,Xn} 75 {61,92,...,en}

the resulting definitions corresponding to length, orthogonality, etc. do
not correspond to the usual Euclidean geometric definitions. In particular,
with the standard inner product, each vector in the basis has unit length
and any two basis vectors are orthogonal.



2.7. INNER PRODUCT SPACES 33

example 3: Let A be an n X n positive definite symmetric matrix. Then
if a, B are coordinates of x,y relative to (ey,...,e,), define

n n
(x,y) = 2 X aifjAi
i=1j=1
where A;; is the (4, j)th element of the matrix A and note that this satisfies
the requirements of an inner product.

Definition: If x, y are non-zero vectors in V, then the angle 6 between
x and y is defined by
cos(8) = oY)
IR
This relationship between (x,y) and 6 in R™ may be represented by geo-
metric considerations in the plane spanned by x and y.
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2.7.1 Fundamental Inequalities in Inner Product Spaces

There are several results useful in analytic geometry that have immediate
extensions to inner product spaces. These results are:

Theorem 2.12: (The Pythagorean Theorem). Let x,y be vectors in V.
Then (y,x) = 0 if and only if

Iy +x|* = [ly[I* + [Ix]

Lemma 2.13: (Cauchy-Schwarz Inequality) If x,y are vectors in V, then

v, %! < Iyl
Moreover,|(y,x)| = ||y||||x]|| if and only if y and x are linearly dependent.
Theorem 2.14: (The Triangle Inequality) If x,y are vectors in V, then
1%+ vl < x|l + Iyl

Equality occurs if and only if x = 0 or x = ay for some non-negative real
number «.
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2.7.2 Orthonormal Basis

Definition: A basis {xi,...,x,} for V is called an orthonormal basis
(ONB) if the vectors x; are pairwise orthogonal and have unit norm. i.e.

(1 ifi=
(xir X5 = { 0 ifij
example 1: Let V. = R". Then {ey,...,e,}, the standard unit vectors

in R", is an orthonormal basis.

example 2: Let V = R? and

=
x = (-

Then {x7,x3} is an ONB.

Sl=

[\

H ~
ol

‘ &)

—

7

S
o
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Note that if a set of vectors (non-zero) are pairwise orthogonal, then
they are linearly independent. Thus if dim (V) = n and x,...,x, are
pairwise orthogonal, they constitute an orthogonal basis for V. Also, by
normalizing the x;’s, we have that

{ X1 X2 Xn }
[l flx2ll” 7 [Ixall

To show that pairwise orthogonality implies linear independence, we
suppose that the x;’s are linearly dependent and arrive at a contradiction.
Suppose there exist aq, ..., a, such that

is an ONB for V.

n
> aix; =0
i=1

Then for all 5 we have

But (x;,x;) = 1 which implies o; = 0 for all j. Thus the vectors are
linearly independent.
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The classic result about ONB’s is an existence theorem which is proved
by construction. The method of construction is called the Gram-Schmidt
process.

Theorem 2.15: Let {xi,...,x,} be an arbitrary basis for V. Then
there exists an orthonormal basis for V, {y1,...,y,} such that each y; is
a linear combination of the x;’s.

Using the Gram-Schmidt process, we note that it is always possible
to extend an ONB for a subspace W to an ONB for V. If {yy,...,y.}
is an ONB for W, then append n — r vectors {X,41,...,X,} so that
{y1,---»¥rsXp41,- -+, X, is a basis for V. Then start the Gram-Schmidt
process at the rth step i.e.

y:-{-l % _ "
. where y; ;= Xp41 — X (X411, ¥49)Yi
[Nzest| i=1

Yr+1 =
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2.7.3 Orthogonal Complements

The notion of orthogonality of two vectors can also be extended to sets
of vectors and subspaces.

Definition: If W is a set of vectors in V (but not necessarily a subspace
of V), then the set W+ is called the orthogonal complement of W in V
and is defined as

Wh = {x: (x,y) =0; y € W}

Theorem 2.16: If W is a subset of V then W+ is a subspace of V.

Theorem 2.17: If W is a subspace of V with dim(W) = r and dim(V) =
n, then dim (W+) =n —r. Also, V=W ¢ W+

Using the notion of an orthocomplement of a subspace, we say that a
vector x is orthogonal to a subspace W in V if x is orthogonal to every
vector in W or, equivalently, if x is in W+. This in turn motivates the
extension of the notion of the projection of one vector onto another vector
to the projection of a vector onto a subspace.
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2.7.4 Projections

We have defined projection of one vector in V onto another vector. The
projection of a vector onto a subspace of V is defined by the following
result.

