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4.2 Two Way Analysis of Variance

Consider an experiment in which the treatments are combinations of two
or more influences on the response.

e The individual influences will be called factors

e The possible values for the factors will be called the levels of the
factor.

e The important concepts can be best illustrated in the case of two
factors.

e In an experiment with two factors A and B, a specific treatment
combination consists of factor A at level ¢ and factor B at level j.

— Assume that there are p levels of factor A and ¢ levels of factor
B under investigation.

— Thus the experiment consists of pg treatment combinations.
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4.2.1 Structure 1: Fixed Effects Models

e If the response to treatment combination %, j is observed on n;; ex-
perimental units we say that the ¢, 7 treatment combination is repli-
cated n;; times.

e Denoting the response for the kth replication by y;;; the model as-
sumes that the y;;; are realized values of random variables Y;;; having
the following wide sense model

o? (7,5, k) = (5,5, k)

E(Y}jk) =1n;; and cov (YéjkaY;'j’k’) = { 0 elsewhere

fork=1,2,...,n45,5=1,2,...,qand i =1,2,...,p.

e The sum of squares for this model i.e. for testing Hy : ;; = 7 is

> Tz% ; nij
ZZf‘G/n where Tj; = Y yiji , G:Z.:Tij
=2 k=1 i

e The error sum of squares is

nij P q Té p g Ny o
> Yik — 22— =2 > > (Yijk — Yij+)
i=1j=1k=1 i=1j=1Mij  i=1j=1k=1

_ T
where Yij+ = ”_Z
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e This model has pg — 1 degrees of freedom and the error degrees of
freedom is

P q
> > (nij—1)
i=1j=1

e It is often called the cell means model.

e Such an analysis is not of much interest since we have not included
any structure on the way in which the factors influence the response.

e One useful structure postulates the existence of an additive structure.

e Define the 2th row mean, jth column mean and overall mean by

tth row mean = ;4
_ Mt Mzt
q
jth column mean = 74;
_ My e A T
p
overall mean = 7,4

She1 X1 i
pq
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e Then p; = ;. — 4+, provides a measure of the expected influence of
the ith level of A relative to the overall mean.

o p; is called the main effect of the ¢th level of A or the ¢th row
effect.

e Similarly v; = 7, ; — 744 provides a measure of the expected influence
of the jth level of B relative to the overall mean.

o vy, is called the main effect of the jth level of B or the jth column
effect.

e Note that ¥}_; p; = 0 and ¥I_; v; = 0.
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Since we can write
Nij = T+ + Wi — T44) + (45 — T4+) + Mij — Tiy — T4j + Tt

we have a decomposition of the expected response to the i, ;5 treatment
combination into four components:

a general or overall mean; u = 7.,

an effect due to level ¢ of factor A; p; = 9;+ — N4+

an effect due to level j of factor B; v; = 74; — N1+

an effect of the form; \;; = 7;; — 7+ —7+;+74++ called the interaction
of the ith level of A with the jth level of B.

One useful way to interpret interaction is to note that the expected
response of the 7, j treatment combination relative to the jth level of B
is

Nij — M+

e Since the main effect of the ith level of A is ;. — 7,4, comparing
the effect of the ith level of A (relative to the jth level of B) to the
main effect of the ¢th level of A yields

(Mij — N4j) — (Mig — Tt) = Nij



210 CHAPTER 4. ANALYSIS OF VARIANCE

We obtain the same result when we compare the effect of the jth level
of B ( relative to the ith level of A) to the main effect of the jth level of
B i.e.

(Mij — Ti+) — (45 — T4) = Ay

e Thus interaction may be interpreted as the failure of the effect of a
factor to remain constant over different levels of the other factor.

— Note that ¥ A\j; = 0 for j = 1,2,...,¢ and ©I_; Ajj = 0 for
1=1,2,...,p.

o If all of the \;; are zero we have a simple additive structure for the
way in which the factors influence the expected response since in this
case

Nij = K+ pi +

e When the );; are not zero no such simple structure exists even though
we can define main effects for the factors.

e Put another way: if the A;; are not zero we need to know the expected
response at the i, combination of factors A and B; knowing the
expected response to the ¢th level of A and the expected response to
the jth level of B is not enough.

e Thus interaction effects measure departure from a simple additive
structure involving only main effects.

e Simply put: In the presence of interaction we must resort to the full
model in order to obtain a satisfactory representation of the influence
of the factors on the expected response.
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In order to obtain the sum of squares in an analysis of variance for the
model in which
E(Yir) = p+pi+ 75+ Ajj

e We first obtain the analysis for the reduced model
E(Yijr) = p+pi+7;

e Then since the error sum of squares for the full model is
P g i p q T2
2
S Yijk — >y
i=1j=1k=1 i=14=1Tj
and the full model sum of squares is
2
i=14=1 Tj

we can obtain the sum of squares for interaction adjusted for main
effects by subtraction.

— (This saves us from solving a set of least squares equations in-
volving 1 + p + ¢ + pq estimates).
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The design matrix for the model
E(Yijr) = p+pi +;

consists of n = ¥°F_; >1_4 n;; rows and 1 + p + ¢ columns.

e The rows corresponding to the ith level of A and the jth level of B
are of the form

10 ---

010 010 -0
10 --010 --- 010 -

o O
- O O

10---010-:--00-:--010 ---0
i.e. 11in the first column, 1 in the (¢+1) column and 1 in the (p+1+7)

column.

e The least squares equations X”Xb = X’y are thus

n r ory - 1y ki ke -k m G
ro 1 0 -+ 0 myp ni2 - N | | @ Ay
T2 0 ro --- 0 Ng1 Mgz - -- ’I’qu a9 Ag
,r.p O O st /r‘p npl np2 s npq Clp = Ap
ki nin mo1 --- npn ki 0 --- 0 dy By
k2 mi2 nag -+ mpe 0 ky -+ O ds By
_kq Nig Nag - Npg 0 0 --- kq__dq_ _Bq_
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where

