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3.7 Reparameterization

In the previous section, we began with an already partitioned design ma-
trix with certain orthogonality properties.

e Typically this is not the case.

e However, by reparameterization we can resolve this problem.

Definition: The linear model X is said to be reparameterized if

X3 =Za where Sp(X) = Sp(Z)

e There are certain quantities that are invariant with respect to repa-
rameterization.

e These invariant quantities are functions of vectors such as inner prod-
ucts and lengths which do not depend on which particular basis is
chosen with respect to which vectors are represented.
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Lemma 3.5: Let X8 = Za be a reparameterization. Then

(1) If LTB is estimable then there exists an RT such that RTa is es-
timable and L78 = RTa Conversely, if Ra is estimable, then there
exists an L such that LT3 is estimable and RTa = LT3

(2) If LT8 = RTa and they are estimable, then the LSE of LT3 equals
the LSE of RT«x

(3) YI(I - Px)Y = YI(I — Pz)Y where Px, Pz are the projection
operators onto Sp(X) and Sp(Z) respectively.
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We now consider some reparameterizations to induce orthogonality
into the design matrix.

As a first example, we consider a design matrix X that is already
partitioned but that the partition is not orthogonal.

e Thus
Y ~ WS(Bol + X183, + X28,, 0%1)

but X{D1X2 7é 0.

e The parameter of primary interest is 8; and we wish to use the
results from the previous section to simplify the models considered
in a data analysis.

e Consider the reparametrization in which:

D:X:8; + D:Xy8, = [D; —Pp,x,|X18; + D1X26, + Pp,x, X106,
= Ziog + 2oy

where
Z, = [D; - Ppx,]X4
= DX,

a; = (5
ay = By+ (XID1Xy) XID X5

N
[\
|
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e Since a; = 3, and we are interested only in making inferences about
o and since Z; | Z,, we may conduct the data analysis as if

(D1 — PD1X2)Y ~ WS(Zlal, O’ZI)
except of course for the adjustment to the total degrees of freedom.

e Note that this is equivalent to regressing Y on Xy and using the
residuals as a new reponse vector, regressing the columns of X; on
X and using these residuals as new covariates.

e One situation where this technique is very useful is in analyzing data
from a repeated measures type experiment where the model includes
a separate parameter for each individual.

o The analysis would be simplified (computationally) if the n pa-
rameters denoting individual effects could be eliminated.

o Applying the above results, this can be achieved by centering the
responses for each individual and the independent variables for
each individual about the individual’s mean for these variables.
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e Very often, data on the incidence of disease which are already age
and gender adjusted, say, are regressed on some measure of exposure
which is not adjusted.

o In the above notation, this corresponds to regressing (I —P2)Y
onto X rather than onto (I — Pz)X = X when the true model is

E(Y)=XB+Z«
where Y is disease incidence, Z is age and gender, and X is

exposure.

o In this situation, an estimate of 3 is obtained with expectation
equal to (assuming X, Z full rank)

E[(XTX)"'XTY] = (XTX)"'X"(I-Pz)XB
= (XTX)"XT(X — PzX)B3

o If age and gender are uncorrelated with exposure, then PzX = 0
and the estimate is unbiased.

o If however, exposure varies by age and gender, the estimator will
generally be biased.

o The stronger the association between age and gender and expo-
sure, the closer to X will be the projection of X onto Sp(Z).

o In the most extreme case where exposure is perfectly predicted
by age and gender, PzX = X and E[b] = 0 regardless of the
magnitude of 3.
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As another example of the use of reparametrization, suppose we are

interested in testing the hypothesis LT3 = 0 for some estimable function
LT3 = 0.

e Using the characterization of estimable functions requiring the ex-
istence of a C such that CTX = L7, we see that the hypothesis of
LTB = 0 is equivalent to the hypothesis that the mean vector lies in
a subspace of Sp(X).

e More specifically,
E[Y] C Sp(X) N [Sp(C)]

o Let Z; be a matrix with column vectors being a ONB of the
subspace Sp(X) N [Sp(C)]" and let Z; be a matrix with column

1
vectors being an ONB of the subspace {Sp(X) N [Sp(C)]L} .

