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Chapter 1

Linear Vector Spaces

1.1 Definition and Examples

Definition 1.1 A linear vector space V is a set of points (called vectors) satisfying the
following conditions:

(1) An operation + exists on V which satisfies the following properties:

(a) x + y = y + x

(b) x + (y + z) = (x + y) + z

(c) A vector 0 exists in V such that x + 0 = x for every x ∈ V
(d) For every x ∈ V a vector −x exists in V such that (−x) + x = 0

(2) An operation ◦ exists on V which satisfies the following properties:

(a) α ◦ (x + y) = α ◦ y + α ◦ x

(b) α ◦ (β ◦ x) = (αβ) ◦ x

(c) (α + β) ◦ x = α ◦ x + β ◦ x

(d) 1 ◦ x = x
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where the scalars α and β belong to a field F with the identity being given by 1.
For ease of notation we will eliminate the ◦ in scalar multiplication.

In most applications the field F will be the field of real numbers R or the field of complex
numbers C. The 0 vector will be called the null vector or the origin.

example 1: Let x represent a point in two dimensional space with addition and scalar
multiplication defined by

[
x1

x2

]
+

[
y1

y2

]
=

[
x1 + y1

x2 + y2

]
and α

[
x1

x2

]
=

[
αx1

αx2

]

The origin and negatives are defined by
[

0
0

]
and −

[
x1

x2

]
=

[
−x1

−x2

]

example 2: Let x represent a point in n dimensional space (called Euclidean space and
denoted by Rn) with addition and scalar multiplication defined by




x1

x2
...

xn




+




y1

y2
...

yn




=




x1 + y1

x2 + y2
...

xn + yn




and α




x1

x2
...

xn




=




αx1

αx2
...

αxn




The origin and negatives are defined by



0
0
...
0




and −




x1

x2
...

xn




=




−x1

−x2
...

−xn




example 3: Let x represent a point in n dimensional complex space (called Unitary
space and denoted by Cn) with addition and scalar multiplication defined by




x1

x2
...

xn




+




y1

y2
...

yn




=




x1 + y1

x2 + y2
...

xn + yn




and α




x1

x2
...

xn




=




αx1

αx2
...

αxn



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The origin and negatives are defined by




0
0
...
0




and −




x1

x2
...

xn




=




−x1

−x2
...

−xn




In this case the xi and yi can be complex numbers as can the scalars.
example 4: Let p be an nth degree polynomial i.e.

p(x) = α0 + α1x + · · ·+ αnxn

where the αi are complex numbers. Define addition and scalar multiplication by

(p1 + p2)(x) =
n∑

i=0

(α1i + α2i)x
i and αp =

n∑

i=0

ααix
i

The origin is the null function and −p is defined by

−p =
n∑

i=0

−αix
i

example 5: Let X1, X2, . . . , Xn be random variables defined on a probability space and
define V as the collection of all linear combinations of X1, X2, . . . , Xn. Here the vectors
in V are random variables.

1.2 Linear Independence and Bases

Definition 1.2 A finite set of vectors {x1,x2, . . . ,xk} is said to be a linearly inde-
pendent set if ∑

i

αixi = 0 =⇒ αi = 0 for each i

If a set of vectors is not linearly independent it is said to be linearly dependent. If
the set of vectors is empty we define

∑
i xi = 0 so that, by convention, the empty set of

vectors is a linearly independent set of vectors.

3



Theorem 1.1 The set {x1,x2, . . . ,xk} is linearly dependent if and only if

xt =
t−1∑

i=1

αixi for some t ≥ 2

Proof: Sufficiency is obvious since the equation

xt −
t−1∑

i=1

αixi = 0

does not imply that all of the coefficients of the vectors are equal to 0.

Conversely, if the vectors are linearly dependent then we have

∑

i

βixi = 0

where at least two of the βs are non-zero (we assume that none of the x’s are the zero
vector). Thus, with suitable relabelling, we have

t∑

i=1

βixi = 0

where βt 6= 0. Thus

xt = −
t−1∑

i=1

(
βi

βt

)
xi =

t−1∑

i=1

αixi 2

Definition 1.3 A linear basis or coordinate system in a vector space V is a set E of
linearly independent vectors in V such that each vector in V can be written as a linear
combination of the vectors in E .

Since the vectors in E are linearly independent the representation as a linear com-
bination is unique. If the number of vectors in E is finite we say that V is finite
dimensional.

Definition 1.4 The dimension of a vector space is the number of vectors in any basis
of the vector space.

4



If we have a set of linearly independent vectors {x1,x2, . . . ,xk}, this set may be ex-
tended to form a basis. To see this let V be finite dimensional with basis {y1,y2, . . . ,yn}.
Consider the set

{x1,x2, . . . ,xk,y1,y2, . . . ,yn}
Let z be the first vector in this set which is a linear combination of the preceeding ones.
Since the x’s are linearly independent we must have z = yi for some i. Thus the set

{x1,x2, . . . ,xk,y1,y2, . . . ,yi−1,yi+1, . . . ,yn}

can be used to construct every vector in V . If this set of vectors is linearly independent
it is a basis which includes the x’s. If not we continue removing y’s until the remaining
vectors are linearly independent.

It can be proved, using the Axiom of Choice, that every vector space has a basis. In
most applications an explicit basis can be written down and the existence of a basis is
a vacuous question.

Definition 1.5 A non-empty subset M of a vector space V is called a linear manifold
or a subspace if x,y ∈ V implies that every linear combination αx + βy ∈M.

Theorem 1.2 The intersection of any collection of subspaces is a subspace.

Proof: Since 0 is in each of the subspaces it is in their intersection. Thus the intersection
is non-empty. If x and y are in the intersection then αx+βy is in each of the subspaces
and hence in their intersection. It follows that the intersection is a subspace. 2

Definition 1.6 If {xi, i ∈ I} is a set of vectors the subspace spanned by {xi, i ∈ I} is
defined to be the intersection of all subspaces containing {xi, i ∈ I}.
Theorem 1.3 If {xi, i ∈ I} is a set of vectors the subspace spanned by {xi, i ∈ I},
sp({xi, i ∈ I}), is the set of all linear combinations of the vectors in {xi, i ∈ I}.
Proof: The set of all linear combinations of vectors in {xi, i ∈ I} is obviously a subspace
which contains {xi, i ∈ I}. Conversely, sp({xi, i ∈ I}) contains all linear combinations
of vectors in {xi, i ∈ I} so that the two subspaces are identical. 2

It follows that an alternative characterization of a basis is that it is a set of linearly
independent vectors which spans V .
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example 1: If X is the empty set then the space spanned by X is the 0 vector.
example 2: In R3 let X be the space spanned by e1, e2 where

e1 =




1
0
0


 and e2 =




0
1
0




Then sp{e1, e2} is the set of all vectors of the form

x =




x1

x2

0




example 3: If {X1, X2, . . . , Xn} is a set of random variables then the space spanned
by {X1, X2, . . . , Xn} is the set of all random variables of the form

∑
i aiXi. This set is a

basis if P (Xi = Xj) = 0 for i 6= j. æ

6



Chapter 2

Linear Transformations

Let U be a p dimensional vector space and let V be an n dimensional vector space.

2.1 Sums and Scalar Products

Definition 2.1 A linear transformation L from U to V is a mapping (function) from U
to V such that

L(αx + βy) = αL(x) + βL(y) for every x,y ∈ U and all α, β

Definition 2.2 The sum of two linear transformations L1 and L2 is defined by the
equation

L(x) = L1(x) + L2(x) for every x ∈ U
Similarly αL is defined by

[αL](x) = αL(x)

The transformation O defined by O(x) = 0 has the properties:

L + O = O + L ; L + (−L) = (−L) + L = O

Also note that L1 +L2 = L2 +L1. Thus linear transformations with addition and scalar
multiplication as defined above constitute an additive commutative group.
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2.2 Products

If U is p dimensional, V is m dimensional and W is n dimensional and

L1 : U → V and L2 : V → W

we define the product, L, of L1 and L2 by

L(x) = L2(L1(x))

Note that the product of linear transformations is not commutative. The following are
some properties of linear transformations

LO = OL = O

L1(L2 + L3) = L1L2 + L1L3

L1(L2L3) = (L1L2)L3

If U = V , L is called a linear transformation on a vector space and we can define the
identity transformation I by the equation

I(x) = x

Then
LI = IL = L

We can also define, in this case, A2, and in general An for any integer n. Note that

AnAm = An+m and (An)m = Anm

If we define A0 = I then we can define p(A), where p is a polynomial by

p(A)(x) =
n∑

i=0

αiA
ix

æ
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Chapter 3

Matrices

3.1 Definitions

If L is a linear transformation from U (p dimensional) to V (n dimensional) and we have
bases {xj : j ∈ J} and {yi : i ∈ I} respectively for U and V then for each j ∈ J we
have

L(xj) =
n∑

i=1

`ijyi for some choice of `ij

The n× p array 


`11 `12 · · · `1p

`21 `22 · · · `2p
...