—n =¥ X

— 1 = Ny = Ty N

— kj=mny; =S 0y

— G = T X1 Yij

— A =T =% Ty

- B =T =5i.T;

— Ty = Y01 Yiji

— m is the estimate of y
— a; is the estimate of p;

— d; is the estimate of +;

e We may write these equations in matrix notation as

n rr kT m m
r R N a A
k NT K d D
where
r’ (11,725 ...y Tp)
k' = (ki ko, ... k)
R = diag (7‘1, T, ..., ’I“p)
K = diag (kl,kg,...,]{)q)
N = (nij)qu

213
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Multiplication of both sides of the least squares equations by the non
singular matrix

1 of of
—%r I O
—1lk 07 1
n

yields the equivalent equations

T kT m G
rrl N -— %rkT a A — %rG
kr” K — %kkT d D - %kG

r
R —
NT -

c o 3

3 =31

If all r; are positive then R~! exists and if we multiply both sides by
the non singular matrix

1 0” o’
0 I 0
0 —(NT"—1kr")R™' 1

we obtain the equivalent equations

n r’ kT m G
0 R-— %rrT N — %rkT a A — %rG
0 0 C d D*
where
1 T T 1 T -1 1 T
C = K- “kkT INT - “krT| R [N——rk
n n n
— K-NTRIN
1 1 1
D* = D-—-kG— |INT — ZkrT| R7! [A — —G]
n n n

— D-N'R'A



4.2. TWO WAY ANALYSIS OF VARIANCE 215

e Thus d is any solution to Cd = D* and the sum of squares for factor
B adjusted for factor A is given by

dTD* — (D*)TC—D*

e To find the sum of squares for factor A ignoring factor B we need to

solve the equations
n r’ m| |G
r R a| |A

e Multiplication of both sides by the non-singular matrix

1 of
—%r I
yields the equivalent equations
n r’ m| G
0 R—lrr’ a| |A-1IrG

e Since R7! is a generalized inverse of R — %rrT it follows that
1
a = R [A— —rG]
n
1
= R'A--1G
n

e Thus the sum of squares for factor A adjusted for the overall mean

1S
T T

1
[A — —rG a
n

1

a = [A——rG
n

PoA2 @

- ya-2

i=1 T4 n

1
RA — —1G]
n
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e The sum of squares for the mean is clearly

CHAPTER 4. ANALYSIS OF VARIANCE

G2
7.

e In terms of the treatment totals 7; we thus have

SSMean

SSA

SSB adj for A
A x B

SSE

p g T2 pTi2+

Sy oy

i=1j=1Mij =1 T
P4 M P q Tfj
DI Yijre — > 2 —

i=1j=1k=1 i=1j=1 Tij

. D*TCD*

e The degrees of freedom are 1,p — 1, rank (C), pg — p — rank (C) and
Yh-1%j-1(ni; — 1) respectively.
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We now consider the important special case of balance where n;; =
r > 1 i.e. there are r replicates for each treatment combination.

e In this case

Ti = r+r+---+rT

= rq
ki = r+r+---+r

= rp

n = pqr
e Thus b 72 o
SSA =Y~ —_
i=1Tq  TPq

e Note that the 7, j’ element of C = K — NT”R !N is given by

- ki =Xl 3l § =
L I Y
1=

T3
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Thus in the balanced case C = K —NTR !N has j, j’ element given
by . .
Cix _{rp—%" 7=
J]I — _rp ./ .
s I F

so that

C=rpl, - TPyqT
q

e The equation

1
—I, [rplq — @1,115
q

rp
lrplq — —1q1:"; -

q

= lrpIq — %1@5

shows that a generalized inverse of C is r—lplq

e Also in the balanced case D* = D — NTR'A has jth element given

by
P n A P rA.
D—Z 174+ :D—Z 1
! i=1 Ti ! i=1 Tq
- D.—Z
g

so that D* =D — %qu.
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o It follows that

1
SS(B adj A) — lD -G

e We note that in this special case of equal replication, the sum of
squares for factor B adjusted for factor A is identical to that which
we would have obtained if we had found the sum of squares for B
ignoring A.

o The analysis is thus an orthogonal analysis.

e An explicit expression for the interaction sum of squares in the case
of equal replication is given by
2 2 2 2
T Ta 1y 67
r

-2 2

i=1 T4  j=1 TP rpq

P q
> >
i=1j=1

with pg—p—q+1=(p—1)(¢g — 1) degrees of freedom.
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If we define

~ G Ty Ty Ty
Y+++ = —5 Yivr+r = 5 Y+j+ = v Yig+ =
TPq rq P r

the expressions for the various sums of squares may be written as

SSMean = rpqy,,+
P
SSA = g Y (Firs — Us4)’

1

i
J=1

SSB = rp Y (Jrj+ — Yt4)’
g
SSAxB =r 21 Zl(?jijJr — Gitt — Yorjt + Jtt)’
i=1j=
p q _ 9
SSE = > > > (yijk — Uij+)

i=1j=1k=1



4.2. TWO WAY ANALYSIS OF VARIANCE 221

In order to investigate the expectations of the sums of squares for the
model we assume that we are operating under the model:

o2 (7,7, k) = (5,5, k)

E(}/;Jk) et ’th , Cov (}/;,th }/;:ljlkl) - { 0 otherWiSG

Then we have

?

E(Y) = var (Yig) + [E(Yip))*

g (T _ var (Sia Vi) + [B(Sha Vi)
r r
= o’ + 7'77%-
2
I T4\ _ var (=1 The Yie) + [B(S521 Shn Yign)|
rq rq
= o’ +rqn7.
g (T8 _ var (S Sha Yi) + [B(S Sy Yige)]
r rp
= o2+ 'rpﬁij
2
E (_2> _var (S iy S Vi) + (B 2 S Vi)
rpq rpq

= o+ rpgift,
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Putting these together yields
E(SSE) = pq(r — 1)o?