o Then consider the reparameterization
XB =217, + Z,

o Note that the null hypothesis corresponds to the hypothesis
Z’72 = 0 and that Z1 1 Z2.
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e This reparameterization now allows use of the arguments in the pre-
vious section to show that the difference in residual sum of squares
from the full and reduced models is simply ||Pz,Y]|?.

o If we let Z3 be a matrix with column vectors being an ONB for
Sp*(X), and consider the transformation Y = (Z; Zs Z3)Y, we
note that

E[Y]| = Zyv, + Zyv, and var Y = oI

o Also, we have ||Pz,Y|* = £i_ ., Y;? where the g+ 1,g+2,...,7
columns of (Z; Zy Z3) correspond to the submatrix Zs.

o Thus ||Pz,Y]|? has the representation as the sum of squares of
uncorrelated random variables with variance 2 and mean zero
under the null hypothesis.

o This representation will prove useful in later sections.



3.8. INFERENCE UNDER WIDE SENSE ASSUMPTIONS 123

3.8 Inference under Wide Sense Assumptions

Under wide sense assumptions, we now have results about what we can
estimate, how we may estimate it and how good the estimators are. Now
we discuss actually making inferences, i.e. hypothesis tests, confidence
intervals, etc.

e For rank (X) = p, we know the LSE b has the properties:
b ~ WS(B,c*(XTX)™) so that b; ~ WS(8;, o*(XTX);:1)
and we can estimate var (b;) by s*(XTX);1).

e To construct a confidence interval for §; from b;, we need the entire
distribution of b; (or at least a reasonable approximation to it).

e This approximation is available in large samples via the following
result.
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Theorem 3.6: In the general linear model
Y = X3 + € where € ~ WS(0,0°T)
if
® c1, €, ...,€,) are independent, identically distributed with ¢; ~ WS(0, o2

® limn_mo (maxlSiSn[Px]ii) =0

Then for any estimable function £7 3, we have
b—t'8 4.
JoL(XTX)-¢

N(0,1)

The essence of the proof hinges on writing
I
Jo2lT (XTX)-¢

as Z, where
E(Z,)=0 and var(Z,) =1

and Z, is a sum of independent random variables.
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e It seems reasonable that Z, should converge in distribution to a
N(0,1).

e However the usual Central Limit Theorem is not applicable since the
€;’s are not identically distributed.

e The Lindeberg-Feller Theorem is, however, a central limit theorem
that is applicable in this situation:

Lindeberg-Feller Theorem: Let 7, Zs,...,Z, be independent
random variables with distribution functions Fy, Fy, ..., F,, let E(Z;) =
0, var (Z;) = o2 and set S2 = 3" ; o2. If for each t > 0

lim 1 2
n%aatﬁgéﬂﬁwﬂﬁzo
where E; ={y : |y| > t} then

I+ Zy+ -+ Zn
S

converges in distribution to a N(0,1) distribution.

e It can be shown that the Lindeberg-Feller Theorem is applicable.
Thus the result follows.
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e To provide some motivation for the requirement of lim[Px]; = 0

recall that central limit theorems hinge on the distribution of the sum
of many independent quantities, each of which has minimal influence
on distribution of the total sum.

Also, recall that observations that are associated with covariates far
away from the others in the design space are typically very influential.

Thus some condition preventing the covariates for any individual
from being arbitrarily far from the independent variables for others
must be part of a central limit theorem for estimators of regression
parameters.

e This is exactly what the condition on [Px];; is.

e To see this, we note, after some algebraic manipulation, that

[Pl = o+ (X = X) var (X)) (X, = X)

o where X; refers to the ith row of the design matrix (excluding
the element from the first column corresponding the intercept
term in the model.

o X refers to the mean vector of X’s over the sample

o var (X) refers to the sample covariance matrix of the X’s.

e Thus max (1 < i < n)[Px];; converging to 0 implies that no individ-

ual can have an x that, after standardization by var (X), is too far
removed from the others in the sample.
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3.9 Multivariate Normal Distribution Theory

In this section we investigate the distribution theory of estimators asso-
ciated with general linear models.