...
...

...
`n1 `n2 · · · `np




is called the matrix of L relative to the bases {xj : j ∈ J} and {yi : i ∈ I}. To
determine the matrix of L we express the transformed jth vector of the basis in the U
space in terms of the basis of the V space. The n numbers so obtained form the jth
column of the matrix of L. Note that the matrix of L depends on the bases chosen for
U and V .

In typical applications a specific basis is usually present. Thus in Rn we usually
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choose the basis {e1, e2, . . . , en} where

ei =




δ1i

δ2i
...

δni




and δji =

{
1 j = i
0 j 6= i

In such circumstances we call L the matrix of the linear transformation.

Definition 3.1 A matrix L is an n by p array of scalars and is a carrier of a linear
transformation (L carries the basis of U to the basis of V).

The scalars making up the matrix are called the elements of the matrix. We will
write

L = {`ij}
and call `ij the i, j element of L (`ij is thus the element in the ith row and jth column
of the matrix L). The zero or null matrix is the matrix each of whose elements is 0 and
corresponds to the zero transformation. A one by p matrix is called a row vector and
is written as

`T
i = (`i1, `i2, . . . , `ip)

Similarly an n by one matrix is called a column vector and is written as

`j =




`1j

`2j
...

`nj




With this notation we can write the matrix L as

L =




`T
1

`T
2
...

`T
n




Alternatively if `j denotes the jth column of L we may write the matrix L as

L =
[

`1 `2 · · · `p

]

10



3.2 Sums and Products of Matrices

If L1 and L2 are linear transformations then their sum has matrix L defined by the
equation

L(xj) = (L1 + L2)(xj)

= L1(xj + L2(xj)

=
∑

i

`
(1)
ij yi +

∑

i

`
(2)
ij yi

=
∑

i

(
`
(1)
ij + `

(2)
ij

)
yi

Thus we have the following

Definition 3.2 The sum of two matrices A and B is defined as

A + B = {aij + bij}

Note that A and B both must be of the same order for the sum to be defined.

Definition 3.3 The multiplication of a matrix by a scalar is defined by the equation

λA = {λaij}

Matrix addition and scalar multiplication of a matrix have the following properties:

• A + O = O + A = A

• A + B = B + A

• A + (B + C) = (AB) + C

• A + (−A) = O

If L1 and L2 are linear transformations then their product has matrix L defined by
the equation

L(xj) = L2(L1(xj))

11



= L2

(∑

k

`
(1)
kj yk

)

=

(∑

k

`
(1)
kj L2(yk)

)

=
∑

k

`
(1)
kj

(∑

i

`
(2)
ik zi

)

=
∑

i

(∑

k

`
(2)
ik `

(1)
kj

)
zi

Thus we have

Definition 3.4 The product of two matrices A and B is defined by the equation

AB = {∑
k

aikbkj}

Thus the matrix of the product can be found by taking the ith row of A times the jth
column of B element by element and summing. Note that the product is defined only
if the number of columns of A is equal to the number of rows of B. We say that A
premultiplies B or that B post multiplies A in the product AB. Matrix multiplication
is not commutative.

Provided the indicated products exist matrix multiplication has the following prop-
erties:

• AO = O and OA = O

• A(B + C) = AB + AC

• (A + B)C = AC + BC

• A(BC) = (AB)C

If n = p the matrix A is said to be a square matrix. In this case we can compute An

for any integer n which has the following properties:

• AnAm = An+m

12



• (An)m = Anm

The identity matrix I can be found using the equation

I(xj) = xj

so that the jth column of the identity matrix consists of a one in the jth row and zeros
elsewhere. The identity matrix has the property that

AI = IA = A

If we define A0 = I then if p is a polynomial we may define p(A) by the equation

p(A) =
n∑

i=0

αiA
i

3.3 Conjugate Transpose and Transpose Operations

Definition 3.5 The conjugate transpose of A, A∗ is

A∗ = {āji}

where ā is the complex conjugate of a. Thus if A is n by p, the conjugate transpose A∗,
is p by n with i, j element equal to the complex conjugate of the j, i element of A.

Definition 3.6 The transpose of A, AT is

AT = {aji}

Thus if A is n by p the transpose AT is p by n with i, j element equal to the j, i element
of A.

If A is a matrix with real elements then A∗ = AT .

Definition 3.7 A square matrix is said to be

• Hermitian if A∗ = A

13



• symmetric if AT = A

• normal if AA∗ = A∗A

The following are some properties of the conjugate transpose and transpose operations:

(AB)∗ = B∗A∗ (AB)T = BTAT

I∗ = I ; O∗ = OT IT = I
(A + B)∗ = A∗ + B∗ (A + B)T = AT + BT

(αA)∗ = ᾱA∗ (αA)T = αAT

Definition 3.8 A square matrix A is said to be

• diagonal if aij = 0 for i 6= j

• upper right triangular if aij = 0 for i > j

• lower left triangular if aij = 0 for i < j

A column vector is an n by one matrix and a row vector is a one by n matrix. If x
is a column vector then xT is the row vector with the same elements.

3.4 Invertibility and Inverses

Lemma 3.1 A = B if and only if Ax = Bx for all x.

Proof: If A = B the assertion is obvious.
If Ax = Bx for all x then we need only take x = ei for i = 1, 2, . . . , n where ei is the
column vector with 1 in the ith row and zeros elsewhere. Thus A and B are equal row
by row. 2

If A is n by p and B is p by m are written as

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]

14



then the product AB satisfies

AB =

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

if the partitions are conformable.

If a vector is written as x =
∑

i αiei where the ei form a basis for V then the
product Ax gives the transformed value of x under the linear transformation A which
corresponds to the matrix A via the formula

A(x) =
∑

i

αiA(ei)

Definition 3.9 A square matrix A is said to be invertible if

(1) x1 6= x2 =⇒ Ax1 6= Ax2

(2) For every vector y there exists at least one x such that Ax = y.

If A is invertible and maps U into V , both n dimensional, then we define A−1, which
maps V into U , by the equation

A−1(y0) = x0

where y0 is in V and x0 is in U and satisfies Ax0 = y0 (such an x0 exists by (2) and
is unique by (1)). Thus defined A−1 is a legitimate transformation from V to U . That
A−1 is a linear transformation from V to U can be seen by the fact that if αy1 +βy2 ∈ V
then there exist unique x1 and x2 in U such that y1 = A(x1) and y2 = A(x2). Since

A(αx1 + βx2) = αA(x1) + βA(x2)

= αy1 + βy2

it follows that

A−1(αy1 + βy2) = αx1 + βx2

= αA−1(y1) + βA−1(y2)

15



Thus A−1 is a linear transformation and hence has a matrix representation. Finding the
matrix representation of A−1 is not an easy task however.

Theorem 3.2 If A, B and C are matrices such that

AB = CA = I

then A is invertible and A−1 = B = C.

Proof: If Ax1 = Ax2 then CAx1 = CAx2 so that x1 = x2 and (1) of defintion 3.9 is
satisfied. If y is any vector then defining x = By implies Ax = ABy = y so that (2)
of definition 3.9 is also satisfied and hence A is invertible. Since AB = I =⇒ B = A−1

and CA = I =⇒ C = A−1 the conclusions follow. 2

Theorem 3.3 A matrix A is invertible if and only if Ax = 0 implies x = 0 or equiva-
lently if and only if every y ∈ V can be written as y = Ax.

Proof: If A is invertible then Ax = 0 and A0 = 0 implies that x = 0 since otherwise
we have a contradiction. If A is invertible then by (2) of definition 3.9 we have that
y = Ax for every y ∈ V .

Suppose that Ax = 0 implies that x = 0. Then if x1 6= x2 we have that A(x1−x2) 6=
0 so that Ax1 6= Ax2 i.e. (1) of definition 3.9 is satisfied. If x1,x2, . . . ,xn is a basis for
U then

∑

i

αiA(xi) = 0 =⇒ A

(∑

i

αixi

)
= 0 =⇒ ∑

i

αixi = 0 =⇒ α1 = α2 = · · · = αn = 0

It follows that {Ax1,Ax2, . . . ,Axn} is a basis for V so that we can write each y ∈ V as
y = Ax since

y =
∑

i

βiA(xi) = A

(∑

i

βixi

)
= Ax

Thus (2) of definition 3.9 is satisfied and A is invertible.