Theorem 2.18: Let y be a non-zero vector in V and W a subspace of
V. Then there exist two vectors yi, y2 in V such that

) y=y1+y2

(1)
(2) y1EW, y2 e WH

(3) y1 and y9 are unique

(4) d(y,y1) <d(y,x) forallx e W

We define the projection of y onto W as the vector y; in the above
result. Also, if we can find vectors y; and y9 satisfying properties (1)
and (2), then properties (3) and (4) will follow automatically and y; is
the projection of y onto W. Property(4) is the least squares property. It
states that y; is the vector in W closest to y.
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Given an orthonormal basis {xi,...,%,} for a subspace W in V| a
simple form for the projection of a vector y onto W (y;) may be obtained.
Intuition suggests that y; should be the sum of the projections of y onto
the orthonormal basis for W

r

Y1 = ;(Y,XDXi
This formula is verified by the following result:

Theorem 2.19 Let W be a subspace and y a vector in V. Assume
{X1,...,%,} is an ONB for W. Then the vector

r

Y1 = D> (¥, X)X
=1

in W is the projection of y onto W.
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2.8 Matrix Definitions and Operations

e There is a natural correspondence between inner product spaces of
dimension n and the set of all n x 1 matrices.

e If a basis is chosen for the vector space V, then with every vector
is associated a unique ordered collection of n numbers corresponding
to the coordinates of the vector relative to the chosen basis.

e Arranging these ordered collections of n numbers into n X 1 matrices,
we have a one to one correspondence between elements in the vector
space V and n X 1 matrices.
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The notion of linear dependence associated with vectors in V corre-
sponds to linear dependence of associated n X 1 matrices in R".

Also, multiplication of matrices associated with vectors in V corre-
sponds to calculation of standard inner products in V.

Operations on n vectors may be done simultaneously by adjoining
the corresponding n X 1 matrices together into an n X n matrix and
manipulating this matrix.

In the previous sections, vectors in inner product spaces were denoted
by bold faced letters (i.e., x).

The n x 1 matrices corresponding to these vectors will be similarly
denoted with the understanding that the vector is a geometric object
while the n x 1 matrix is an algebraic object with coordinates relative
to a given basis.

Matrices formed by adjoining several n X 1 matrices will be denoted
by bold faced capital letters (i.e. X).
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Definition: Let X be a matrix of dimension n X p. Then the column
rank of X is defined as the number of linearly independent columns of X
and the row rank of X is defined as the number of linearly independent
rows of X.

e The following result establishes that the column and row ranks are
equal.
e Thus the rank of X, denoted rank(X), may unambiguously be defined
as the column rank of X.
Theorem 2.20: Let X be an n X p matrix. Then the column rank of X

equals the row rank of X.

Given the equality of the row and column ranks of a matrix, a variety
of other useful results about the ranks of matrices follow.

For n x p matrices, A and B, we have

0 < rank (A) < min (n,p)

e rank(A) = rank(AT)

e rank(A + B) < rank(A) + rank(B)

e rank(AB) < min(rank(A), rank(B))
e rank(ATA) = rank(AAT) = rank(A)

e If X is an n X n matrix with rank(X) = n and Y is a p X p matrix
with rank(Y) = p then rank(XAY) = rank(A).
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Definition: If an n X n matrix A has full rank (i.e. rank(A) = n) then
A is called non-singular.

Theorem 2.21: Let A be a square matrix of size n x n and rank(A) = n.
Then there exists a matrix denoted A~! called the inverse of A with the

property that AA~! =1 where I is the n x n identity matrix given by

1 ifj=1
0 otherwise

I ={6i;} where §;; = {

Moreover, A~'A = AA~! and A~! is unique.

