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3.3 LSE’s as Minimum Deviance Type Estimators

The criterion of least squares leads to best estimators among the class of
linear unbiased estimators which is the Gauss-Markov Theorem. How-
ever, there are questions about whether the resulting estimators remain
optimal, or even have any good properties when the assumptions of the
general linear model are not true. This leads to a discussion of robustness
and resistance.

Definition: Robustness is loosely defined as the property of statistical
procedures to be relatively insensitive to distributional assumptions.

Definition: Resistance is loosely defined as the property of statistical
procedures to be relatively insensitive to changes in a small fraction of
the data.
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example: The simplest linear model is
EY)=u 1=1,2,...,n

where the Y; are uncorrelated with common variance 2. Under this model
the best linear unbiased estimator for y is i = Y. If the underlying distri-
bution is normal then the estimator is also minimum variance unbiased.
However, if the distribution is of the form

fr(y) = (1 - %) oy — p) + %C(y — )

where ¢ denotes the standard Cauchy density and ¢ denotes the standard
normal density then the expected value of Y is not defined for any value
of k. Thus the sample mean is not robust.

Let )7(2-) denote the mean of Yi,Y5,...,Y, with the ith observation
removed. Then since

_ 1\ Y;
Yz(l——)Y(i)-l-—
n n

we see that Y is not resistant.
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e It is useful to consider LSE’s as a member of another larger class of
estimators within which LSE’s are no longer optimal.

e This serves to put the Gauss-Markov result in perspective and illus-
trates how information about the response distribution beyond the
first two moments may be used to construct estimators that perform
better than LSE’s. These are so-called robust estimators.

e Assume a general form of dependence of the expected value of Y on
X and S.

o We will denote this expected value in short-hand notation as
Y(B).

o Thus, for any px 1 vector b, Y (b) will denote the expected value
of Y under the assumption that b is the true parameter value.
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To define an estimator, we now choose a function that represents a
measure of discrepancy or deviance between two vectors in R".

e This function will be used to determine the deviance of Y (b) from
Y for given b, denoted dev (Y;Y (b))

e An estimator of B will be defined as the value (or set of values) of b
at which dev (Y;Y (b)) attains a minimum.

e This class of estimators, indexed by possible choices of deviance func-
tions, can be called minimum deviance estimators.

Clearly, reasonable deviance functions should have properties similar to
distance functions defined in R" corresponding to choices of inner prod-
ucts.

e In fact, for any choice of inner product in R"”, the resulting distance
function would be a perfectly good candidate for a deviance function.

e However, deviance functions need not satisfy all the properties of
distance functions. For instance, there is no reason why deviance
functions should be symmetric in their arguments.
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e By making some general assumptions about the distribution of Y,
we can make reasonable restrictions on the form of the deviance
function.

o If we consider the components of Y to be independent, then we
might consider deviance functions that are represented as the
sum of deviances for each component of Y, i.e.

dev (Y; Y (b)) = ¥ dev, (V;; Vi(b))

1=1

o If the distribution of Y is a location-scale family i.e.

Frlo) = f (y‘—?(b))

g

then dev;(Y;;Y;(b)) may be taken to be the scaled residual.
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e Clearly, LSE’s are a member of the class of minimum deviance esti-
mators with deviance function

devise (Y, ¥(0)) = [Y = Y(0)" = 3l — (b))’

e Maximum likelihood estimators are also a member of this class with
deviance function defined as minus one times the log-likelihood func-
tion.

e As a special case, suppose
Y ~ MVN(X3, 0’I)

Then the deviance function corresponding to the MLE is (up to an
additive constant)

- 1 P
devyre (Y, Y (b)) = EHY - Y(b)|?

o Therefore, with an assumption of normality, the MLE and LSE
of B are identical.

o Thus, at normality, the LSE is not only BLUE but also has the
optimality properties associated with the MLE for normal data
(i.e. it has minimum variance among all unbiased estimators
whether they are linear or not).
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As we let the underlying distribution of Y move away from normality,
the MLE retains some optimality properties.

e The MLE has minimum asymptotic variance among the class of reg-
ular, 4/n consistent estimators of 3.

o A regular y/n consistent estimator is one which converges to the
true value at rate y/n and, when properly normalized, converges
in law to a Gaussian random variable.

e Therefore, since away from normality, LSE’s and MLE’s no longer
coincide, the LSE is dominated (in large samples) by the MLE.