Suppose now that for each y ∈ V we can write y = Ax Let {y1,y2, . . . ,yn} be a
basis for V and let xi be such that yi = Axi. Then if

∑
i αixi = 0 we have

0 = A

(∑

i

αixi

)

16



=
∑

i

αiA(xi)

=
∑

i

αiyi

which implies that each of the αi equal 0. Thus {x1,x2, . . . ,xn} is a basis for U . It
follows that every x can be written as

∑
i βxi and hence Ax = 0 implies that x = 0 i.e.

(1) of definition 3.9 is satisfied. By assumption, (2) of definition 3.9 is satisfied so that
A is invertible. 2

Theorem 3.4

(1) If A and B are invertible so is AB and (AB)−1 = B−1A−1

(2) If A is invertible and α 6= 0 then αA is invertible and (αA)−1 = α−1A−1

(3) If A is invertible then A−1 is invertible and (A−1)−1 = A

Proof: Since
(AB)B−1A−1 = AA−1 = I

and
B−1A−1AB = B−1B = I

by Theorem 3.2, (AB)−1 exists and equals B−1A−1

Since
(αA)α−1A−1 = AA−1 = I

and
α−1A−1(αA) = A−1A = I

it again follows from Theorem 3.2 that (αA)−1 exists and equals α−1A−1. 2

Since
A−1A = AA−1 = I

it again follows from Theorem 3.2 that A−1 exists and equals A.

In many problems one “guesses” the inverse of A and then verifies that it is in fact
the inverse. The following theorems help.

Theorem 3.5
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(1) Let [
A B
C D

]
where A is invertible

Then [
A B
C D

]−1

=

[
A−1 + A−1BQ−1CA−1 −A−1BQ−1

−Q−1CA−1 Q−1

]

where Q = D−CA−1B.

(2) Let [
A B
C D

]
where D is invertible

Then
[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]

Proof: [
A B
C D

]−1 [
A−1 + A−1BQ−1CA−1 −A−1BQ−1

−Q−1CA−1 Q−1

]

is equal to
[

AA−1 + AA−1BQ−1CA−1 −BQ−1CA−1 AA−1BQ−1 + BQ−1

CA−1 + CA−1BQ−1CA−1 −DQ−1CA−1 −CA−1BQ−1 + DQ−1

]

which simplifies to
[

I + BQ−1CA−1 −BQ−1CA−1 −BQ−1 + BQ−1

−CA−1 + (D−CA−1B)Q−1CA−1 (D−CA−1B)Q−1

]

which is seen to be the identity matrix. 2

The proof for (2) follows similarly.

Theorem 3.6 Let A be n by n, U be m by n, S be m by m and V be m by n. Then
if A, A + UTSV and S + SVA−1UTS are each invertible we have

[
A + UTSV

]
= A−1 −A−1UTS

[
S + SVA−1UTS

]−1
SVA−1

18



Proof:
[
A + UTSV

] [
A + UTSV

]−1
= I−UTS

[
S + SVA−1UTS

]−1
SVA−1

+UTSVA−1 −UTSVA−1
[
S + SVA−1UTS

]−1
SVA−1

= I + UT
(
I− S

[
S + SVA−1UTS

]−1
)

SVA−1

− SVA−1UTS
[
S + SVA−1UTS

]−1
SVA−1

= I + UT
(
I−

[
S + SVA−1UTS

] [
S + SVA−1UTS

]−1
)

SVA−1

= I 2

Corollary 3.7 If S−1 exists in the above theorem then

[
A + UTSV

]−1
= A−1 −A−1UT

[
S−1 + VA−1UT

]−1
VA−1

Corollary 3.8 If S = I and u and v are vectors then

[
A + uvT

]
= A−1 − 1

(1 + vTA−1u)
A−1uvTA−1

The last corollary is used as starting point for the development of a theory of recursuve
estimation in least squares and Kalman filtering in information theory.

3.5 Direct Products and Vecs

• If A is a p× q matrix and B is an r × s matrix then their direct product denoted
by A⊗B is the pr × qs matrix defined by

A⊗B = (aijB) =




a11B a12B . . . a1qB
a21B a22B . . . a2qB

...
...

. . .
...

ap1B ap2B . . . apqB



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– Properties of direct products:

0⊗A = A⊗ 0 = 0

(A1 + A2)⊗B = A1 ⊗B + A2 ⊗B

A⊗ (B1 + B2) = A⊗B1 + A⊗B2

αA⊗ βB = αβ(A⊗B)

A1A2 ⊗B1B2 = (A1 ⊗B1)(A2 ⊗B2)

(A⊗B)T = AT ⊗BT

rank (A⊗B) = rank (A)rank (B)

trace (A⊗B) = [trace (A)][trace[B]

(A⊗B)−1 = A−1 ⊗B−1

det(A⊗B) = [det(A)]p[det(B)]m

• If Y is an n× p matrix:

– vecR (Y) is the np×1 matrix with the rows of Y stacked on top of each other.

– vecC (Y) is the np× 1 matrix with the columns of Y stacked on top of each
other.

– The i, j element of Y is the (i− 1)p + j element of vecR (Y).

– The i, j element of Y is the (j − 1)p + i element of vecC (Y).
–

vecC (YT ) = vecR (Y)

vecR (ABC) = (A⊗CT )vecR (B)

where A is n× q1, B is q1 × q2 and C is q2 × p.

• The following are some relationships between vecs and direct products.

abT = bT ⊗ a

= a⊗ bT

vecC (abT ) = b⊗ a
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vecR (abT ) = a⊗ b

vecC (ABC) = (CT ⊗A)vecC(B)

trace (ATB) = [vecC (A)]T [vecC (B)]
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Chapter 4

Matrix Factorization

4.1 Rank of a Matrix

In matrix algebra it is often useful to have the matrices expressed in as simple a form as
possible. In particular, if a matrix is diagonal the operations of addition, multiplication
and inversion are easy to perform.

Most of these methods are based on considering the rows and columns of a matrix
as vectors in a vector space of the appropriate dimension.

Definition: If A is an n by p matrix then

(1) The row rank of A is the number of linearly independent rows of the matrix
considered as vectors in p dimensional space.

(2) The column rank of A is the number of linearly independent columns of the matrix
considered as vectors in n dimensional space.

Theorem 4.1 Let A be an n by p matrix. The set of all vectors y such that y = Ax
is a vector space with dimension equal to the column rank of A and is called the range
space of A and is denoted by R(A).
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Proof: R(A) is non empty since 0 ∈ R(A) If y1 and y2 are in R(A) then

y = α1y1 + α2y2

y = α1Ax1 + α2Ax2

y = A(α1x1 + α2x2)

It follows that y ∈ R(A) and hence R(A) is a vector space. If {a1, a2, . . . , ap} are the
columns of A then for every y ∈ R(A) we can write

y = Ax = x1a1 + x2a2 + · · ·+ xpap

Thus the columns of A span R(A). It follows that the dimension of R(A) is equal to
the column rank of A. 2

Theorem 4.2 Let A be an n by p matrix. The set of all vectors x such that Ax = 0 is
a vector space of dimension equal to p− column rank of A. This vector space is called
the null space of A and is denoted by N (A).

Proof: Since 0 ∈ N (A) it follows that N (A) is non empty. If x1 and x2 are in N (A)
then

A(α1x1 + α2x2) = α1Ax1 + α2Ax2

= 0

so that N (A) is a vector space.

Let {x1,x2, . . . ,xk} be a basis forN (A). Then there exists vectors {xk+1,xk+2, . . . ,xp}
such that {x1,x2, . . . ,xp} is a basis for p dimensional space. It follows that {Ax1,Ax2, . . . ,Axp}
spans the range space of A since

y = Ax

= A

(∑

i

αixi

)

=
∑

i

αiAxi

Since Axi = 0 for i = 1, 2, . . . , k it follows that {Axk+1,Axk+2, . . . ,Axp} spans the
range space of A. Suppose now that αk+1, αk+2 . . . , αp are such that

αk+1Axk+1 + αk+2Axk+2 + · · ·+ αpAxp = 0
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Then
A(αk+1xk+1 + αk+2xk+2 + · · ·+ αpxp) = 0

It follows that
αk+1xk+1 + αk+2xk+2 + · · ·+ αpxp ∈ N (A)

Since {x1,x2, . . . ,xp} is a basis for N (A) it follows that for some α1, α2, . . . , αk we have

α1x1 + α2x2 + · · ·+ αkxk = αk+1xk+1 + αk+2xk+2 + · · ·+ αpxp

or
α1x1 + α2x2 + · · ·+ αkxk − αk+1xk+1 + αk+2xk+2 + · · ·+ αpxp = 0

Since {x1,x2, . . . ,xp} is a basis for p dimensional space we have that α1 = α2 = · · · =
αp = 0. It follows that the set

{Axk+1,Axk+2, . . . ,Axp}

is linearly independent and spans the range space of A. The dimension of R(A is thus
p − k. But by Theorem 4.1 we also have that the dimension of R(A) is equal to the
column rank of A. Thus

p− k = column rank of A

so that
k = p− column rank of A = dim (N (A) 2

Definition 4.2 The elementary row (column) operations on a matrix are defined to be

(1) The interchange of two rows (columns).