3.9.1 Distribution Theory of LSE under MVN

Let Y ~ MVN (X8, 0?I). Then for any linearly estimable function LT3,
we know the unique LSE is LTb, and

EL™ =LTB and var (L'b=¢’LT(XTX) L

e Note that
L™ = LT(X*X)"XTY
which is a linear combination of MVN random variables.

e Thus
L™b ~ MVN (L73, o*L7(XTX)"L

e In a previous section, we decomposed Y into two vectors, PxY, the
LSE of E(Y) and (I — Px)Y, the residual vector.

o Since these are linear combinations of Y, they are MVN and, in
addition, are independent because

cov (PxY,(I-Px)Y) =c’Px(I-Px) =0
o Thus, the LSE of any estimable function, since it can be written

as a function of PxY, is independent of any function of the
residual vector.
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o More specifically PxY and YZ(I — Px)Y are independent.
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The main theoretical result on the distribution theory of LSE’s under
MVN is the following theorem on the distribution of quadratic forms.

Theorem 3.7: (Fisher-Cochran Theorem). Let Y ~ MVN (g, I) and
Q1,...,Qx be quadratic forms in Y with Q; = YTA,;Y;1<i <k for A;
an n X n matrix such that rank (A;) = n; and

Y'Y =Qi+ Q4+ Qs

Then the Q;’s are independent with distribution x?(n;,d;) where §; =
(uTAp) if and only if ¥F | n; = n. In this case, [|uT||> = =8, 62 .

e The most important application of the Fisher-Cochran Theorem is
to the analysis of variance table.

e In this table, the total sum of squares, Y?Y, is partitioned into sums
of squares due to different factors and an error sum of squares.

e The terms in this partition correspond to the quadratic forms Q)1, . .., Q%
in the theorem.

e The Fisher-Cochran Theorem provides the theoretical result required
to justify F-tests used in the ANOVA table.
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e The ANOVA table for regression sometimes takes on a simple form
with only two terms in the partition: the error sum of squares and
the sum of squares due to regression.

o This partition corresponds to the decomposition
Y =PxY+(I-Px)Y
in that

Y'Y = [[Y|?
= |PxY|*+[|(I-PxY|?
= Y'PxY +YT'(1I-Px)Y

by the Pythagorean theorem

o Note that

rank (Px) 4+ rank (I - Px) = tr (Px) + tr (I — Px)

by idempotence.
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o Thus we have by the Fisher-Cochran theorem that
1 2 1 2
3 IIPxY|[" and —][(I—PxY]|

are independent chi-square variables with degrees of freedom
equal to rank(Px) = r and n—r, respectively, and non-centrality
parameters

& = [BTXTPxXg]? = | X8| and & = [BTXT (I-Px)XJ]

I

=0

o Thus, by definition of the F distribution, we have that

[PxYI?/r

~F.
[Py |pn—r ~ o

o This last result is the F' test used in the analysis of the general
linear model.
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There are a variety of corollaries to the Fisher-Cochran Theorem that
are very useful. Several of these results are:

Corollary 3.8: Let Y ~ MVN (u,I). Then YTAY ~ x%(6) with v =
rank (A) and 62 = u” Ap if and only if A is idempotent.

Corollary 3.9: Let YTAY ~ x2 (1) and YTAyY ~ x2 (d5). Then
YTA,Y and YZTA,Y are independent if and only if A;Ay = 0.

Corollary 3.10: Let Let Y ~ MVN (p,I) and
Y'Y =Qi+ Qo+ + Qs

where Q; = YTA;Y and A; is an n X n matrix. Then either of the
following conditions are necessary and sufficient for

Qi ~ X%(&) where rank (A;) = n; and 02 = uT A;p

and for (01, @, ..., Q; to be independent.

e A, Ay, ..., A are each idempotent matrices

e AjJA; =0 forall ¢ # j.

Corollary 3.11: Let Y ~ MVN(u, X). with 3 full rank. Then YTAY ~
x2(6) with v = rank (A) and 62 = uT Ap and only if AXA = A.

