Chapter 3

General Linear Models

3.1 The Linear Model

Let Y denote an n x 1 vector valued random variable and X denote an
n X p matrix of known constants.

e The general linear model specifies the mean vector of Y as a lin-
ear combination of the column vectors of X. The coefficients in
this linear combination are unknown quantities (parameters) denoted

B, -, Bp.

e Thus, if 3 is the p x 1 vector with elements (5, ..., 8y, we can write

E(Y) =XB
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This system of n equations may be rewritten in two forms:

e In terms of the columns of X as
E(Y)=X{B+---+ X5,
where X7 is the jth column of X

e In terms of the rows of X as

EY)) = zubr+zbe+ -+ zipbp
= x;TF,B; for 1 =1,2,...,n

where x! is the ith row of X

Each of these representations of the linear model is useful in discussing
different aspects of the linear model. The first is useful for discussion of
estimation and in determining the importance of covariates. The second
is useful in model diagnostics.

Let V be an n X n, positive semi-definite matrix of known constants.
The general linear model specifies the covariance matrix of Y, denoted
iy, as

var (Y) = Sy = 0V

2

where 0 is an unknown, positive constant (parameter).
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The general linear model, stated under (so-called) wide sense assump-
tions, thus specifies forms for only the first two moments of the observation
vector

E(Y) = Xp
Sy = ¢V

Every other aspect of the distribution of Y, is arbitrary and unspecified
under these wide-sense assumptions.

There are two special forms for V that are particularly useful.

e In the first special case, V = 1.

o This implies that the variance of each component of Y is the
same (i.e. var (Y;) = o?), which is called homoscedasticity.

o It also implies that different components of Y are uncorrelated.
e The second special form for V is V = diag (V4,...,V,).

o In this case, the components of Y are still uncorrelated but their
variances are no longer necessarily equal which is called het-
eroscedasticity.
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We first concentrate on the case V = 1. We then show that results for
general V can be obtained by transforming the problem to obtain another
general linear model but with a simpler covariance structure.

After properties of least squares estimation are developed under wide
sense assumptions, the additional assumption of multivariate normality
of Y will be imposed.

o With the addition of the normality assumption we have a complete
specification of the distribution of Y.

o Under these narrower assumptions, stronger properties of least squares
estimation procedures are available. and more complete inferences
can be made.
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3.2 Least Squares Estimates

Definition: Let Y be an n X 1 vector valued random variable with
E(Y)=Xp3

where X is an n X p known matrix and 8 is a p X 1 vector of (unknown)
parameters.

e When we observe y, the least squares estimate of 8 is defined to be
the set of p x 1 vectors b, for which |y — Xb||? is minimized.

e Note that

|y — Xb|* = ;(yi — by — - — byyp)

e Let 7 = Xb where b varies.

o From the results on projections in vector spaces we know there
is a unique
n € Sp(X{,...,X})
at which ||y — f||? is minimized.
o Therefore, the set of least squares estimates (LSE) of 8 corre-

spond to the solutions of the equations 77 = Xb

x i.e. b is a LSE of @ if and only if 7 = Xb where 7} is the
projection of y onto Sp(X).



78 CHAPTER 3. GENERAL LINEAR MODELS

e Because of the orthogonality relationships for projections we have
the following properties of any LSE of 3.

o For any b such that 77 = Xb we have

thus
X' (y — Xb) =0

o Rewriting the last system of equations, we have
XTXb = X"y
for any LSE, b, of 3.
e Thus any LSE, b, of 3 satisfies the system of equations
XTy = XTy wherey = fit
e These equations are called the “normal equations” or the “least
squares equations”.

o Provided this system of equations is consistent (i.e. XTy must
be in the subspace spanned by the columns of X7X), then we
know that the general form for solutions for this system is (from
results on g-inverses):

b= (XTX) "Xy + [T — (XTX)~"(XTX)]z for any z € R?

o To show that the normal equations are always consistent, we
note that the subspace spanned by the columns of XX is the
same as the subspace spanned by the columns of X7.
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Consider first the case when X is of full rank.

e Then
b = (XIX) Xy + [T - (XTX)"(XTX)]Z
= (XTX)"'XTy + [ — (XTX)}(XTX)]Z
= (X'X)"'X'y
so that there is a unique solution to the normal equations.