(2) The multiplication of a row (column) by a non zero scalar.

(3) The addition of one row (column) to another row (column).

Lemma 4.3 Elementary row (column) operations do not change the row (column) rank
of a matrix.
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Proof: The row rank of a matrix A is the number of linearly independent vectors in
the set defined by

A =




aT
1

aT
2
...

aT
n




Clearly interchange of two rows does not change the rank nor does the multiplication of
a row by a non zero scalar. The addition of aaT

j to aT
i produces the new matrix

A =




aT
1

aT
2
...

aT
i + aaT

j
...

aT
n




which has the same rank as A. The statements on the column rank of A are obtained
by considering the row vectors of AT and using the above results. 2

Lemma 4.4 Elementary row (column) operations on a matrix can be achieved by pre
(post) multiplication by non-singular matrices.

Proof: Interchange of the ith and jth rows can be achieved by pre-multiplication by
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the matrix

E1 =




eT
1

eT
2
...

eT
i−1

eT
j

eT
i+1
...

eT
j−1

eT
i

eT
j+1
...

eT
n




Multiplication by a non zero scalar and addition of a scalar multiple of one row to
another row can be achieved by pre multiplication by the matrices E2 and E3 where

E2 =




eT
1

eT
2
...

aeT
i

...
eT

n




and E3 =




eT
1

eT
2
...

aeT
j + eT

i
...

eT
n




The statements concerning column operations are obtained by using the above results
on A and then transposing the final results. 2

Lemma 4.5 The matrices which produce elementary row (column) operations are non
singular.
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Proof: The inverse of E1 is ET
1 . The inverse of E2 is the matrix

E2 =




eT
1

eT
2
...

1
a
eT

i
...

eT
n




Finally the inverse of E3 is the matrix

[e1, e2, . . . , ei, . . . , ej − aei, . . . , en]

Again the results for column operations follow from the row results. 2

Lemma 4.6 The column rank of a matrix is invariant under pre multiplication by a non
singular matrix. Similarly the row rank of a matrix is invariant under post multiplication
by a non singular matrix.

Proof: By Theorem 4.2 the dimension of N (A) is equal to p−column rank of A. Since

N (A = {x : Ax = 0}

it follows that x ∈ N (A) if and only EAx = 0 where E is non singular. Thus the
dimension of N (A) is invariant under pre multiplication by a non singular matrix and
the conclusion follows. The result for post multiplication follow by considering AT and
transposing. 2

Corollary 4.7 The column rank of a matrix is invariant under premultiplication by
an elementary matrix . Similarly the row rank of a matrix is invariant under post
multiplication by an elementary matrix.

By suitable choices of elementary matrices we can thus write

PA = E

where P is the product of non singular elementary matrices and hence is non singular.
The matrix E is a row echelon matrix i.e. a matrix with r non zero rows in which
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the first k columns consist of e1, e2, . . . , er and 0’s in some order. The remaining p −
r columns have zeros below the first r rows and arbitrary elements in the remaining
positions. It thus follows that

r = row rank of A ≤ column rank of A

and hence
row rank of AT ≤ column rank of AT

But we also have that

row rank of AT = column rank of A

and
row rank of A = column rank of AT

It follows that
column rank of A ≤ row rank of A

and hence we have:

Theorem 4.8 row rank of A = column rank of A

Alternative Proof of Theorem 4.8 Let A be an n× p matrix i.e.

A =




a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
. . .

...
an1 an2 · · · anp




We may write A in terms of its columns or rows i.e.

A =
[
Ac

1 , Ac
2, . . . ,Ac

p

]
=




aT
1

aT
2
...

aT
n



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where the jth column vector, Ac
j, and ith row vector, aT

i are given by

Ac
j =




a1j

a2j
...

anj




ai =




ai1

ai2
...

aip




The column vectors of A span a space which is a subset of Rn and is called the
column space of A and denoted by C(A) i.e.

C(A) = sp (Ac
1,A

c
2, . . . ,A

c
p)

The row vectors of A span a space which is a subspace of Rp and is called the row
space of A and denoted by R(A) i.e.

R(A) = sp (a1, a2, . . . , an)

The dimension of C(A) is called the column rank of A and is denoted by C =
c (A). Similarly the dimension of R(A) is called the row rank of A and is denoted by
R = r(A).

Result 1: Let
B =

[
bc

1 bc
2 . . . bc

C

]

where the columns of B form a basis for the column space of A. Then there is a C × p
matrix L such that

A = BL

It follows that the rows of A are linear combinations of the rows of L and hence

R(A) ⊆ R(L)

Hence
R = dim[R(A)] ≤ dim[R(L)] ≤ C

i.e. the row rank of A is less than or equal to the column rank of A.
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Result 2:

R =




rT
1

rT
2
...

rT
R




where the rows of R form a basis for the row space of A. Then there is a n×R matrix
K such that

A = KR

It follows that the columns of A are linear combinations of the columns of K and hence

C(A) ⊆ C(K)

Hence
C = dim[C(A)] ≤ dim[C(K)] ≤ R

i.e. the column rank of A is less than or equal to the row rank of A.

Hence we have that the row rank and column rank of a matrix are equal. Th common
value is called the rank of A.

Reference Harville, David A. (1997) Matrix Algebra From a Statistician’s Perspective.
Springer (pages 36-40).

We thus define the rank of a matrix A, ρ(A) to be the number of linearly independent
rows or the number of linearly independent columns in the matrix A. Note that ρ(A)
is unaffected by pre or post multiplication by non singular matrices. By pre and post
multiplying by suitable elementary matrices we can write any matrix as

PAQ = B =

[
Ir O
O O

]

where O denotes a matrix of zeroes of the appropriate order. Since P and Q are non
singular we have

A = P−1BQ−1

which is an example of a matrix factorization.

Another factorization of considerable importance is contained in the following Lemma.
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Lemma 4.9 If A is an n by p matrix of rank r then there are matrices B (n by r) and
C (r by p) such that

A = BC

where B and C are both of rank r.

Proof: Let the rows of C form a basis for the row space of A. Then C is r by p of rank
r. Since the rows of C form a basis for the row space of A we can write the ith row of
A as aT

i = bT
i C for some choice of bi. Thus A = BC. 2

The fact that the rank of B in Lemma 4.9 is r follows from the following important
result

Theorem 4.10 rank (AB) ≤ min{rank (A), rank (B)}
Proof: Each row of AB is a linear combination of the rows of B. Thus

rank (AB) ≤ rank (B)

Similarly each column of AB is a linear combination of the columns of A so that

rank (AB) ≤ rank (A)

The conclusion follows. 2

Theorem 4.11 An n by n matrix is non singular if and only if it is of rank n.

Proof: For any matrix we can write

PAQ =

[
Ir O
O O

]

where P and Q are non singular. Since the right hand side of this equation is invertible
if and only if r = n the conclusion follows. 2

Definition 4.3 If A is an n by p matrix then the p by p matrix A∗A (ATA if A is real)
is called the Gram matrix of A.

Theorem 4.12 If A is an n by p matrix then

(1) rank (A∗A) = rank (A) = rank (AA∗)
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(2) rank (ATA) = rank (A) = rank (AAT ) if A is real.

Proof: Assume that the field of scalars is such that
∑

i z
∗
i zi = 0 implies that z1 = z2 =

· · · = zn = 0. If Ax = 0 then A∗Ax = 0. Also if A∗Ax = 0 then x∗A∗Ax = 0 or
z∗z = 0 so that z = 0 i.e. Ax = 0. Hence A∗Ax = 0 and Ax = 0 are equivalent
statements. It follows that

N (A∗A) = {x : A∗Ax = 0} = {x : Ax = 0} = N (A)

Thus rank (A∗A) = rank (A). The conclusion that rank (A∗A) = rank (A) follows by
symmetry. 2

Theorem 4.13 rank (A + B) ≤ rank (A) + rank (B)

Proof: If a1, a2, . . . , ar and b1,b2, . . . ,bs denote linearly independent columns of A and
B respectively then

{a1, a2, . . . , ar,b1,b2, . . . ,bs}
span the column space of A + B. Hence

rank (A + B) ≤ r + s = rank (A) + rank (B) 2

Definition 4.4

(1) A square matrix A is idempotent if A2 = A.