P g p g
E(SS(Ax B)) = (p—1)(g—1)o*+r 21 217722] —rq Zlﬁz%r —rp Zlﬁij + rpgi’ .
i=1j= i= j=

= p-Dg-DtrY N

i=1j=1

q
BSS(B) = (¢- 1o +rp X i — roait,
J:

q
= (¢— 1)02 +rp Zlfyij
J:
p

E(SS(4)) = (p—1)o°+rq ;mﬂ — Tpgia,

2 Lo
= (p—1)o"+rg)_ pi;
i=1
where
Aij = Mij — Mi+ — N4j + N4t
Vi = M4j— M+
pi = M+ — N+
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We thus have the following table of expected mean squares:

Source d.f. SS Expectation

Mean 1 TPy 4y o +rpaif ¢
A p—1 74 Y0y it t — Jr+4)’ o> +rqy i pi/(p—1)
B g—1 rp Y iy Gjr — Gt)’ o®+rpy i v;i/(@—1)

AxB (p-1(g-1) 730 X0 Wi+ — Tit+ — Ggr T 044+4)° 0° +r 20 S0 X/ (p—1)(g—1)
Error pq(r —1) Sy 21 ket Wik — Fig+)” o’
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4.2.2 Structure 2: Random and Mixed Models

When we consider the process by which treatments are selected in the
case where the treatments are combinations of two or more factors, we
face a more complicated situation than in the one-way situation.

e The reason for the complexity is that some factors may be fixed while
others are random.

e In order to consider all possibilities we concentrate on the case of
two factors A and B.

e Following previous work on the one way model we assume that the
yijx are realized values of Yj;;, with
o (7,7, K) = (i, k)

E(YijklS) =mnij ; cov (Yijk, Yijw|S) = { 0 otherwise

fore=1,2,...,p;7=1,2,...,qand k =1,2,...,r.
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e We concentrate on the balanced case because simple closed expres-
sions for all the relevant sums of squares do not exist for the general
case.

e We will, however, treat the case of two factors at two levels in the
unbalanced case.

e From the ANOVA table of the preceeding section we see that if both
factors are fixed i.e. no other levels are of interest other than those
used in the experiment, the previous expectations are appropriate.

e Note that one can test the hypotheis of no main effects in the presence
of interaction if » > 1 (but not if » = 1) but that such a test is
of doubtful value if interactions are present since reporting of the
responses at each treatment combination is the appropriate analysis.

e Later we present a test of a particular form of interaction when r = 1.
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Both factors random

One useful model in this case assumes that

ot +o5+o0;5 (¢,5) = (i,5)

5 ./ -y ;
o V=17 F)
E(ni)=p ; cov (nij,miny) = gé i #1,5) ij
0 otherwise

e Under this model

E(n}) = var (nij) + [E(mij))”
= a%+0§+0§+u2

o It follows that

D q
E (T’ Zl Zl n;| = rpau’ + rpgo; + rpgo; + rpgos
1=1)=
E P —2 _ 2 2 2 2
rq 21 M. | = rpgu”+ rpgoi + rpoy + rpo;
l:
P2 | = T4 +TGOL+TPGos + TG0y
J:

E (rpqﬁ_zH) = 7"_70q,u2 + rqaf + rpa% + ra§
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The table of expected mean squares is thus given by

Source d.f. Expectation

Mean ! o + rpqu® + rpgo® + rqoi + rpoj + roj
A p—1 o? + 03 + rqo}
B g—1 o? + 03 + rpol

AxB (p—1)(g—1) o*+o03

Error pg(r —1) o2

e The sums of squares being calculated exactly as before.

e Note that in this case we can test main effects even if » = 1 when
interaction is present.

e But if » = 1 we have no test for interaction.

e The same cautions about interpreting main effects still apply al-
though interpretations now depend on the relative importance of
the variance components 0%, 0% and o2
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One factor fixed, one factor random

One useful model in this situation assumes that

o3 +03 (7,5) = (i,5)
E(nij = pi) ;5 cov (i, mijr) = o3 i #i,5) =73

0 otherwise

e Under this model

E(n%) = var (ny) + [E(m))°
= ,u? + 05 + 032,

o It follows that

b q b
E ("" > ;| = ra X ui+rpgo; +rpgo;

i=1j=1 i=1

q ] i+ = rq ] KH; = Tpoy T TPO3
1= 1=

2
q 3 rq
E (rp > nij = ( ,Uz‘) + rpgo + rqo}

j=1

M= M-

p 1

?

2
_ rq
E(rpgn;,) = — ( ,Uz‘) + rpgo + roj
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The table of expected mean squares is thus given by

229

Source d.f. Expectation
A p—1 o2 +ro2+rq (Zle p? — (2'5“")2> /(p—1)
B g—1 o? +ro +rpo3
AxBl(p—1)(g-1) o?+ro?
Error pg(r —1) o?
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4.2.3 Scheffe’s Approach

Scheffe, in his book, The Analysis of Variance, provides a careful treat-
ment of the random and mixed model. Scheffe’s approach is based on
treating the cell means as random variables with distribution determined
by the method of selection of the levels of the factors. He then defines
effects as linear combinations of these random variables. The approach is
very informative in situations where it is not obvious as to which effect is
fixed and which is random.