e This dominance may be explained by the MLE’s use of the shape of
the response distribution to define the measure of deviance.

o For example, if the response distribution has a long right tail,
then an observation in a fixed distance above its expected value
should not be counted as discrepant as an observation the same
distance below its expected value.

o Or, if the response distribution had heavy tails (i.e. prone to
“outliers”), a few observations far away from their expected val-
ues might not necessarily be counted as overly discrepant.

e With these ideas in mind, we note that the LSE’s measure of deviance
is well suited for symmetric distributions with relatively “light” tails.
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Because of the sensitivity of LSE’s to heavy tailed response distribu-
tions, other minimum deviance type estimators have been proposed whose
deviance functions are designed to retain some of the optimality properties
of LSE’s at normality but which are less sensitive to heavy tails.

e The deviance function for these so called robust regression estimators
are defined by

Y; —E(b)

o

dev (V¥ (0) = p(

where the function p(z) has a form similar to z? (i.e. the deviance
for LSE) for x near zero but for x farther away from zero, p(z) < z?.

e Typically a symmetric interval about zero is designated as [—c, c] and
p(z) is defined separately for z € [—c, ¢] and for z & [—c, c|.

o One example is Huber’s deviance function with trimming con-
stant H7 pH()7

o) ={ & WIS
Hlz| - &L |z| > H

o Another example is Tukey’s biweight deviance function with
trimming constant B, pp(-)

A GOSN NEEY:

pr(z) =
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o Note that as the trimming constants become large, then pg(-)
and pp(-) become quadratic functions over a wide interval around
7€ro.

o Thus, for large H and or B, these estimators correspond to
LSE’s, and so, at normality, these estimators should be nearly
fully efficient.

o If H and B are chosen to be small, then a greater proportion
of the data have a non quadratic deviance function applied to it
and so the efficiency at normality will be low.

o The trimming constants are typically chosen so that they are far
enough away from zero so that the asymptotic relative efficiency
(ARE) of the resulting estimator at normality is high (95% say).

o Thus, the price for using a robust estimator as expressed in terms
of loss of efficiency at normality is set at a predetermined, small
amount.

e These estimators are called M-estimators after maximum likelihood
estimators.

e Also note that unlike LSE’s, the deviance functions for these M-
estimators require knowledge of ¢?. In practice a robust estimator
of scale (such as the median absolute deviation (MAD)) is used in
place of ¢ in the deviance function.



3.4. WEIGHTED LEAST SQUARES AND MAXIMUM LIKELIHOOD 95

3.4 Weighted Least Squares and Maximum Likeli-
hood

Let Y be WS(XS3,0%V) where

V =diag (V4,...,Vn) where V; >0; 1<i<mn

e Then we know that the LSE of X3, Xb, is unique and is given by
the formula
Xb = X(X'X)"XTY

e It is easy to verify that Xb is still unbiased under this model and
that
var (Xb) = ¢*X(XTX)"XTVX(XTX)" X"

e Therefore Xb is an estimator of X3 with some reasonable properties.

e However, the deviance function corresponding to least squares does
not use all of the information available about the distribution of Y
and hence might be improved upon.
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e Specifically, the V;’s are not used in the LSE.
o Thus if Vi >> V5 and
Y1 = Yi(b) = Y2 — Ya(b)
we would not want to consider Y, (b) as equally discrepant as
Y(b).

e One reasonable approach for incorporating the information in the
V;’s is to define the deviance function as

= 2
o n (Y — n(b))
dev (Y;Y(b)) = —_
v = £ (5
o That is we apply the least squares deviance function to stan-
dardized residuals.

o One might also view this deviance function as the least squares
deviance applied to the transformed model:

Y=V:Y ; X=V:X
where
Vi = diag (—1 —1 )

so that N N
Y ~ WS(Xg, o°T)
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o Since after the transformation, the model has the uncorrelated,
homoscedastic form for var (Y), we may apply results from pre-
vious sections to determine the BLUE (or Gauss-Markov esti-
mator) of X3 by minimizing the deviance function:

IY =Xb|?* = V(Y - Xb)|?
= (Y —= Xb)IV (Y - Xb)
e This last form for the deviance function function, provides the moti-
vation for defining the Weighted Least Squares Estimator (WLSE) of

3 for general, known positive definite V as the value or set of values,
b, at which the function