(2) A square matrix A is nilpotent if Am = O for some integer m greater than one.

Definition 4.5 The trace of a square matrix is the sum of its diagonal elements i.e.

tr (A) =
∑

i

aii

Theorem 4.14 tr (AB) = tr (BA); tr (A + B) = tr (A) + tr (B); tr (AT ) = tr (A)

Theorem 4.15 If A is idempotent then

rank (A) = tr (A)
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Proof: We can write A = BC where B is n by r of rank r, C is r by n of rank r and r
is the rank of A. Thus we have

A2 = BCBC = A = BC

Hence
B∗BCBCC∗ = B∗BCC∗

Since B and C are each of rank r we have that CB = I and hence

tr (BC) = tr (CB) = tr (I) = r = rank (A) 2
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Chapter 5

Linear Equations

5.1 Consistency Results

Consider a set of n linear equations in p unknowns

a11x1 + a12x2 + · · · + a1pxp = y1

a21x1 + a22x2 + · · · + a2pxp = y2
...

...
...

...
...

...
...

...
...

an1x1 + an2x2 + · · · + anpxp = yn

which may be compactly written in matrix notation as

Ax = y

where A is the n by p matrix with i, j element equal to aij, x is the p by one column
vector with jth element equal to xj and y is the n by one column vector with ith element
equal to yi.

Often such “equations” arise without knowledge of whether they are really equations,
i.e. does there exist a vector x which satisfies the equations? If such an x exists the
equations are said to be consistent, otherwise they are said to be inconsistent.

The equations Ax = y can be discussed from a vector space perspective since A is
a carrier of a linear transformation from the p dimensional space spanned by the xi’s to
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the n dimensional space where y “lives”. It follows that a solution exists if and only if y
is in R(A), the range space of A. Thus a solution exists if and only if y is in the column
space of A defined as the set of all vectors of the form {y : y = Ax for some x}. If
we consider the augmented matrix [A,y] we have the following theorem on consistency

Theorem 5.1 The equations Ax = y are consistent if and only if

rank([A,y]) = rank(A)

Proof: Obviously
rank([A,y]) ≥ rank(A)

If the equations have a solution then there exists x such that Ax = y so that

rank(A) ≤ rank([A,y]) = rank([A,Ax]) = rank(A[I,x]) ≤ rank(A)

It follows that
rank([A,y]) = rank(A)

if the equations are consistent.

Conversely if
rank([A,y]) = rank(A)

then y is a linear combination of the columns of A so that a solution exists. 2

Theorem 5.1 gives conditions under which solutions to the equations Ax = y exist
but we need to know the form of the solution in order to explicitly solve the equations.
The equations Ax = 0 are called the homogeneous equations. If x1 and x2 are
solutions to the homogeneous equations then α1x1 + α2x2 is also a solution to the
homogeneous equations. In general, if {x1,x2, . . . ,xs} span the null space of A then
x0 =

∑s
i=1 αixi is a solution to the homogeneous equations. If xp is a particular

solution to the equations Ax = y then xp + x0 is also a solution to the equations
Ax = y. If x is any solution then x = xp + (x − xp) so that every solution is of this
form. We thus have the following theorem

Theorem 5.2 A general solution to the consistent equations Ax = y is of the form

x = xp + x0
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where xp is any particular solution to the equations and x0 is any solution to the homo-
geneous equations Ax = 0.

A final existence question is to determine when the equations Ax = y have a unique
solution. The solution is unique if and only if the only solution to the homogeneous
equations is the 0 vector i.e. the null space of A contains only the 0 vector. If the
solution x is unique the homogeneous equations cannot have a non zero solution x0

since then x + x0 would be another solution. Conversely, if the homogeneous equations
have only the 0 vector as a solution then the solution to Ax = y is unique ( if there
were two different solutions x1 and x2 then x1 − x2 would be a non zero solution to the
homogeneous equations).

Since the null space of A contains only the 0 vector if and only if the columns of A
are linearly independent we have that the solution is unique if and only if the rank of A
is equal to p where we assume with no loss of generality that A is n by p with p ≤ n.
We thus have the following theorem.

Theorem 5.3 Let A be n by p with p ≤ n then

(1) The equations Ax = y have the general solution

x = xp + x0

where Axp = y and Ax0 = 0 if and only if

rank([A,y]) = rank(A)

(2) The solution is unique (x0 = 0) if and only if

rank(A) = p

5.2 Solutions to Linear Equations

5.2.1 A is p by p of rank p

Here there is a unique solution by Theorem 5.3 with explicit form given by A−1y. The
proof of this result is trivial given the following Lemma
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Lemma 5.4 A p by p matrix is non singular if and only if rank(A) = p.

Proof: If A−1 exists it is the unique matrix satisfying

A−1A = AA−1 = I

Thus p ≥ rank(A) ≥ p i.e. the rank of A is p if A is non singular.

Conversely, if rank(A) = p then there exists a unique solution xi to the equation
Axi = ei for i = 1, 2, . . . , p. If we define B by

B = [x1,x2, . . . ,xp]

then AB = I. Similarly there exists a unique solution zi to the equation ATzi for
i = 1, 2, . . . , p so that if we define

CT = [z1, z2, . . . , zp]

then ATCT = I or CA = I. It follows that that C = B i.e. that A−1 exists. 2

5.2.2 A is n by p of rank p

If A is n by p of rank p where p ≤ n then by theorem 5.3 a unique solution exists and
we need only find its form. Since the rank of A is p the rank of ATA is p and hence
ATA has an inverse. Thus if we define x1 = (ATA)−1ATy we have that

Ax1 = A(ATA)−1ATy = A(ATA)−1AT (Ax) = Ax = y

so that x1 is the unique solution to the equations. 2

5.2.3 A is n by p of rank r where r ≤ p ≤ n

In this case a solution may not exist and even if a solution exists it may not be unique.
Suppose that a matrix A− can be found such that

AA−A = A
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Such a matrix A− is called a generalized inverse of A

If the equations Ax = y have a solution then x1 = Ay is a solution since

Ax1 = A(A−y) = AA−(Ax) = AA−Ax = Ax = y

so that A−x1 is a solution. The general solution is thus obtained by characterizing the
solutions to the homogeneous equations i.e. we need to characterize the vectors in the
null space of A. If z is an arbitrary vector then (I −A−A)z is in the null space of A.
The dimension of the set U which can be written in this form is equal to the rank of
I−A−A. Since

(I−A−A)2 = I−A−A−A−A + A−AA−A

= I−A−A

we see that

rank (I−A−A) = tr (I−A−A)

= p− tr (A−A)

= p− rank (A−A))

= p− rank (A)

= p− r

It follows that U is of dimension p−r and hence U = N (A). Thus we have the following
theorem

Theorem 5.5 If A is n by p of rank r ≤ p ≤ n then

(1) If a solution exists the general solution is given by

x = A−y + (I−A−A)z

where z is an arbitrary p by one vector and A− is a generalized inverse of A.

(2) If x0 = By is a solution to Ax = y for every y for which the equations are
consistent then B is a generalized inverse of A.

Proof: Since we have established (1) we prove (2) Let y = A` where ` is arbitrary. The
equations Ax = A` have a solution by assumption which is of the form BA`. It follows
that ABA = A`. Since ` is arbitrary we have that ABA = A i.e. B is a generalized
inverse of A. 2
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5.2.4 Generalized Inverses

We now establish that a generalized inverse of A always exists. Recall that we can find
non singular matrices P and Q such that

PAQ = B i.e. A = P−1BQ−1

where B is given by

B =

[
I O
O O

]

Matrix multiplication shows that BB−B = B where

B− =

[
I U
V W

]

where U,V and W are arbitrary. Since

A(QB−P)A = P−1BQ−1QB−PP−1BQ−1

= P−1BQ−1

= A

we see that QB−P is a generalized inverse of A establishing the existence of a generalized
inverse for any matrix.

We also note that if

PA =

[
I C
O O

]

Then another generalized inverse of A is B−P where

B− =

[
I O
O O

]

æ
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Chapter 6

Determinants

6.1 Definition and Properties

Definition 6.1 Let A be square matrix with columns {x1,x2, . . . ,xp}. The determi-
nant of A is that function det : Rp → R such that

(1) det(x1,x2, . . . , cxm, . . . ,xp) = c det(x1,x2, . . . ,xm, . . . ,xp)

(2) det(x1,x2, . . . ,xm + xk, . . . ,xp = det(x1,x2, . . . ,xm, . . . ,xp)

(3) det(e1, e2, . . . , ep) = 1 where ei is the ith unit vector.