4.2. TWO WAY ANALYSIS OF VARIANCE 231

4.2.4 Two way analysis of variance two factors each at two
levels

We now investigate the unbalanced situation where we have two factors
each at two levels.

e Thus we assume y;j;, are realized values of Yj;; with
E(Yijr|S) = mij = p+ pi + 75 + Aij

2 o 1IN
cov (Yige, Yiyi|S) = { 0" (0.7, K) = (i3, k)

0 otherwise
e We know that
2 Mij 2 T2
i1=1j5=1k= i=1j=

o If we find the sum of squares for the model in which };; = 0 we can
find the sum of squares for interaction by subtraction (this avoids a
set of least squares equations with 1+ 2 + 2 + 4 = 9 unknowns).

e For the model in which A;; = 0 we have the design matrix X given
by
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e The least squares equations for this model are thus

where

n
ni+
na+
N1

| 42

N1+ N2+ N4l Ng2 m G
ni+ 0 nu np || a Ay
0 moy mor ma || a2 | = | A
nit m21 n4r 0 d; D,
nig neg 0 mnyp||da| | Do
niy = ni1+ni2
N2+ = MNg1 + N22
niyyp = nip+no
Ny = Njiz + No2
n = ni1 + ni2+ no1i + no2

Ay = T+ T
Ay = T +Tr
Dy = Tip+ Ty
Dy = Ty + Ty
G = Ty +Tip+To + T

and m,ay,as,d; and dy are estimates of u, p1, p2, 71 and v, respec-

tively.
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e Incredibly tedious algebra shows that

where

SSA x Badj, Aand B =

2
SSMean = g
n
2
SSA = Ai
nni+n2+
D* 2
SSB adj. A = P77
ani+na+
nn11n12n21n22([*)2

a

= Ty +Tio+ 1o + T
= noyTh1 + notTi — nipdo — nit 1o

= n91n12111 — naini1Ti2 + niyneeds — niyneThe

1 1 1 1
— Ty — —Tio— —To1 + —T
ni n12 n21 n22

2
N1+N41N24N42 — (R11N22 — N12N21)
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e Under the model
E(Yije|lS) = nij = p+ pi + 75 + Nij

o (7,5, k)= (i,4,k)
0 otherwise

Ccov (Y;jky Y;J’j’k’|S) = {

we have that

E(G|S) = numnu + niama + naina1 + noanoe
var (G|S) = no?
E(A[|S) = naynum + napnianie + niinainen + niynganss
var (A|S) = niingino?
E(D*|S) = nitneiniimin — Netniinianie + Ni+noeleifor — N14+M21M22722
var (D*|S) = niinas(niinianas + nipnaingg)o’
E(I*|S) = m1—m2—na1 + N2
var (I*|S) = <1 P S 1)02
ni1 M2 N21 Na
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e We can show that all covariances between G, A, D* and [* are zero
so that the sums of squares under S and normality assumptions are

independent.

e The table of expected values for the mean squares is, under S:

Source | d.f. Expected Mean Square
A 1 0.2 4+ [n2+(n117711+n12n127712)—n1+(n217721+n21n227722)]2
nni4nay
B 1 0_2 _|_ [n2+n12n11(7711—7712)—n1+n21n22(7722—7721)]2
ani4nay )
AxBl 1 o2 + nn11n12n21n22[772—7712—7721-1-7722]
2 2 2
Error | 1 o? (21,231 (n;; — 1))
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If we now assume that the S structure for n;; is

Enij) = p
o? + ag +a2 (i,5) = (4,9)
o i'=1,§) # j
cov (mij, nijr) = Gé i i j’; ij
0 otherwise

i.e. both factors are random then

cov (M1, M2) U%
cov (m1,m21) = 05
cov (m1,m22) = 0
cov (ma,m21) = 0
cov (121, M22) = U%

and

var (n11) = var (n12) = var (n91) = var (n) = a% + ag + 0'32)
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e Using these results we can calculate the expectations of the sums of
squares. The formulas are complicated and will be determined by an
easier method later on.

e What is important is that the covariances between A and I*, A and
D* and between D* and I* are not zero unless

n11 = N12 = N21 = N22

e Thus the sums of squares are not independent even though they are
orthogonal.

e This is one of the major problems in unbalanced situations with
random effects models.

e Similar results hold when the model is a mixed model i.e. when

Emij) = p
0-% + 0?2> (ilaj/) = (27-7)
cov (nij, nirjr) = o3 i F5 =7

0 otherwise
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4.3 Nested models

Consider an experiment designed to investigate inter-laboratory variabil-
ity in which we have p laboratories, n; technicians at the ith laboratory
and n;; readings by the jth technician at the th laboratory.

e One model assumes that the observed responses y;ji are realized
values of Y;;; which have structure S defined by

2 4 -/ / . .
- 1S) — 1. ooy ot @50 E) = (65, k)
E(Yijk|S) = mij and cov (Yijk, Yijur) = { 0 otherwise
e Note that technician 7 in laboratory ¢ has no relation to technician
4 in laboratory 7’.

e That is, if we consider laboratories as a factor and technicians as a
factor there is no logical meaning to any comparisons n;; — ;.

e In such cases we say that factor B (technicians) is nested within
factor A (laboratories).

e Note also that readings are nested within technicians. (In fact the
error term is always nested in the other treatment combinations.)

e This fact forces us to define a model for the 7;; in a different way
from the other two factor models.

e For ease of exposition we consider p levels for factor A, g levels for
factor B within each level of factor A and r replications within each
level of B.
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4.3.1 Case 1: A and B both fixed

A reasonable model for 7;; is provided by defining the overall effect as

S Sy =7
H=— Nij =1
Pq i=1j=1 Y i

Then the main effect of the 7th level of A is defined as

14 _
Pi= =D Mij— k=Tix — 4
qj=1

The main effect for the jth level of B within the ith level A is defined
as

1 ¢
Yij = Mij — ~ ijf
q j
e Thus
Nij = 1+ pi + Vij

Note that there is no need to introduce an interaction of A with B
in this model.
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e The sum of squares for the model is clearly

with pq degrees of freedom.
e Since the sum of squares for the model in which 7;; = p + p; is

i=1 Tq

with p degrees of freedom we have that the sum of squares for factor
B within A is

IM@

with pg — p = p(q — 1) degrees of freedom.

e The relevant sums of squares are thus

2
SSMean = i
rpq

P T? G?