e Since the unique LSE is a linear function of the vector Y, we can
calculate the first two moments of b:

E(b) = E[(XTX)"'XTY]
= (XTX)"'XTE(Y)
= (XTX)"'XTXp
= B
var (b) = (XTX) ' XTZyX(XTX)™
= A(XTX)IXTVX(XTX)™

e Therefore, b is unbiased and in the uncorrelated, homoscedastic case,
where V = Io?, var (b) reduces to

var (b) = o?(XTX)™!
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In the general case where X is not necessarily of full rank, the non-
uniqueness of b poses problems.

e We clearly are not able to estimate everything that we wish. How-
ever, there are some quantities that we can estimate.

e Recall that Xb (= 1) is unique for any LSE b, regardless of the rank
of X (i.e. projections are unique).

e Therefore, we can at least get unique estimates of quantities that can
be expressed as linear combinations of the components of X/3.

e This leads us to the concept of linearly estimable functions due to
R.C.Bose.

Definition: Let £ be a p x 1 vector. A linear parametric function €73 is
said to be (linearly) estimable if there exists a linear unbiased estimator
for £78. i.e. €73 is linearly estimable if there exists an n x 1 vector c,
such that

E[cTY] = €73 for all B

More generally, a set of ¢ linearly independent parametric functions
LT3 (where L is a p x ¢ matrix with rank L = ¢ is said to be linearly
estimable if a n X g matrix, C, exists such that

E[CTY] =L forall 3
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The following result provides several alternative characterizations of
linear estimability.

Theorem 3.1: Let L be a p X ¢ matrix of rank ¢ < r where r is the rank
of X. The following three statements are equivalent:

(1) LT3 is linearly estimable

(2) There exists an n X ¢ matrix C such that CTX = LT

(3) LT[(I - (XTX)~(XTX)] = 0.

e From the above theorem, we see that if rank (X) = r, we can have
at most r linearly independent estimable functions of 3.
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Corollary 3.2: All linear functions of the form €73 are estimable if and
only if rank (X) = p.

From the above corollary, if X has full rank, then we see that 8 itself
is estimable by setting LT = 1.

Lemma 3.3: Let L73 be ¢ linearly independent estimable functions.
e Then there exists a unique linear unbiased estimate of LT3, say ATY
with the columns of A € Sp(X).

o If ATY is any linear unbiased estimator of LT3, then the columns
of A are the projections of the columns of A onto S(X).

Note that the estimator of LT3, L™b = L7 (X”X)~XTY is of the form
ATY with the columns of A in Sp(X).
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Theorem 3.4: (Gauss Markov Theorem) In the linear model with
E(Y)=XpB and var (Y) = oI
where X is an n X p matrix with rank (X) =7 <p
e The unique best (minimum variance) unbiased linear estimator (called

the BLUE or Gauss-Markov Estimator) of the estimable function
LT3 (L is p x q with rank L = ¢ < ) is given by

L'b where b is any LSE of 3

e and
var(LTB) = ¢’LT (X*TX) L

where any g-inverse of X”X may be used to compute Var(LTB)
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In order to use the LSE of LT3 for inferences we need an estimator
of its covariance matrix. From the Gauss Markov theorem, we know its

form to be
var (L73) = o’LT(XTX) L

Therefore, an estimate of o2 is all that is required to obtain an estimate
of var (L”3). Since

~ Y B -xBP
=1

7

1
= ~B[|Y - X8|
a reasonable estimate of o2 might be

~ 1
o2 = —|Y — Xb|?

n

where b is any LSE of 3.
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We thus consider the expected value of
Y — Xb|?

to guide us to an estimator of o2.

e Let Px = X(XTX)"XT then
E[|Y - Xb|*] = E[|(I-Px)Y|’
= E[YT(I-Px)(I-Px)Y]
= E[Y'(I-Px)Y]
= tr [(I - Px)var (Y)] + E[YT](I - Px)E[Y]

e But
tr [(I — Px)var (Y)] = o*[n — rank (Px)] = ¢*[n — rank (X)]

and
E[Y)'1-Px)E[Y]=8"XT(1-Px)XB=0
since
I-Px)X=X-PxX=X-X=0
e Therefore, if r = rank (X), we have that
1

n—r

o2

Iy = Xb]f*

is an unbiased estimate of o2.