There are several particular types of matrices that are useful in many
statistical applications. The linear algebra and matrices supplement con-
tains a list of some of these types of matrices and relevant results about
them.
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Definition: A square n x n matrix A is called orthonormal if AAT =1
The transformation Y = AX associated with the orthonormal matrix A
is called an orthonormal transformation.

e It is easily seen from the definition of an orthonormal matrix, A,
that
AT=AT ATA =1

and that the columns of A as well as the rows of A correspond to
ONB’s for R™ .

e We also note that (standard) inner products are invariant under or-
thonormal transformations (i.e. (x,y) = (Ax, Ay)).

e Since an orthogonal transformation preserves the distances between
all pairs of points in any configuration, these transformations can be
conveniently thought of as rigid rotations about the origin (except
for some possible reflections of planes).
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Orthonormal transformations arise in relating two ONB’s to each other
in the following way:

o If {xy,...,%x,} and {y1,...,y,} are two ONB’s for R", and a,b
represent coordinate vectors with respect to these ONB'’s for a vector
zZ, 1.e.

n n
zZ — Z a;X; = Z biyi
i=1 i=1
e Then there exists an orthonormal matrix P such that a = Pb.

o This is seen by letting A and B denote the orthonormal matrices
with columns being {x1,...,x,} and {y1,...,y.} respectively.

o Then there exist C and D so that CA = DB. Then P = C~'D
which is easily shown to be orthonormal since

I=-AAT = PBB”PT — PP”
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Orthonormal matrices also arise in the following decomposition result

for symmetric matrices which will be used repeatedly in this course.

Theorem 2.22: (Spectral Decomposition) Any symmetric matrix A (n X

n) can be written as
A =PLP”"

where L is a diagonal matrix and P is an orthonormal matrix.

e The diagonal elements of L, (A1, A, ..., A,), are the the eigenvalues
of A and rank(A) = p, if and only if there are exactly p non-zero

eigenvalues.

e The columns of P are called (standardized) eigenvectors of A and

these vectors form an ONB for R".

e To indicate the correspondence between eigenvectors and values, we
say the ith column of P is the eigenvector associated with the eigen-
value \; (or the ith diagonal element of L is the eigenvalue associated

with the ith eigenvector).

e Since the ordering of the columns of P and elements of L is arbitrary
(as long as the correspondence is maintained between eigenvector

and eigenvalues), the usual convention is to arrange the eigenvalues

so that
AM>A 2> >N,
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Another decomposition result for non-square matrices follows from the
Spectral Decomposition result for square symmetric matrices, and is use-
ful in defining a generalized inverse of a matrix.

Theorem 2.23: (Singular Value Decomposition) Let A (n x p) be a
matrix of rank 7. Then A can be written

A = ULVT

where U (n x ) and V (p x r) are such that UTU = VIV =1, (i.e. the
columns of U and V are orthogonal and have unit length) and L (r x 7)
is a diagonal matrix with positive elements.

There are other forms of the SVD that are sometimes useful. In one
version, A = ULVT where U, V are n X n orthonormal matrices and L
is an n X n matrix of the form

o[58

where A is defined above.

A second form of the SVD sometimes called the rank factorization,
writes A = BC where B is an n X r matrix of rank r and Cisan r X p

matrix of rank r. Expressing B and C in terms of the above SVD we see
that B=U and C =LV7T .
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Using the singular value decomposition result, we now consider a method
of defining an “inverse” for any matrix.

Definition: For a matrix A (n X p) of rank r, A~ is called a g-inverse
(generalized inverse) of A denoted by A~ if

AATA=A

e A generalized inverse always exists although in general it is not
unique.

e The existence of a generalized inverse for any matrix A is easy to
verify using Theorem 2.23 to write A = ULV? and checking that
VL 'UT defines a g-inverse:

AAA = ULVH(vL'uhuLv?
= ULIL'TLVT
— ULL LV
= ULVT
= A
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A g-inverse of a matrix is most useful in solving systems of linear
equations.

e Suppose that a vector y (n x 1) is in the space spanned by the
columns of a matrix A and we wish to obtain a solution to the
equations Ax =y.

e If the columns of A are linearly independent, then we know that the
columns {Af{,..., A7} form a basis for Sp(AfY,..., Aj) and the ele-
ments of x are the uniquely defined coordinates of y € Sp(A¢, ..., Ag)
relative to this basis.

e The solution to the equations will then be unique.

o If {AS,..., Ag} are linearly dependent, there are an infinite number
of solutions to these equations.
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To show A~y is a solution to the equations Ax =y for any choice of
A~, we need only note that AA~Ax = Ax by the defining property of a
g-inverse. This implies that

y=Ax=AATAx=AAy=A(A"y)
(i.e., A"y is a candidate for the vector x which satisfies Y = Ax).