SSA = Sk

i—zl rq rpq

P P q .
SS Error = ZZnyjk—ZZ ?
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e Under the model S we have

E(—%) = i{Q[E(TZ)] + var (Tij) }
= i +o
(_2;) _ %{[E(n+)]2+var (Ti4)}

r(Jd 2
= —| X 77@'3') +0°
q \j=1

E(G—) _ ! {(riinm>2+var(G)}

rpq i=1j

= g (iinm> +U2

i=1j=1

241
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e Thus we have

E(SSE) = (r—1)o?

P q

2
E(SSB within A) = ) ) 7722J + pgo® — - Z Z nw) + po?

1=1j5=1

= p(g—1)o°+r 21 Zl(mj — iy )?
i=1j=

E(S$SA) = Z(Zn) +po —p—(zznu) o

q = j=1 =1y

=

—

2 L 2
p—1o"+rqY (Miy — M++)
=1

~

e Hence we have the ANOVA table:

Source d.f. Expected Mean Square
Mean 1 o’ + rpqﬁi n
A p—1 | +rgSi (T — 7+4)?/(P— 1)

B within A | p(¢—1) |o?+r¥t, E}’:l(mj — i+)?/p(g — 1)
Error (r—1)pq | o>
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4.3.2 Case 2: A and B both random

In this case we assume that

i + 03 ( J) (4,7)

E(ni;|S) = p and cov (n5, nirjr) = ot i) #J

0 otherw1se
and we have
En;) = w'+oi+0;

_2 1 (& \°
E(UH) = ?E ;nij
2 2 U%

= K +0'1+E

2
1
E(7i,) = ( i )
( ++) (pq) zzlgz )
1 2
— ol 2
p rq
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It follows that

E(SSB within A) = p(q— 1)o* 4+ rp(q — 1)o3
F(SSA) = (p—1)0* +r(p— 103+ ra(p — 1)}

which leads to the analysis of variance table:

Source d.f. Expected Mean Square
Mean 1 0?4+ rqot + ro2 + rpgu’
A p—1 |o?+ros+rqo}

B within A | p(¢ — 1) |0 +ro3
Error pq(r —1) | o?
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4.3.3 Case 3: A fixed and B random

Here we assume that

0 otherwise

2 i/, 7Y — i,'
E(ijS) = u; and cov (nijani'j') — { ) ( .7) ( ])

In this case

L (55
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It follows that
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E(SSB within A) = p(q — 1)o? 4+ rp(q — 1)o3

E(SSA) = (p—1)o*+r(p—1)os +1rq Z(Mz — 1)’

p
=1

?

Thus the analysis of variance table is

Source d.f. Expected Mean Square
Mean 1 o +rqo? + ro3 + o (=P i)’
A p—1 |o®+ro+rgSiy(pi —a)*(p—1)
B within A | p(¢q—1) | 0? +ro3
Error pg(r — 1) | o?
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4.4 Non Additivity

In a two way analysis of variance with interaction present and all n;; =1
it is clear that the error sum of squares is 0 and the presence of interaction
cannot be detected.

e In Tukey (Biometrics, 1949a - One Degree of Freedom for Non-
Additivity) a test for the presence of interaction of a certain type
was developed.

e Tukey assumed the model
E(Yi;) = p+ pi + 7 + Apiv;
which is a non-linear model.
o A test for A = 0 tests whether interaction of the form Ap;~; is present.
o If 41, p; and v; are known the least squares estimate of A is found by
minimizing
P q )
> 2 (Yij — 1= pi — v — Aoij)
i=1j=1
e Differentiating with respect to A yields

2 1(yz-j — = pi — v — Apiv;) (—2pi7))
1=1)=
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e Equating to zero and solving for A yields

S S (Wig — 1= pi — v — Aeiy) piY

A=
i S i

e If we replace 11 by m = §is, pi by @i = Gy — Gos and 7 by ¢; =
Y+j — Y++ we find that an estimate of A is

P q - _ _
2i=1 Zj:l(yij — Yi+ — Y45 T y++)aicj
P q 2.2
Ei:1 Ej:l a; C;j
SP oS aqey;
i=12j=1 AiC;jYij
2.2

A =

o If we define k;; = a;c; then

i1 Y41 kijyij

\ =
i1 X1 K

e Note that ¥}_; X7, kjj = 0 so that }_; ¥7_; kjjy;; is a treatment
contrast (but with coeflicients that depend on the datal)

e The sum of squares for such a contrast is formally defined as

(= xi, kijyij)2

SSNA =
S i1 K

and is called the non-additivity component of the error sum of squares.
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e The non-additivity model is tested by an F' test of the form

SSNA/1
(SSE-SSNA)/[(p— 1)(q— 1) — 1]

which under Hy : A = 0 has an F distribution with 1 and (p—1)(¢—
1) — 1 degrees of freedom.

e The distributional properties are outlined by Graybill; Linear Statis-
tical Models; McGraw Hill 1961).

e Since the original paper many extensions have been developed.

e It has also been shown that the test is a score test of Hy : A =0
under normality assumptions.

e Note that the test for non-additivity is not a test of the presence of
interaction; only of a particular type of interaction.

e Consider the following data set:

B1 B2 B3| Total
Al |25 10 O 35
A2 5 30 50| 85

Total | 30 40 50 | 120
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e Then

25
a = ——
! 3

25
az = +—
2 3
by = -5
b = 0
bs = +5

e The “contrast” for non-additivity is given by
(-3) o)+ (5] 00+ (-3) +5)0) +
(+2) 9)6)+ (+3) ©)@30) + (+3) (+5)(30) =

e Thus the sum of squares for non-additivity is

625 x 14
3

(625x14)2

4x (%)

e The interaction sum of squares is
10100
SSInt = ———

6
e Thus
10100 2750

and the F statistic is
25 x 49 X 6

= 2.67
2750
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e Since Fg;(1,1) = 161 we do not reject H, : A = 0 even though there
is clear evidence of interaction.
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4.5 Higher Way Models