Corollary 3.12: Let Y ~ MVN (u, X). with X full rank. Then

e PTY and YTAY are independent if and only if PXA = 0.
e YTAY and Y'BY are independent if and only if AXB = 0.
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3.9.2 Confidence Ellipsoids for Estimable Functions
Let Y ~ MVN(Xg, 0?I) with r = rank (X).
e Let ¥ = LT3 be an estimable function of B where L is p x q (¢ < p)
of rank q.

e Let ¥ = L”b denote the (unique) LSE of W.

e Then we know from previous results that
U ~ MVN(¥, o’LT(XTX) L)

e We also note that LT (XTX)~L is of full rank.

e Therefore by Corollary 3.11, we have

1

o2

(¥ — ¥)T(LT(XTX) L)~ (¥ — ¥) ~ x;(0)
e Using previous results on the independence of SSE and estimable
functions and on the distribution of SSE, it follows that

(¥ - )T(L"(XTX) L) (¥ - ¥)/q
SSE/(n —r)

~ Fyn—r(0)
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Confidence sets are generalizations of the familiar notion of confidence
intervals.

e A confidence set for a vector valued parameter ¥ € R? with confi-
dence coefficient 1 — « is defined as a random region, R(Y) C R?,
depending on the observations with the property

Pgp(PeR(Y)) =1—-«
for any ¥ € RP?.

e This probability statement is to be interpreted as the long run pro-
portion of sets R(Y), obtained by repeated sampling of Y, that cover
the true parameter value ¥, is 1 — a.

e With this definition, we see that

(TeR: (T- )T (LN(X"X) L) (¥ - W) <¢s’F,,%,.(0)}
is a confidence set for ¥ with confidence coefficient 1 — o where
F;7%,(0) is the 1 — « quantile of a central F' distribution with ¢ and
n — r degrees of freedom.

e Because this region is an ellipsoid in R? with center at U, we call
this a 100(1 — a)% confidence ellipsoid for .
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e Recalling the relationship between Student’s t distribution with n—r
degrees of freedom and the F' distribution with 1 and n — r degrees
of freedom, we note that when ¢ = 1, the 100(1 — a)% confidence el-
lipsoid given above, reduces to the familiar confidence interval based
on the Student’s t distribution:

{\Il ER: Te T —t};ﬁﬂa{j U +t,11:(7)f/20‘§}
where t};ff/ ?is the 1 — a/2 quantile of Student’s t distribution with
n — r degrees of freedom and
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3.9.3 Hypotheis Tests for LInearly Estimable Functions

Tests of hypotheses of the form Hy : ¥ = LT3 = 0 may be constructed
from the distribution theory used to derive confidence intervals for W.

e We know that

(n—r)

TL v Ti~T~ T\ -1 T
qSSElIJ (L*(X*X)"L)™'¥ qun_,ﬂ(é)

where

6* = (LT (XTX) L)'
and W is the true parameter value.

e In particular, when the null hypothesis, is true, we have

(N —7) &7 1 T T -1 V-1
/SSE ¥ (L'(X*X)"L)"¥ ~ F,,,_,(0)

e Thus a test with size « of the hypothesis Hy : ¥ = 0 is given by the
rule:

, . (m=r)=r = Cu
reject Hy if 1SS U (LY(X'X) L)™' > F,,2.(0)
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e The power of this test against alternatives ¥ # 0 is found by comput-
ing the probability that a random variable with distribution F,,_,(4)
where 6> = W7 (LT(X7X) L)' exceeds the critical value F1~(0).

e Tables of non central F' distributions can be found in Scheffe’s book,
The Analysis of Variance.

e Most software packages contain the non central F' as a part of their

routines.
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3.9.4 Likelihood Ratio Tests

In deriving the likelihood ratio test for the hypothesis
Hy: $=LTB=0

it is convenient to express Hy in an alternate form used in a previous
section.

e Specifically, Hy may be expressed in tems of a restriction on E(Y) =
X /3 to lie in a (r — ¢) dimensional subspace of Sp(X).

e In particular, write L = CX (since LT3 linearly estimable)
e Note that L”3 = 0 if and only if E(Y) = X8 € [Sp (C)]".

e Thus, in the “full” (non-restricted) model, E(Y) € Sp(X) and in
the “null” (restricted) model, E(Y) € Sp(X) N [Sp(C)]".