(Y — Xb)"V~1(Y — Xb)
is minimized.
e The weighted least squares estimate is easily seen to be
b — (XTX)'XTy
— [(V_1/2X)T(V_1/2X)}_1(V_1/2X)T(V_1/2y
— (XTV_IX)_IXTV_IY
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e There is another interpretation of the WLSE that is of interest.

o Recall that one way to define an inner product in R" other than
the standard inner product is to define

(x,y)a = x' Ay

for any fixed, positive definite matrix A where (x,y) denote
vectors in R".

o Since V! is positive definite, define the inner product
(x,y)v1 =x'Vly

o Note that the WLSE has a deviance function that may be inter-
preted as the squared length of the vector Y — Xb except with
the length function now defined in terms of this different inner
product:

dev (Y — Xb) = ||Y — Xb||31 = (Y — Xb,Y — Xb)y 1

o Thus, the WLSE of Xb may be considered as the projection of Y
onto the column space of X except now the projection operator
used is that corresponding to to a different inner product.
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o To gain insight into this non-standard type of projection, recall
that the equation

fm=F-n'Viy-n=<~

defines an ellipsoid in R"™ with center Y, principal axes corre-
sponding to the eigenvectors of V and lengths of semi principal
axes c\/A1,...,c\/ A, where Aq,...,\, are the eigenvalues of V.

o To find the projection of Y onto a subspace, Sp(X), we can
consider the set of points

{neR": f(n)=c"}

starting at small values of ¢ and then letting ¢ increase until a
point on the ellipsoid just touches the subspace.

o The projection with respect to (-, - )y-1 of Y onto S(X) is the
vector whose tip corresponds to this first point of intersection of
the ellipsoids with Sp(X).

e Finally, we note that under the assumption that Y is MVN(X 3, 0?V)
we have the deviance function corresponding to the MLE for 3 given
by:

1
ﬁHY — XB||3-1 + constants
o Thus, just as the LSE and the MLE are identical under the

assumption that Y is MVN(XS, 02I) so are the WLSE and the
MLE under the assumption that Y is MVN (X3, 02V)
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3.4.1 Non-Robustness of the Weighted Least Squares Estimate

Let Y7 and Y5 be independent with Y; having pdf given by

Ll p_1<z<p+1
_ )3 ST >
Jri(z) = { 0 otherwise

and Y5 having pdf given by
1 0-2<z<0+2

ﬁd@={4

0 otherwise

Given observations y; and ys the likelihood for for 6 is given by

) 1
lik (6; y1, y2) = 3 0—1,6+1(Y1)Lo—2,042(y2)

where
1 a<y<b

0 otherwise

fa,b(y):{
Thus if y; = 1 we have that
0—1<1<0+1 —60<2 and >0
while if yo = 3.8 we have that
§-2<38<0+2 —0<58 and 6>18

and it follows that

: 1
lik (0, Y1 = 1, Y2 = 38) = é 11.8,2(9)
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The assumptions on Y; and Y5 satisfy the general linear model so that

we have
i| |1
el =11

ar | ] =30
V}/—Z_O%

the Gauss Markov Theorem gives the BLUE as

Since

)= (XTVIX)XTVvly

x=[3] v=[3§] mav=]g]

It is easy to check that

where

15
XTv-IX = =
4
and that 93 4
XTv—ly — 4
so that 93 4
6="""—=156
15

which is not a value of 8 consistent with the likelihood function.

Therefore the Gauss-Markov Theorem can produce estimates which
are inconsistent with the likelihood function.
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3.5 Estimating Functions

Given n independent observations yi,¥s,...,yn each having the same
pdf f(y; @) the estimation problem of statistics is to use y to estimate 6.
Three popular methods of estimation are:

(1) Method of Moments. Here we calculate

!

p(@)=EY") r=1,2,...

and

1 ]ZV: .
IU'T N = yl
We then solve the equations
p(0) = [,

to obtain the estimate of 0.
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(2) Least Squares. Here we choose 8 to minimize

Y 2
;M—MWH
which leads to solving equations of the form

Opi(9)

00

é[@/z’ - Mi(a)]

for 8. We know that if p;(8) =6xi’e. 1;(0) is linear in @ then least
squares produces minimum variance estimators among the class of
all linear unbiased estimators.