With current software models involving 3, 4 and more factors can be easily
fitted to observed data.

e What is difficult is the interpretation of interaction of three or more
factors.

e A three factor interaction A x B x C means that the two factor
interaction, A X B changes as the levels of the third factor C change.

o Thus if A represents levels of a drug, B represents disease severity
and C represents gender, a three factor interaction means that
the effect of drug dosage changes with disease severity (A x B
interaction) and that this interaction is different for males than
for females.

e In general a w order interaction, w > 3, means that the w — 1 order
interaction changes as the level of the remaining factor changes.

e Interpreting these interactions requires a great understanding of the
subject matter under investigation.
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4.6 Generalizations

4.6.1 Conditional Error

It is easy to generalize the principle of conditional error - suitably extended
it underlies all linear model procedures. The basic ideas can be illustrated
for a model of the form

E(Y)=X18; + X8, + X38; = X8 and var (Y) = o’I
where

X = [X; X3 X3] is of rank r

X is n X p;
X5 is n X pg
X3 1S n X p3

The least squares equations in partitioned form are
XiX; X{Xy; X{X3 || by Xiy

XgXl XgXQ XgX:), b2 = ng
XgXl Xg:XQ XgX;J, b3 ng
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Multiplying both sides by the non-singular matrix

I 00
~XTX,(XTX,)" I 0
“XTX,(XTX))~ 0 I

yields the equivalent set of equations.

X{Xl X{X2 X{Xg b1 X{y
0 X5D1X2 XgD2X3 b2 = Xngy
0 X§D1X2 Xg:Dng b3 Xngy

where D1 =1 — Xl(X{Xl)_X,{

Multiplying both sides by the non-singular matrix

I 0 0
0 I 0
0 —X§D1X2(X5D1X2)_ I

yields the equivalent set of equations:
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X{Xl X{Xg X{Xg b1 X{y
0 XgD1X2 XgD2X3 b2 = Xngy
0 0 X§D12X3 b3 XgD12y

where Do = D — D1X2(XTD1X)_XTD1 .

e Note that Dy and Dy, are unique, symmetric, idempotent and that

DiD;2 = Dy2D; =Dy

e Clearly
bs = (X3 D12X3) X3 Doy + [I — (X" D12X3) X3 D12X3) 73
and thus
(XID;X3)by = XiDyy — XIDb;
(XTX )by = X]y — XIby — X3 bs
e It follows that

by = (X3D:1Xs)” [X3D1y — XiD1bs] + [I - (X7 D1X5) X D1X5) 2o
by = (X{Xy)” [X{y— X{Xoby — X{ X3bs| + [T — (X{ X)) X{Xy] 2
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e We note that
SSE = yly —y'Xb

= y'y —y ' Xib; — y"Xoby — y' X;3bs

= y Xy (X7X1)” [XTy — X{Xsoby — —X{ X3bs] — y" Xobs — y' X3bs

= y'Diy — y'D1Xsby — D1X3b;

= y'Diy — y" D1 X5(X7D1X;)” X D1y — X5 D1 X3bs] — D1 Xsbs

= y'Diy — y' D1 X3(X3D1X3) X D1y
—YTD12X3(X§D12X3)_X§D12Y

Suppose now that B3 = 0 is equivalent to a hypothesis about a set of
linearly estimable functions.

e Setting bs = 0 yields

SSCE = y' D1y — y' D1 X5(X2 D1 X,) " XI D1y

e The difference between these two error sum of squares is thus
y  D15X3(X3D12X3)” X3 D1oy = bs X3 Dioy

which we call the sum of squares due to X3 adjusted for X; and Xy
and write as

SS (X3|X1, X2)
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e We also note that
SS (X3|X;1) = y'DXy(XID,X,)"XID,y
= bIXID;y
SS (Xy) = y' Xu(X{X1) Xiy
= b{X]y

e We thus have the ANOVA table:

Source d.f. Sum of Squares (Deviance)
SS (X4) rank (X7X;) bl XTIy
SS (X2|X1) rank (XgD1X2) ngngy
SS (X3|X1, XQ) rank (X§D12X3) ngnggy
SSE rank (D123) yTD123y
Total n yly

Diy3 = D) — D Xy(XID:1X,) bI XID; — D15X3(XI D15 X3) " XI Dy,
= D3 — D12X3(X§D12X3)_X§D12
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It is useful to record the expected values of the sums of squares in the
ANOVA table.

e Recall that for any sum of squares we have:

E(SS) = E(YTAY)
= Eltr (AYYT)]
= tr (AE[YYT))
= tr (A[up” + var (Y)))
= BTXTAXB +tr (A)o?

e For SSE we thus have

XTAX = XTI - X(XTX)"X"]X
=0
tr(A) = n—r
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e For SS (X3]|X1, X3) we have

XTAX = XTDjy — DpX3(XIDpX3) X2 Dpp[X; Xy X

X7
= | X3 | [00 D»pX3]
X3
(00 0
=100 0
0 0 XIDypX3

tr(A) = tr(D1X3(X5D12X3)" X3 D)
= rank (D12X3)
= rank (X3D;5X3)

o It follows that

E(SS(X3]X1, X)) = BTXID1pX38 + o’rank (X2 D15 X3)
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e For SS(X3|X;) we have

XTAX =

XTD, X,(XID;X;,)"XI D, [X; X, X

X7

X7 1[0 D;X; D1 X,(XID 1 X,)"XI D, X5]
XT

L 3

[0 0 0

0 XID;X, XTD ;X3

_0 X§D1X2 XgD1X2(XgD1X2)_XgD1X3

tr (D1X5(X3D:Xs) " X5Dq) = rank (D;X»)

o It follows that

E(SS(X32]X1))