Properties of Determinants

(1) If xi = 0 then xi = 0xi so that by (1) of the definition det(x1,x2, . . . ,xp) = 0 if
xi = 0.

(2) det(x1,x2, . . . ,xm + cxk, . . . ,xp) = det(x1,x2, . . . ,xm, . . . ,xp). If c = 0 this result
is trivial. If c 6= 0 we note that

det(x1,x2, . . . ,xm + cxk, . . . ,xp) = −1

c
det(x1,x2, . . . ,xm + cxk, . . . ,−cxk, . . . ,xp)
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= −1

c
det(x1,x2, . . . ,xm, . . . ,−cxk, . . . ,xp)

= det(x1,x2, . . . ,xm, . . . ,xp)

(3) If two columns of A are identical then det = 0. Similarly if the columns of A are
linearly dependent then the determinant of A is 0.

(4) If xk and xm are interchanged then the determinant changes sign i.e.

det(x1,x2, . . . ,xm, . . . ,xk, . . . ,xp) = − det(x1,x2, . . . ,xk, . . . ,xm, . . . ,xp)

To prove this we note that

det(x1,x2, . . . ,xm, . . . ,xk, . . . ,xp) = det(x1,x2, . . . ,xm + xk, . . . ,xk, . . . ,xp)

= det(x1,x2, . . . ,xm + xk, . . . ,xk − (xm + xk), . . . ,xp)

= det(x1,x2, . . . ,xm + xk, . . . ,−xm, . . . ,xp)

= det(x1,x2, . . . ,xk, . . . ,−xm, . . . ,xp)

= − det(x1,x2, . . . ,xk, . . . ,xm, . . . ,xp)

Thus the interchange of an even number of columns does not change the sign of
the determinant while the interchange of an odd number of columns does change
the sign.

(5) det(x1,x2, . . . ,xm + y, . . . ,xp) is equal to

det(x1,x2, . . . ,xm, . . . ,xp) + det(x1,x2, . . . ,y, . . . ,xp)

If the vectors xi for i 6= m are dependent the assertion is obvious since both terms
are 0. If the xi are linearly independent for i 6= m and xm =

∑
i cixi the assertion

follows by repeated use of (2) and the fact that the first term of the expression is
always zero.

If the xi are linearly independent then y =
∑

i dixi so that

det(x1,x2, . . . ,xm + y, . . . ,xp) = det(x1,x2, . . . ,xm +
∑

i

dixi, . . . ,xp)

= det(x1,x2, . . . , (1 + dm)xm, . . . ,xp)
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= (1 + dm) det(x1,x2, . . . ,xm, . . . ,xp)

= det(x1,x2, . . . ,xp) + det(x1,x2, . . . , dmxm, . . . ,xp)

= det(x1,x2, . . . ,xp) + det(x1,x2, . . . ,
∑

i

dixi, . . . ,xp)

= det(x1,x2, . . . ,xp) + det(x1,x2, . . . ,y, . . . ,xp)

Using the above results we can show that the determinant of a matrix is a well defined
function of a matrix and give a method for computing the determinant. Since any
column vector of A, say xm can be written as

xm =
p∑

i=1

aimei

we have that

det(x1,x2, . . . ,xp) = det(
∑

i1

ai11ei1 ,x2, . . . ,xp)

=
∑

i1

ai11 det(ei1 ,x2, . . . ,xp)

=
∑

i1

ai11

∑

i2

ai22 det(ei1 , ei2 , . . . ,xp)

=
∑

i1

∑

i2

· · ·∑
ip

ai11ai22 · · · aipp det(ei1 , ei2 , . . . , eip)

Now note that det(ei1 , ei2 , . . . , ep) is 0 if any of the subscripts are the same, +1 if
i1, i2, . . . , ip is an even permutation of 1, 2, . . . , p and −1 if i1, i2, . . . , ip is an odd per-
mutation of 1, 2, . . . , p. Hence we can evaluate the determinant of a matrix and it is a
uniquely defined function satisfying the conditions (1), (2) and (3).

6.2 Computation

The usual method for computing a determinant is to note that if xm =
∑

i aimxi then

det(x1,x2, . . . ,xp) =
∑

i

aim det(x1,x2, . . . , em, . . . ,xp)

=
∑

i

aimAim
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where
Aim = det(x1,x2, . . . , em, . . . ,xp)

is called the cofactor of aim and is simply the determinant of A when the mth column
of A is replaced by ei.

We now note that

Aim =
∑

i1

∑

i2

· · ·∑
ip

ai1ai2 · · · aip det(ei1 , . . . , ei, . . . , eip)

Hence
Aim = (−1)i+m det(Mim)

where Mim is the matrix formed by deleting the ith row of A and the jth column of A.
Thus the value of the determinant of a p by p matrix can be reduced to the calculation
of p determinants of p − 1 by p − 1 matrices. The determinant of Mim is called the
minor of aim.

æ
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Chapter 7

Inner Product Spaces

7.1 definitions and Elementary Properties

Definition 7.1 An inner product on a linear vector space V is a function ( , ) mapping
V × V into C such that

1. (x,x) ≥ 0 with (x,x) = 0 if and only if x = 0.

2. (x,y) = (x,y)

3. (αx + y, vbfz) = α(x, z) + β(y, z)

A vector space with an inner product is called an inner product space.

Definition 7.2: The norm or length of x, ||x|| is defined by

||x||2 = (x,x)

Definition 7.3: The vectors x and y are said to be orthogonal if (x,x) = 0. We write
x ⊥ y if x is orthogonal to y. More generally

(1) x is said to be orthogonal to the set of vectors X if

(x,y) = 0 for every y ∈ X
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(2) X and Y are said to be orthogonal if

(x,y) = 0 for every x ∈ X and y ∈ Y

Definition 7.4: X is an orthonormal set of vectors if

(x,y) =

{
1 if x = y
0 if x 6= y

X is a complete orthonormal set of vectors if it is not contained in a larger set of
orthonormal vectors.

Lemma 7.1 If X is an orthonormal set then its vectors are linearly independent.

Proof: If
∑

i αix = 0 for xi ∈ X then

0 =

(∑

i

αixi,xj

)
=

∑

i

αi(xi,xj) = αj

It follws that each of the αj are equal to 0 and hence that the xjs are linearly independent.
2

Lemma 8.2 Let {x1,x2, . . . ,xp} be an orthonormal basis for X . Then x ⊥ X if and
only if x ⊥ xi for i = 1, 2, . . . , p.

Proof: If x ⊥ X then by definition x ⊥ xi for i = 1, 2, . . . , p.

Conversely, if x ⊥ xi for i = 1, 2, . . . , p. Then if y ∈ X we have y =
∑

i αixi. Thus

(x,y) =
∑

i

ᾱi(x,xi) = 0

Thus x ⊥ X . 2

Theorem 7.3 (Bessel’s Inequality) Let {x1,x2, . . . ,xp} be an orthonormal set in a linear
vector space V with an inner product. Then

1.
∑

i |αi|2 ≤ ||x||2 where x is any vector in V and αi = (x,xi).

2. The vector r = x−∑
i αix is orthogonal to each xj and hence to the space spanned

by {x1,x2, . . . ,xp}.
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Proof: We note that

||x−∑

i

αixi||2 =

(
x−∑

i

αixi,x−
∑

i

αixi

)

= (x,x)−∑

i

(αi(xi,x)− (x,
∑

i

αixi) + (
∑

i

αixi,
∑

i

αixi)

= ||x||2 −∑

i

αiᾱi −
∑

i

ᾱi(x,xi) +
∑

i

αi(xi,
∑

i

αixi)

= ||x||2 − 2
∑

i

|αi|2 +
∑

i

αi(xi, αxi)

= ||x||2 −∑

i

|αi|2

Since ||x−∑
i αixi||2 ≥ 0 result (1) follows.

For result (2) we note that

(
x−∑

i

αixi,xj

)
= (x,xj)−

∑

i

αi(x− i,xj) = (x,xj)− (x,xj) = 0 2

Theorem 7.4 (Cauchy Schwartz Inequality) If x and y are vectors in an inner product
space then

|(x,y)| ≤ ||x|| ||y||

Proof: If y = 0 equality holds. If y 6= 0 then y
||y|| is orthonormal and by Bessel’s

inequality we have

∣∣∣∣∣

(
x,

y

||y||

)∣∣∣∣∣
2

≤ ||x||2 or |(x,y)| ≤ ||x|| ||y|| 2

Theorem 7.5 If X = {x1,x2, . . . ,xn} is any finite orthonormal set in a vector space V
then the following conditions are equivalent:

(1) X is complete.