(3) Maximum Likelihood. Here we choose € to maximize

N
;mm%m]
which leads to equations of the form

gaMﬂ%m]

=0
i=1 80

to be solved for 8. These equations are called the score equations.
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All three methods lead to solving equations of the form

N
;g(yz-;O) =0

which are called estimating equations and the function

N
9(y;0) = ;g(yi; 6)

is called an estimating function. The simplest estimating function is of
the form

t(y) — 0

which if t(Y) is unbiased for @ leads to an unbiased estimator for 6.
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We define an estimating function g(y; @) to be unbiased if

Elg(y;6)] =0

Note that, under relatively simple regularity conditions, each of the three
methods of estimation described above are unbiased estimating functions.
Note also that there is no guarantee that an unbiased estimating equation
will yield an unbiased estimator, only that it will lead to an estimator.
Properties of the estimator obtained from solving an estimating equation
must be investigated.

Among the class of unbiased estimating functions Godambe defined
an optimal unbiased estimating function to be an unbiased estimating
function which minimizes

_ 9(y;0)
S(0) = [ 000 ]
Godambe proved that for all unbiased estimating functions.

S(0)7' < 1(6)

where 1(0) is Fisher’s Information.
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If we use the estimating function

o) = § 200

i.e. the score fuction for maximum likelihood, then we know that this
fuction is an unbiased estimating function and that

oo

which is the inverse of Fisher’s Information. It follows that the score
function is an optimal unbiased estimating function. In the presence of
nuisance parameters Godambe also established that the conditional score
function is the optimal estimating function. Note that, as defined, optimal
unbiased estimating functions require knowledge of the distribution of y.
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Wedderburn in 1974 proposed estimation of @ by solving

> 20 o — (0] = 0

for the estimate @ of 8. He called his equations the quasi-score equa-
tions because of their similarity to the score equations of maximum like-
lihood.The y; are assumed to be independent with

E(Y;) = pi(0) and var (Y;) =v; = w(gz)
where ¢ is a nuisance scale parameter. If the distribution of the Y; is one
of the family of linear exponential distributions then the above eqautions
are, in fact, the score equations for 8. They are thus referred to as linear
estimating equations and the function as a linear estimating function.
Godambe established that among all unbiased estimating functions which
are linear in the responses i.e. of the form

S (@)l (6)

Wedderburn’s function was optimal. McCullagh showed that Wedder-
burn’s estimator was asymptotically unbiased and asymptotically normal
with minimum variance among all estimators obtained from solving esti-
mating equations linear in the data.
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In a fundamental paper Liang and Zeger extended the quasi-score func-
tion to deal with longitudinal data. They assumed NN vectors of responses
z; where

Yi1 ,Uil(o)
= " B =)= | " | ) = Vig,a

The matrix V[0, a, ¢] can be different for each observation but the pa-
rameter a is assumed to be the same for each vector of observations. ¢ is a
nuisance scale parameter. Their equations, called generalized estimating
equations (GEE) are given by

op; (9)
00

> ] VA6, @), 81} 7 — i(6)] = O

1=1

Under weak regularity conditions they established that the estimator for
@ obtained by solving the GEE equations were asymptotically normal
regardless of the form of the covariance matrix V; used in solving the
equations. Much work followed to find GEE which utilized information
from the variances. This lead to quadratic unbiased estimating functions,
etc. Work still proceeds.

The important fact is that all of these methods were developed to
extend linear models to distributions which are not normal, where the
variance is not constant and the observations are not independent.
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3.6 Orthogonality in the Design Matrix

The matrix X in the general linear model is often called the design
matrix.

e Suppose that the design matrix X can be partitioned into compo-

nents
X = [1 X3 Xz]

where 1 is an n X 1 vector each element equal to 1, X; and Xy are
n X g and n X (p — q) matrices respectively such that

1
[Sp(D;X;)] L Sp(D;X;) where D; =1 — EuT

(ie. XTDD:X, = 0) In this case some special results about least
squares estimates of X3 are true.

e Let By, 81,8, be 1 x1,px1and (p—q)x 1 vectors corresponding to
a partition of the parameter 3. Then we may write the linear model
as

y ~ WS(6ol + X118, + X28,, ‘721)
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e To obtain the LSE’s of B3, we require the projection matrix
Px = X(XTX)~XT

o Writing X = [1 Z] where Z = [X; X3] we see that a generalized
inverse of XTX is
1, 11Ty (7T —7T1 _11T7 (7T =
(XTX)- = | # +wl (EDiZ) 2T 17T Z(2TD,Z)
~L(Z™DyZ)"Z"1 (ZTD:Z)

o It follows that
1
Px = X(XTX)"XT = 117 + D,Z(Z"D,Z)"Z" D,
n

o Since
T
X1

7ZTD,Z = l
1 X%*

}Dl X, Xy = [X{Dlx1 0 ]