= rank (X2D;X,)

= BIXID|X,8, + BIXID X,(XID; X,)"XID, X34,
+2B82XTD X 38; + o?rank (X1 D, X,)
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e For SS(X;) we have

XTAX = XTX;(XTX))"XT[X, X; X]

o It follows that

E(SS(X4))

X1
XT X X (XTX )" XTX, X, (XTX,)"XTX;
X3

 XTX, XTX, XTX,

XgXl XgXl(X{Xl)_X{XQ XgXl(X{Xl)_X{Xg
ngl XgXl(X{Xl)_X{XQ X3TX1(XF{X1)_XF{X3

tr (X1(X{X;)"X]) = rank (X;)
= rank (XTX,)

= B1XTX18; + B3 X5 Xy (X] X1) X| X5,
+03 X3 X1 (X]X1) " X[ X8 + 261 X] X3,
+2031 X1 X383 + 285 X5 X1 (X1 X1) X[ X308,
+o?rank (X] X;)
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It is clear that we may extend the development to an arbitrary number
of sets of covariates. Thus if

N
E(Y) = lejﬁj
=

e Define
D, =1
D, = I-X;(XTxX,)"XxT
D;; = D; — D Xy(XID,X,)"XID,

Digs = Dy — Do X3(X3DpX3) " XI Dy,

D,y = Drre1) — Drirot)Xu(Xi Dr(r—1yXs) "Xt D)
for k=1,2,..., N where (k) = 12---k and 7w (0) = 0.
e Now define

P, = X;(XTx))~xT

= Dy - D
P, = D Xy(XID,X,)"XID,

D; — D2

Pi = D)X (XgDrr—1)Xr) "X5 Do)
= Dri-1) — D)
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e We then have

N
SS(Model) = 3 y Py
k=1

1.e.

SS (Xi|Xp_1,...,Xo) =y Py for k=1,2,...

where Xy = 0.

e We note that

for y=0,1,2,...,k— 1.

P.X; =0

e Since E(Y) = £, X8, it follows that

E(YTP,Y)

E(tr [YTPLY]
Eltr (P, YYT)
tr (PLE[YYT])

tr (Px{c’T + E[Y]E[YT]})
rank (P;) + E[YT|P,E[Y]

)
]

= rank (P}) + E[P.Y]TE[P,Y]

263
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e Now
N
P,E(Y) = Py ZXjﬂj>
j=1
N
= > PX;8,
j=1
N
= ZPkX],B]
ji=k
so that

N T /N
E(YTPkY) — o’rank (Pg) + (Z P.X;3 ) (ZkPka/Bj>
=

Mz

N
kglz—:k TX;CPkaBj

= o’rank (P;) +

J
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Depending on the assumptions about the stochastic structure of the

B; we get various types of models. Formally we have:

¢ Fixed Effect Models:
E(B;) = B; ; var (B;) =0
forj=1,2,...,N
e Random Effects Models:
E(B;) =0; var (8;) = 071
fory=2,...,Nand X; =1, B; = p.
e Mixed Models:
o E(B;)=PB;; var (B;) =0 for jEF
o E(B;)=0; var (B;) =o:I for j € R
ocov(B;,B;) =0 for 7,5 €R; 7 #j

o Fc{1,2,...,.N} Rc{1,2,...,N} FNR=10
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4.7 Balance, Orthogonality and Additivity

Consider, for simplicity, the linear model with three effects, i.e.
E(Y) = X8 + Xof; + X503
e Of interest is a condition under which the effect of the covariates X3
is the same whether or not the covariates X5 are in the model.
e Recall that
SS (X3|X;) = y' D1 X3(X2D:X;3) " XI Dy

and
SS (X3/X1, Xa) = y' D12X5(X3 D12X35) " X5 Dioy
where
D, = I-X;(XTX,)"XT
Dy, = D; — D Xy(XID,X,)"XID,
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e Clearly these two sums of squares are identical if and only if

D; XI'(X3D;X3)"XID; = D15 X3(XI D5 X3) " XE Dy,

e This implies that (multiply on the left by XI).

XID; = XiDy,
= XID; - XID,X,(XID,X,)"XID,

or

XID;Xy(X7 D X5) " X2D; =0

e Thus equality of the sum of squares implies (mutiply on the right by
X5)
XID;X3=0

e Conversely if X2D;X3 = 0 then
D2X3=D1X;
and the two sums of squares are equal.

e Thus the two sums of squares are equal if and only if

XD X3 =0

e In such a case we say that X5 and X3 are balanced with respect to
X1

e We consider two examples of this type of balance.
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4.7.1 Linear regression - two covariates

Here
E(Y;) = Bo + Bza;i + B3iwa
and
XTX, = n
XTX, = nz,
XTX; = nz;

n
T
X2X3 = Zﬂﬁzz'ﬂﬁ:az'
i=1

Thus the condition that X2 D;Xj3 = 0 is equivalent to

(="

n

_ n
Z To;T3; = =122
1=1

=

n i=1%3i)

N—"

or .
> (z2i — Zo) (23 — T3)
i=1

i.e. the sample correlation between zo and z3 is zero.
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4.7.2 Two way analysis of variance

The model is

E(Yijk) = p+ o + f;

fore=1,2,...,p,5=1,2,...,qand k —1,2,.