The likelihood ratio test is constructed by maximizing the likelihood under
the null model and comparing this maximized likelihood to the maximized

likelihood under the full model.

e If the maximized likelihood under the null model is not too much
less than that under the full model (i.e., if the null model provides
about as good a fit to the data as the full model), then we do not
reject the hypothesis.

e If the full model fits the data much better than the null model, we
reject the hypothesis.
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Let (Xb)r and (Xb)g denote the LSE’s of E(Y) under the full and
reduced models respectively.

e That is, (Xb)r is the projection of Y onto Sp(X) and (Xb)g is the
projection of Y onto Sp(X) N [S(C)]".
e Then, recalling the form of MVN p.d.f., we have that
1

(270%) ! exp{— 5 ly — (Xb)7 )
(270%)  exp{—5 4 ly — (Xb)al?)

are the likelihoods under the full and null models that have been
maximized with respect to the parameter 3.

e Recall that the maximization over 3 may be done independently of
o2 by virtue of the orthogonality of o2 and /3.

e Now, maximizing these functions with respect to o2, we obtain the
(fully) maximized likelihoods under the full and null models, respec-

tively:
. 2\ —%
(271’”y (Xb)F” ) eXp{_g}

n

(%ny - <Xb>R||2)’2“ ool -}

n
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e Thus the ratio of the maximized likelihoods is

\ {ny— (Xb>R|2}3

Iy = (Xb)rlP |
_ {IIy—(Xb)FIF}E
|y = (Xb) ]

and the likelihood ratio test is the rule: reject Hy : ifA < ¢, -

To determine the critical value, ¢, , we need the distribution of A (or
some monotone function of A).

Recall from orthogonality relationships,

IY — (Xb)g|I* = [Y = (Xb)#||* + [|(Xb)r — (Xb)|"

e Thus

_ { Y — (Xb)g|? }
[Y — (Xb)r[[? + [[(Xb)r — (Xb)x|?

{ ; } |

- [(Xb) r—(Xb) [

L+ =)

Thus the rejection role for the likelihood ratio test may be expressed:

|(Xb)r — (Xb)g||? >
Y — (Xb)F|? *

reject Hy if

for some critical value ¢,.
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Now let PX|‘IJ=0 denote the projection operator onto the subspace
Sp(X) N [Sp(C)]*

e Note that Xbg = PX|\I,:OY.

e Also let Px denote the projection operator onto Sp(X) so that
(Xb)r = PxY.

e Because
Sp(X) N[Sp(C)]" C Sp(X)

we have

PXPX|\II=0PX|\II=0PX - Px|\Il=0

e Therefore
Px — PX|\II=0

is a projection operator onto the subspace Sp(X) N [Sp(C)}L) since
— It is obviously symmetric.

— It is also idempotent since

(PX - PX|\II:0> = PxPx - PXPX|\IJ=0 - PX|\II:0PX + PX|\II:0PX|\II:0
= Px - 2PX|lIl:0 + PX|\IJ=0

Px — PX|\I’:0
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e We therefore have the following orthogonal decomposition of Y

Y = Py Y+ (Px — PX|\I’:0)Y +(I-Px)Y
= (Xbg +[(Xb)r — (Xb)g)] + (Y — (Xb)r)

e and the corresponding decomposition of the sum of squares:
Y'Y = Y'Pyy_ Y+ Y (Px —Pyg_)Y + Y (I-Px)Y
= [[(Xb)z[* + [|(Xb)p(Xb)z[* + [(Y — (Xb)F|*
e By Corollary 3.10 (1) we have that ||(Xb)r — (Xb)g||*> and ||(Y —

Xb)r||* are independent chi square random variables on g and n —r
degrees of freedom, respectively.

e The error sum of squares, ||(Y — Xb)r||?, is a central chi-square
e The non centrality parameter for ||(Xb)r — (Xb)gl|?, d, is given by
0* = BTXT(Px — Py g_o)XB
= ||Xﬁ - Px|lIl=0XIB||2
e Thus § may be interpreted as the distance that the true mean, X3,

is from the subspace to which it is constrained under the null hy-
pothesis. If the null hypothesis is true, then § = 0.
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e Therefore, by normalizing the ratio of quadratic forms, we have the
likelihood ratio test given by the rule:

I(Xb)r — (Xb)rI*/q _ 1« (0)

.
resect Hol iy Xyl (n—r) ~ Lo

e Note that because of the orthogonality of
Y — (Xb)r and (Xb)r — (Xb)gr
we have

I(Xb)r — (Xb)g|* = Y — (Xb)r|* - [[Y — (Xb)|*

e Therefore the likelihood ratio test statistic may also be computed by
the formula

{ 1Y — (Xb)#|2 - [|Y - (Xb)R||2} n—r {SSER - SSEF} n—r
Y — (Xb)Fpl? q SSEp q

where SSEr and SSER are the error sums of squares or deviances
under the full and reduced models respectively.
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3.9.5 Likelihood Ratio Tests and Confidence Ellipsoids

In a previous section , we derived a test for the hypothesis
Hy: ¥ =LTB=0
based on the distribution of the LSE ¥, which was of the form:

' [L7(XTX) L]
gs®

reject Hy if > F;,(_no‘_r)(O)

In the previous section we found that the likelihood ratio test of
Hy: $=LTB=0

was of the form:

|(Xb)r — (Xb)g|”
gs*

reject Hy if > Fql,(_no‘_T)(O)
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To show the equivalence of these tests, we need only show that

@' [L7(X7X) L]'¥ = SSEj — SSE

To accomplish this, we consider the reparameterization
X =XW1Wg =Z~
where W is a p X p matrix of full rank written as
MT
where M is a p x (p — ¢) matrix with column vectors spanning Sp* (L)
and L is the p x ¢ matrix defining ¥ = L73.

e Thus, writing our reparameterized model in partitioned form, we
have

XB =71y, + 2oy, where v, =W

e By previous results on reparameterizations, we know that =, is lin-
early estimable and that the LSE’s of estimable functions and error
sum of squares are invariant under reparameterization.
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e Let Py, denote the projection operator onto the subspace Sp(Z).
Then the LSE of «, is given by

Yo = [23(1—Pz)Z] ' Z;(1-Pg,)Y
and var (§,) = 0?[Z3(1 —Pg,)Zy]™"
e By our invariance result under reparameterization, we have
—~T —~ T o
U var (¥)¥ = 4 var (92)92
e Therefore

—~T _ = N -
U L' (X"X) L7 = 43[Z; (1 - Pg,)Z]9s

= Y'(1-Pg,)Z:[Z;(1 - Pz,)Z,] ' 251 - Pg,)Y
Pa-p, )z Y|

e Note that we have the orthogonal decomposition of Y,

Y = P;Y +(I1-Pp)Y
= Pz Y+ P(I—le)zzY + (I - Pz)Y

and a corresponding decomposition of Y7Y as

Y'Y = P2, Y|’ + [Pa-p,z, Y[* + [T - P2)Y|*
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e Since error sums of squares are invariant under reparameterization,
we have

SSEr = [|[(I—-Pz)Y]|?
SSEr = Y'Y —||Pz, Y|

e Therefore
AT _ 1=
U [L'(X'X)L]7'¥ = |Pup,)z Y
= SSEgr — SSEF

and the likelihood ratio test and the F-test based on the LSE are
equivalent.
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This simple principle for constructing hypothesis tests (sometimes called
the Principle of Conditional Error may be summarized as follows:

1. Fit the full model E(Y) = X3 to get SSE .

2. Use the hypothesis L8 = 0 to obtain a reduced or conditional
model (i.e. conditional on LT3 = 0) and obtain SSE from a fit of
this reduced model. Reparameterization may be required for this
step.

3. Compute the sum of squares due to the hypothesis LT3 = 0 by
subtraction of SSEr from SSEg.

4. Compute error degrees of freedom under the full and reduced model
(dfr, dfg), respectively.

5. Construct the test statistic (F-test) by

(SSEg — SSEr)/(dfg — dfp)
SSEp/dfp
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Optimality of the F Test

e Among all tests of size a of the hypothesis ¥ = LT3 = 0, with
the property that the power of the test depends on 3 through the
intermediary

IXB - Py gy PxB? = ¥ [L7(XX) L] ®

— The F test is uniformly most powerful (UMP).