0 XID: X,
o Px may be written as

Px =P; + Pp,x, + Pp,x,
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— This simple form is useful in several ways.
Suppose we are interested in whether 3, equals zero or not.

e Evidence that 8, = 0 might be whether the model E[Y]| = Gyl +
X183, provided about as good a fit to the data as the model

ElY] = 6ol + Xu18; + X208,

e Since the length of the residual vector from any model fit is literally
how close the fitted values from the model approximate the observed
data, a comparison of the length (squared) of the residual vectors
from the two models would yield evidence of whether 3, = 0 or not.

o Now
II-Px)Y|]> = Y'(D:—Pp,x, - Ppx,)Y
= Y'D,Y - Y'Ppx,Y - Y Ppx,Y
= ||(D1 - ]‘:’]:)1)(1)Y||2 - HPD1X2Y”2

e Thus the difference in squared lengths of the residual vectors from
the “full” model and the reduced model is simply

IPp,x, Y[ = [ D1Xsby |’

e This quantity may be interpreted as the squared distance of the least

squares estimate of E(Y) (under the full model) from the subspace
Sp(D1Xy).

o Note that the subspace Sp(DD;1X}) is simply the estimation space
under the reduced model.
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A very useful extension of this idea is when the design matrix can be
partitioned into K components X4, ..., X, all pairwise orthogonal.

e Then as above, we have the representation of the projection matrix
Pp,x =Pp,x, + -+ Pp,x,

with a corresponding partition of the squared length of PxY = Xb
as

|Xb||* = ||1bo||* + [D1Xyby || + [|D1Xsby||* + + - - - + | D1 X gbg]|?

e As we shall see later, tests of hypotheses about the corresponding
B;’s may be performed independently as a consequence of this or-
thogonality.

e A result of orthogonality that is complementary to the above par-
titioning of || Xbl|?, pertains to LSE’s of estimable functions LT3
which depend on 8 only through 3;.
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e Suppose (3, is the parameter of primary interest. Then noting that
estimable functions of L7 3 have the representation CT X3, we see

that the LSE for LT3, from the model E[Y] = 1 + X18; + X208,
is the same as the LSE for L7 3, assuming the (wrong) model

EY] = Bl + X134
(i.e., they are both equal to Pp,x,Y).

e Therefore, because of the orthogonality, we might be able to ignore
the effects of X, and still make the same inferences about 3; that
we would if we carried Xy along is the data analysis.

Unfortunately, although the component of interest in PxY is the same
as Pp,x,Y, the residual vectors (I — Px)Y and (D; — Pp,x,)Y are not.
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e Thus, if estimation of o were based on (D; — Pp,x,)Y, we would
not obtain an unbiased estimate of o2.

e In fact

E(YT(D — Ppx,)Y) = (n — rank (X;))o? + || DX33,|?

e Therefore, simply ignoring X5 and behaving as if the true model were
y ~ WS(Bol + X34, o°T)
will not result in the proper inference about 3,

e Write the residual vector as

(I-Px)Y = (D;—Ppx, —Ppx,)Y
= (D; - Pp,x,)(D1—Ppx,)Y

= (D1 -Ppx,)Y

where Y = (D; — Pp,x,)Y
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e Then we note that after the transformation to Y, the projection of
Y onto the orthogonal complement of Sp(D;X) is the same as the
residual vector from the least squares fit of the full model.

o Also, the projection of Y onto Sp(D1X;) corresponds to the
LSE of X1b; from the full model since

PD1X1Y = PD1X1 [Dl - PD1X2]Y
= Pp,x,Y — Pp,x,Pp,x,Y
= Ppx, Y

e Therefore, if we first project Y onto Sp*(Xs) and then, taking this
vector as our response vector, behave as if

S’ ~ WS(B(]l + Xlﬁla 021)

we will be making exactly the same inferences about B; as if we
performed the analysis on the more complicated model:

y ~ WS(Bo1 + X8, + X3, 021)

e The only adjustment required in the analysis using the reduced model
is in total degress of freedom.

o By making Y orthogonal to 1 X, we have used rank(X) degrees
of freedom.

o Therefore the total number of degrees of freedom in the reduced
analysis is n — 1 — rank (X3) instead of n.