XTX,;

XTX,
XTX,
XTX;

171

n

.., n;j. In this case

[n1+ noy ... ’I’Lp_|_]

[n+1 nNyg... n+q]

(mij)

e Thus the condition that XJD;X3 = 0 is equivalent to

1.e.

ni+
na+
i (41 ny2
Ni+Ny
’I’Lij = n

269

e Note that if n;; = r for all ¢ and j then n;; = rq, ny; = rp and
n = rpq and the condition is satisfied.
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e In general we define a design to be balanced if the number of obser-
vations in the finest classification is the same.

e This definition is stronger than the balance condition above but is
convenient for complicated designs and is easy to check.

e Orthogonality is defined by the condition that y7Q;y and y”7Q2y
satisfy Q1Q2 = 0.

o When the covariance structure of Y is 0?I and normality is as-
sumed, orthogonality implies independence of y7Qy and y” Qay.

o If the covariance structure is not %I then orthogonality does not
necessarily imply independence (see the unbalanced two factor
case).

e Additivity will mean that there is no interaction between two sets
of factors so that main effects due to these sets of factors are well
defined and interpretable.
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4.8 Notation for Models with Linear Predictors

e The quantity X3 is called a linear predictor and is fundamental
in the analysis of the general linear model, logistic regression models
and log linear models.

e In this section we introduce notation designed to facilitate description
of these models.

e The notation is due to Wilkinson, G.N. and Rogers, C.E. (1973)
Symbolic Description of Factorial Models for Analysis of Variance
Applied Statistician 22, 392-399.
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4.8.1 Covariates in Linear Predictors

A covariate in a model (also called independent variable, regressor, ex-
ogenous variable) is an auxiliarly measurement recorded with each value
of the response variable.

e A continuous covariate is a covariate whose values are recorded on
an interval or ratio scale.

o Continuous covariates are denoted by X, W, Z and specific values
by z,w, z.

e A factor is a covariate with nominal or ordinal values. A specific
value of a factor is called a level.

o Factors are denoted by the letters A, B, C,... and the levels by
Ay, Ag, ..., Ay,. Typically the levels of a factor are taken to be
1,2,...,pa-

o A factor with py4 levels in a linear predictor is equivalent to fitting
pa—1 indicator (dummy) variables with the jth indicator having
value equal to 1 if A has level 7 and 0 otherwise.

o By convention the lowest level of the factor does not have an
associated indicator variable.
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e The interaction of two factors is denoted by A.B. Fitting inter-
action terms in the model is equivalent to fitting (p4 — 1)(pp — 1)

indicator variables with values given by the products of the indicator
variables for A and B.

o In general a kth order interaction is denoted by A.B.C'... K
and is equivalent to fitting (p4 —1)(pp—1) - - - (px — 1) indicator
variables with values given by the product of the indicators of
all k£ factors

o Equivalently a kth order interaction fits the product of the (k —
1)st interaction indicators and the kth factor indicators.

e The interaction of a factor and a continuous covariate is denoted by
a term of the form A.X and is equivalent to fitting a linear predic-
tor in which the continuous covariate is allowed to have a different
coefficient for each level of the factor.

o Similarly the term (A.B).X would indicate a predictor in which
the continuous covariate X is allowed to have a different coeffi-
cient for each value of the term A.B.
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4.8.2 Interpretation of Estimates

e The coefficient of a continuous covariate in a linear predictor rep-
resents the effect on the linear predictor of a unit change in the
covariate.

o More precisely: If b is the coefficient, b represents the change
in the linear predictor associated with a unit change in the co-
variate, assuming that all other terms in the linear predictor are
unchanged.

e The coefficient of an indicator for a factor A, say a(j) represents the
effect on the linear predictor of a change in the factor level fron level
1 to level j.

o More precisely: a(j) represents the difference in the linear pre-
dictor at level 5 of A and the linear predictor at level 1 of A,
assuming that all other terms in the linear predictor are un-
changed. If there are interaction terms involving A in the model
then a(j) repesents the difference in the linear predictor at level
7 of A and the linear predictor at level 1 of A at level 1 of those
factors with which A has an interaction.

e The coefficient of an indicator for an interaction term, say a(j).b(k)
represents the difference between

o the effect on the linear predictor of a change from level 1 of A
to level 7 of A at level k of B.

o the effect on the linear predictor of a change from level 1 of A
to level j of A at level 1 of B.
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o Interpreting interaction terms of two factors involves considera-
tion of two by two tables of the form

Factor B
Factor A | Level By | Level B;
Aq LP(1,1) | LP(1,y)
A; LP(i,1) | LP(3i,j)

where LP(i1,19) denotes the linear predictor at level 4; of A and

level i of B.

o Interpreting interaction terms of a factor and a continuous co-

variate involves consideration of a table of the form

Factor A

Model

Al LP(l,iB) :,30+,31£E

A, LP(i,z) = po+ (A.B)(3)x

where LP(i1,19) denotes the linear predictor at level 4; of A and
level 49 of B. Thus (A.B)(7) represents the difference between
the slope of = at level ¢ of A and the slope of z at level 1 of A.
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4.8.3 Combination of Model Terms in Linear Predictors

Model terms may be combined according to a variety of operators, the
notation is designed to allow great flexibility in fitting models.

e dot

o A.B denotes the interaction between two factors
o AA=A
o X.X # X and X.X # X?2. For continuous covariates create a
new covariate equal to the product to fit terms such as X?2.
e addition
o A + B stands for the model intercept plus factor A plus factor
B.

o A+ B+ A.B stands for the model intercept plus factor A plus
factor B plus interaction between A and B.

o A+ X stands for the model intercept plus factor A plus X, a
common slope for each level of A

o A+ X + A.X stands for the model intercept plus factor A plus
a different slope on X for each level of A
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e crossing

o Ax B stands for the model intercept plus factor A plus factor B
plus interaction between A and B. i.e. Ax B=A+ B+ A.B.

e nesting

o A/B stands for the model A+ A.B

o Nesting occurs when a linear predictor is such that differences
between levels of A are meaningful but differences between levels
of B are only meaningful when specific to a level of A. e.g. if
A represents different facilities and B represents different tech-
nicians then comparing technician 2 and technician 3 in facility
1 makes sense. Comparing technician 1 and in facility 1 with
technician 1 in facility 2 makes no sense since the assignment of
levels to technicians within a facility is arbitrary.
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