(2) (x,xi) = 0 for i = 1, 2, . . . , n implies that x = 0.
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(3) The space spanned by X is equal to V .

(4) If x ∈ V then x =
∑

i(x,xi)xi.

(5) If x and y are in V then

(x,y) =
∑

i

(x,xi)(xi,y)

(6) If x ∈ V then
||x||2 =

∑

i

|(xi,x)|2

Result (5) is called Parseval’s identity.

Proof:
(1) =⇒ (2) If X is complete and (x,xi) = 0 for each i then x

||x|| could be “added” to the
set X which would be a contradiction. Thus x = 0.

(2) =⇒ (3) If x is not a linear combination of the xi then x −∑
i(x,xi)xi is not equal

to x and is orthogonal to X which is a contradiction. Thus the sapace spanned by X is
equal to V¿

(3) =⇒ (4) If x ∈ V we can write x =
∑

j αjxj. It follows that

(x,xi) =
∑

j

αj(xj,xi) = αi

(4) =⇒ (5) Since
x =

∑

i

(x,xi)xi and y =
∑

j

(y,xj)xj

we have

(x,y) = (
∑

i

(x,xi)xi,
∑

j

(y,xj)xj)

=
∑

i

(x,xi) ¯(y,xi)

=
∑

i

(x,xi)(xi,y)
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(5) =⇒ (6) In result (5) simply set x = y.

(6) =⇒ (1) If xo is orthogonal to each xi then by (6) we have

||xo||2 =
∑

i

|(xi,xo)|2 = 0

so that xo = 0. 2

7.2 Gram Schmidt Process

The Gram Schmidt process can be used to construct an orthonormal basis for a finite
dimensional vector space. Start with a basis for V as {x1,x2, . . . ,xn}. Form

y1 =
x1

||x1||
Next define

z2 = x2 − (x2,y1)y1

Since the xi are linearly independent z2 6= 0 and z2 is orthogonal to y1. Hence y2 = z2

||z2||
is orthogonal to y1 and has unit norm. If y1,y2, . . . ,yr have been so chosen then we
form

zr+1 = xr+1 −
r∑

i=1

(xr+1,yi)yi

Since the xi are linearly independent ||zr+1|| > 0 and since zr+1 ⊥ yi for i = 1, 2, . . . , r
it follows that

yr+1 =
zr+1

||zr+1||
may be ”added” to the set {y1,y2, . . . ,yr} to form a new orthonormal set. The process
necessarily stops with yn since there can be at most n elements in a linearly independent
set. 2
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7.3 Orthogonal Projections

Theorem 7.6 (Orthogonal Projection) Let U be a subspace of an inner product space
V and let y be a vector in V which is not in U . Then there exists a unique vector yU ∈ U
and and a unique vector e ∈ V such that

y = yU + e and e ⊥ U

Proof: Let {x1,x2, . . . ,xr} be a basis of U . Since y /∈ U the set {x1,x2, . . . ,xr,y} is
a linearly independent set. Use the Gram Schmidt process on this set to form a set
of orthonormal vectors {y1,y2, . . . ,yr,yr+1}. Since y is in the space spanned by these
vectors we can write

y =
r+1∑

i=1

αiyr =
r∑

i=1

αiyr + αr+1yr+1

If we define

yU =
r∑

i=1

αiyi and e = αr+1yr+1

then YU ∈ U and e ⊥ U . To show uniqueness, suppose that we also have

y = z1 + e1 where z1 ∈ U and e1 ⊥ U

Then we have
(z1 − yU) + (e1 − e) = 0

so that (z1 − yU , z1 − yU) = 0 and hence z1 = yU and e1 = e. 2

Definition 7.4 The vector e in Theorem 7.6 is called the orthogonal projection from
y to U and the vector yU is called the orthogonal projection of y on U .

Theorem 7.7 The projection of y on U has the property that

||y − yU || =min
x {||y − x|| : x ∈ U}

Proof: Let x ∈ U Then (x− yU , e) = 0. Hence

||y − x|| = (y − x,y − x)
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= (y − yU + yU − x,y − yU + yU − x)

= ||y − yU ||+ ||yU − x||+ (y − yU ,yU − x) + (yU − x,y − yU)

= ||y − yU ||+ ||yU − x||
≥ ||y − yU ||

with the minimum occurring when x = yU . Thus the projection minimizes the distance
from U to x. 2 æ
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Chapter 8

Characteristic Roots and Vectors

8.1 Definitions

Definition 8.1: A scalar λ is a characteristic root and a non-zero vector x is a
characteristic vector of the matrix A if

Ax = λx

Other names for charateristic roots are proper value, latent root, eigenvalue and secular
value with similar adjectives appying to characteristic vectors.

If λ is a characteristic root of A let the set Xλ be defined by

Xλ = {x : Ax = λx}

The geometric multiplicity of λ is defined to be the dimension of Xλ ∪ {0}. λ is said
to be a simple characteristic root if its geometric multiplicity is 1.

Definition 8.2: The spectrum of A is the set of all characteristic roots of A and is
denoted by Λ(A)

Since Ax = λx if and only if [A− λ]x = 0 we see that λ ∈ Λ(A) is equivalent to
the set of λ such that A− λI. Similarly x is a characteristic vector corresponding to λ
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if and only x is in the null space of A − λI. Using the properties of determinants we
have the following Theorem.

Theorem 8.1 λ ∈ Λ(A) if and only if det(A− λI) = 0.

If the field of scalars is the set of complex numbers (or any algebraically closed field)
then if A is p by p we have

det(A− λA) =
q∏

i=1

(λ− λi)
ni

where
q∑

i=1

= p and ni ≥ 1

The algebraic multiplicity of the characteristic root λi is the number ni which appears
in the above expression.

The algebraic and geometric multiplicity of a characteristic root need not correspond.
To see this let

A =

[
1 1
0 1

]

Then

det (A− λI) =

∣∣∣∣∣
1− λ 1

0 1− λ

∣∣∣∣∣ = (λ− 1)2

It follows that both of the characteristic roots of A are equal to 1. Hence the algebraic
multiplicity of the characteristic root 1 is equal to 2. However, the equation

Ax =

[
1 1
0 1

] [
x1

x2

]
=

[
x1

x2

]

yields the equations

x1 + x2 = x1

x2 = x2

Thus the geometric multiplicity of A is equal to 1.

Lemma 8.2
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(1) The spectrum of TAT−1 is the same as the spectrum of A.

(2) If λ is a characteristic root of A then p(λ) is a characteristic root of p(A) where p
is any polynomial.

Proof: Since TAT−1 − λI = T[A− λI]T−1 it follows that [A− λI]x = 0 if and only if
[TAT−1 − λI]Tx = 0 and the spectrums are thus the same.

If Ax = λx then Anx = λnx for any integer n so that p(Ax = p(λ)x. 2

8.2 Factorizations

Theorem 8.3 (Schur’sTriangular Factorization) Let A be any p by p matrix. Then
there exists a unitary matrix U i.e. U∗U = I such that

U∗AU = T

where T is an upper right triangular matrix with diagonal elements equal to the char-
acteristic roots of A

Proof: Let p = 2 and let u1 be such that

Au1 = λ1u1 and u1u1 = 0

Define the matrix U = [u1,u2] where u2 is chosen so that U∗U = I. Then

U∗AU = [u1,u2]
∗A[u1,u]

=

[
u∗1
u∗2

]
[λu1,Au2]

=

[
λ u∗1Au2

0 u∗2Au2

]

Note that u∗2Au2 = λ2 is the other characteristic root of A. Now assume that the
result is true for n = N and let n = N + 1. Let Au1 = λ1u1 and u∗1u1 = 1 and let
{vbfb1,b2, . . . ,bN} be such that

U1 = [u1,b1,b2, . . . ,bN ]
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is unitary. Thus

U∗
1AU1 = [u1,b1,b2, . . . ,bN ]A[u1,b1,b2, . . . ,bN ]

= [u1,b1,b2, . . . ,bN ]∗[λ1u1,Ab1,Ab2, . . . ,AbN ]

=

[
λ1 u∗1Au1 · · · u∗1AuN

0 BN

]

Since the characteristic roots of the above matrix are the solutions to the equation

(λ1 − λ) det(BN − λI) = 0

it follows that the characteristic roots of BN are the remaining characteristic roots
λ1, λ2, . . . , λN+1 of A. By the induction assumption there exists a unitary matrix L such
that

L∗BNL

is upper right triangular with diagonal elements equal to λ1, λ2, . . . , λN+1. Let

UN+1 =

[
1 0T

0 L

]
and U = U1UN+1

Then

U∗AU = U∗
N+1U1AU1UN+1

= U∗
N+1

[
λ1 t∗

0 BN

]

=

[
1 0T

0 L∗

] [
λ1 b∗

0 BN

] [
1 0T

0L

]

=

[
λ1 b∗

0 L∗BNL

]

which is upper right triangular as claimed with the diagonal elements equal to the
characteristic roots of A. 2

Theorem 8.4 If A is normal (A∗A = AA∗) then there exists a unitary matrix U such
that

U∗AU = D
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where D is diagonal with elements equal to the characteristic roots of A.