As noted above, when rank (A) = p then A~y is the unique solution, if
rank (A) < p then A~y for a given choice of A~ is only one of an infinite
number of solutions.

We also note that a general solution to the consistent system of equa-
tions y = Ax is

{x:x=ATy+(I-A"A)z; ze R"}
since rank (A) = rank (A"A) =rank (AA~") and (I— A"A)z is in AL,
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Definition: A square matrix A (n x n) is said to be idempotent if AA =
A.

Idempotent matrices are intimately related to projections of vectors
onto subspaces. The following propositions concerning idempotent ma-
trices are of interest.

(1) If A is idempotent then

(a) I — A is idempotent
(b) rank (A) =tr (A)
(c) n =rank (A) + rank (I — A)

(2) Suppose Ay, ..., A are square (n X n) matrices. If
AZAJ_{Ois:éj

then Y%, A; is idempotent and rank (¥F_; A;) = ¥F_ rank (A;).

The connection between idempotent matrices and projections is de-
scribed in the following proposition:
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Theorem 2.24: Let W be a subspace in V and y an arbitrary vector in
V.

e Then by Theorem 2.18, y has the unique decomposition y = y; +yo
with y; € W and ys € W

e Let Y, Y; denote n X 1 matrices of coordinates of y, y; respectively
related to any basis of V.

e The mapping (function) P that takes Y into Y; ( called the pro-
jection of Y onto W) is called the projection operator of Y onto
W.
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P has the following properties:
(1) P is a linear transformation and so may be represented by a (unique)
matrix
(2) P is an idempotent matrix
(3) I — P is the projection operator on W+

(4) A matrix P is a projection operator (into the space spanned by its
column vectors) if and only if P is idempotent and symmetric.

(5) Let {xi,...,%,} be a set of vectors in V not necessarily linearly
independent. Then the projection operator onto Sp(xj, ...,x,) has
an explicit form given by

Px = X(XTX)~XT

which is unique for any choice of g-inverse, where X is the matrix
with column vectors (xy,...,X).
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Proof of (5)

e Since
XTX = XTX(XTX)"XTX = XTX[(XTX)]"XTX
we have [(XTX)~]T as a g- inverse of XTX.
— This may then be used to show DD = 0 where
D =X(X"X)"X'X - X
— and hence that
D=0 ie. X(XTX)"XT'X =X
e This in turn may be used to show that EET = 0 where
E = X(XTX); X" - X(XTX); X7

and (X7X)7, (XTX); are any two generalized inverses of XTX
which implies X (X?X)~XT is unique.
e Thus it is also symmetric.

e Idempotency follows from the fact that (XTX)=XTX(XTX)~ is a
g-inverse of X7X and so
X(XTX) X" = X[(X"X)" X"X(X"X)"| X"
= [X(X'X)"X"] [X(X"X)"X"]

e Thus X(XTX)~XT is unique, symmetric and idempotent and hence
is a projection operator.
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Definition: Let (xi,...,X,) be a set of n vectors in R" . A mapping
from the n-fold Cartesian product of R™ denoted by det(xy,...,X,) or
det(X) (where X is the n X n matrix with xy, ..., X, as its columns) with
the following four properties exists and is unique.

(1) det(x1,...,%x,) =0 if x; =x; for any ¢ # j.

(2) det(xy,...,q;,Xit1,--.,X,) = adet(xq,...,X,)
(3)
det(x1,...,Xi—1, X + ¥i, Xit1, - - -, Xp) = det(Xy, ..., X1, X, Xjg1,- .., Xp)
+det(xla'"7Xi—17Yi7Xi+1a'“aXn)

(4) det(eq,...,e,) = 1 where €; is the ith standard unit vector for R".
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Algorithms for computing the determinants of square matrices will not
be presented here. The following results about determinants are useful:

Let X be an » X m matrix with column vectors X{,...,X¢ . Then

e det(X) = 0 if and only if X¢,...,X¢ are linearly dependent.

e the parallelepiped determined by X{¢, ..., X¢,
n

{ ; X5 : Ogaigl}
i=1

has volume equal to det(X)
e det(X) = IT7_; \; where the \;’s are the eigenvalues of X. The

An excellent reference on determinants is Rao, Advanced Statistical
Methods in Biometric Research, John Wiley.