— i.e. the F test has higher power than any other test (in the class
described above) uniformly over all possible alternatives.
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3.9.6 ANOVA Tables

A convenient way to present results from a least squares analysis of a
linear model is the analysis of variance (ANOVA) table.

e The ANOVA table presents information about hypothesis tests (sums
of squares, degrees of freedom) but does not include information
about the LSE of 3 itself.

e The essential requirement in constructing an ANOVA table is to
determine an orthogonal decomposition of Y, or equivalently, an
orthogonal decomposition of the total sum of squares YZY.

e We consider the case of
E(Y)=XB= Z_Xk:lxzﬂz
where the hypotheses of interest are
Hop: B1=0; Ho2: By=0; ...; Hopp: B =0

e The usual way that an orthogonal decomposition is determined (that
is relevant to Hyi, Hpo, - - ., Hor is to decide upon an ordering of the
hypotheses to be tested. Without loss of generality, let this ordering
be H01, H()Q, ey HOk
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e By imposing this ordering, the £ hypotheses are now tested in the
sense that our first test will be of Hoy , our second test will be Hy,—1)
given Hy is true, etc.

e Thus, for the ith test, our full model will be
E(Y)= ]é X;B;
and our reduced model will be
B(Y) = £X,8,

e We introduce the following notation

Dy, = I
D, = I-X;(XTX,)" X7
D;; = D, — D Xy(XID;X;)"XTD,

and in general
D, =D -D X, (XD X,) XD
m(n) — Hr(n-1) m(n—1) n( n+m(n—1) n) n+2m(n—1)

where m(n) is any permutation of {1,2,...,n}, for n = 1,2,...k
and 7(0) = 1.
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e Note that

P, = X;(XIx,)"XT
= Dy - D,

P, = D;X,(XID,X,)" XD,
= D; — Dy

and in general
P, D0 1) X (X ) D1y Xn) " X3 Dirn—1) = D1y — D)
forn=1,2,... k.
e Note that P;P; = 0 for ¢« # 5 and that

k
vy = Zl Yy P;y + Y D,y
]:

e yP;y is the sum of squares for X; in the presence of X1, Xy, ..., X;_1
and in the absence of X1, X, 9,..., X},

e This sum of squares is often called the sum of squares for X; adjusted
for Xl, Xg, ceey Xj—l and ignoring Xj+1, Xj+2, ceey Xk
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The ANOVA table provides a convenient way to present the corre-
sponding partition of y'y:

Source df SS
X tr(Py) | [[P1yl

X5 adjusted for X; tr(P2) | ||Pa2y]l?

Xy adjusted for Xy, Xy, ..., X1 | tr(Px) | [|Pry|?
Error n—r ||D7r(k)y||2
Total n HyTyH2

where r = rank [X1, Xy, ..., Xg].
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Sometimes, when there are two components to the linear model,
E(Y)=XB+Z~
and only X is of primary interest, a reduced ANOVA is presented.
e This table represents the second stage of the two stage least squares

procedure described before, in which both X and Y were first made
orthogonal to Z.

e Let Dz denote I — Py.
e Then the “reduced” ANOVA table may be written

Source df SS
X1 adjusted for Z tr(Pszl) ||PDZX1YH2
X adjusted for Z, X, tr(Pp,P2) |IPp,x,y|

X, adjusted for Z, Xy, Xs, ..., X4_1 | tr(Pp,Pp,) | [Ppspo x|
Error tr(I-Dz) | [[I—Pp,x)y|

Total tr(Dz) |Dzy|?

e Examples of this “reduced” ANOVA table are:

— Z =1 (the mean is removed) so (sub)total degrees of freedom is

n — 1, (sub)total sum of squares is y'y — ng>.

— ANCOVA where X is the experimental design varible and Z are
covariates.
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e A very important special case of the ANOVA tableis when X4, ..., X}
are mutually orthogonal.

e In this case, the sum of squares associated with the hypotheses are
independent of the ordering.

e Interpretation of the hypothesis tests is much easier in this case and,
for this reason, much effort has been expended to identify economical
experimental designs with this orthogonality property.

e This is a major part of the study of experimental designs.
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