Proof: By Theorem 8.3 there is a unitary matrix U such that U∗AU = T where
T is upper right triangular. Thus we als have U∗A∗U = T∗ where T∗ is lower right
triangular. It follows that

U∗AA∗U = TT∗ and U∗A∗AU = T∗T

Hence the off diagonal elements of T vanish i.e. T is diagonal as claimed. 2

Theorem 8.5 (Cochran’s Theorem) If A is normal then

A =
n∑

i=1

λiEi

where E∗
i Ej = O for i 6= j, E2

i = Ei and the λi are the characteristic roots of A.

Proof: By Theorem 8.3 there is a unitary matrix U such that U∗AU = D is diagonal
with diagonal elements equal to the characteristic roots of A. Hence

A = UDU∗

= U




λ1u
∗
1

λ2u
∗
2

...
λnu

∗
n




=
n∑

i=1

λiuiu
∗
i

Defining Ei = uiu
∗
i completes the proof. 2

This representation of A is called the spectral representation of A. In most
applications A is symmetric.

The spectral representation can be rewritten as

A =
n∑

i=1

λiEi =
q∑

j=1

λjEj

55



where λ1 < λ2 < · · · < λq are the distinct characteristic roots of A. Now define

S0 = O and Si =
i∑

j=1

Ej for i = 1, 2, . . . , q

Then Ei = Si − Si−1 for i = 1, 2, . . . , q and hence

A =
q∑

j=1

λjEj

=
q∑

j=1

λj(Sj − Sj−1)

=
q∑

j=1

λj ∆Sλj

which may be written as a Stielges integral i.e.

A =
∫

λdS(λ)

which is also called the spectral representation of A.

The spectral representation of A has the property that

(Ax,y) = (
∫

λdS(λ)x,y)

=




q∑

j=1

λj ∆Sλj
x,y




=
q∑

j=1

λj (∆Sλj
x,y)

=
q∑

j=1

λj[(Sjx,y)− (Sj−1x,y)]

=
∫

λ d(S(λ)x,y)

In more advanced treatments applicable to Hilbert spaces the property just established
is taken as the defining property for

∫
λ d(S(λ).

56



8.3 Quadratic Forms

If A is a symmetric matrix with real elements xTAx is called a quadratic form. A
quadratic form is said to be

• positive definite if xTAx > 0 for all x 6= 0

• non negative definite if xTAx ≥ 0 for all x 6= 0

If A is positve definite then all of its characteristic roots are positive while if A is non
negative definite then all of its characteristic roots are non negative. To prove this note
that if xi is a characteristic vector of A corresponding to λi then Axi = λixi and hence
xT

i Axi = λix
T
i xi.

If λi 6= λj then the corresponding characteristic vectors are orthogonal since

λjx
T
i xj = xT

i Axj = (Axi)xj = λix
T
i xj

which implies that xT
i xj = 0 i.e. that xi and xj are orthogonal if λi 6= λj.

Another way of characterizing characteristic roots is to consider the stationary values
of

XTAx

xTx

as x varies over Rp. Since

A =
p∑

i=1

λiEi

where λ1 ≥ λ2 ≥ · · · ≥ λp we have that

Ax =
p∑

i=1

λiEix

It follows that

XTAx =
p∑

i=1

λix
TEix
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=
p∑

i=1

λix
TEiE

T
i x

=
p∑

i=1

λi‖Eix‖2

Since Ei = yiy
T
i , where the yi form an orthonormal basis we have that UTU = I where

U = [y1,y2, . . . ,yp]

It follows that U−1 = UT and hence that UUT = I Thus

I = UUT

= [y1,y2, . . . ,yp]




y1

y2
...
yp




=
p∑

i=1

yiy
p
i

=
p∑

i=1

Ei

It follows that

xTx =
p∑

i=1

xTEix

=
p∑

i=1

xTEiE
T
i x

=
p∑

i=1

‖Eix‖2

Thus
XTAx

xTx
=

∑p
i=1 λi‖Eix‖2

∑p
i=1 ‖Eix‖2
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If x is orthogonal to E1,E2, . . . ,Ek then

XTAx

xTx
=

∑p
i=k+1 λi‖Eix‖2

∑p
i=k+1 ‖Eix‖2

and it follows that maximum of
XTAx

xTx

subject to Eix = 0 for i = 1, 2, . . . , k is λk+1.

The norm of a matrix A is defined as

‖A‖ =
max

{x : ‖x‖ 6= 0} ‖A‖‖x‖

If P and Q are orthogonal matrices of order n× n and p× p respectively then

‖PAQ‖ = ‖A‖

Lemma 8.6 The characterisitic roots of a Hermitian matrix are real and the character-
istic roots of a real symmetric matrix are real.

Proof: If λ is a characteristic root of A then

Ax = λx and x∗A∗ = λ̄x∗

Since A is Hermitian it follows that

x∗A∗ = x∗A = λ̄x∗

and hence
λx∗x = λ̄x∗x

or λ = λ̄. If A is a real symmetric matrix it is Hemitian so that the result for real
symmetric matrices is true.

Lemma 8.7 A necessary and sufficient condition that A = 0 is that 〈Ax,y〉 = 0 for all
x and y.
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Theorem 8.8 A necessary and sufficient condition that a symmetric matrix on a real
inner product space satisfies A = 0 is that 〈Ax,x〉 = 0.

Proof: Necessity is obvious.

To prove sufficiency we note that

〈A(x + y), (x + y)〉 = 〈(Ax + Ay), (x + y)〉
. = 〈Ax,x〉+ 〈Ax,y〉+ 〈Ay,x〉+ 〈Ay,y〉

It follows that

〈Ax,y〉+ 〈Ay,x〉 = 〈A(x + y), (x + y)〉 − 〈A(x, (x〉 − 〈A(y, (y〉

Thus the real part of 〈Ax〈= 0 since A is symmetric. Thus 〈Ax〈= 0 and by Lemma 8.2
the result follows.

8.4 Jordan Canonical Form

The most general canonical form for matrices is the Jordan Canonical Form. This
particular canonical form is used in the theory of Markov chains.

The Jordan canonical form is a nearly diagonal canonical form for a matrix. Let
Jpi

(λi) be pi × pi matrix of the form

Jpi
(λi) = λiIpi

+ Npi

where

Npi
=




0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
0 0 0 0 · · · 0




is a nilpotent matrix of order pi i.e. Npi
pi

= 0.
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Theorem 8.9 (Jordan Canonical Form). Let λ1, λ2, . . . , λq be the q distinct charac-
teristic roots of a p × p matrix A. Then there exists a non singular matrix V such
that

VAV−1 = diag
(
Jp1 ,Jp2 , . . . ,Jpq

)

One use of the Jordan canonical form occurs when we want an expression for An.
Using the Jordan canonical form we see that

VAnV−1 = diag
(
Jn

p1
,Jn

p2
, . . . ,Jn

pq

)

Thus if n ≥ max pi we have

Jn
pi

(λi) = (λiIpi
+ Npi

)n

=
∑

r = 0n

(
n

r

)
λn−r

i Nr
pi

by the binomial expansion. Since Nr
pi

= 0 if r ≥ pi we obtain

Jn
pi

(λi) =
pi−1∑

r=0

(
n

r

)
λn−r

i Nr
pi

Thus for large n we have a relatively simple expression for An.

8.5 The Singular Value Decomposition (SVD) of a

Matrix

Theorem 8.10 If A is any n by p matrix then there exists matrices U , V and D such
that

A = UDV T

where

• U is n by p and UT U = Ip

• V is p by p and V T V = Ip
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• D = diag (σ1, σ2, . . . , σp) and

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0

Proof: Let x be such that ||x|| = 1 and ||Ax|| = ||A||. That such an x can be chosen
follows from the fact that the norm is a continuous function on a closed and bounded
subset of Rn and hence achieves its maximum at a point in the set. Let y1 = Ax and
define

y =
y1

||A||
Then

||y|| = 1 and Ax = ||A||y = σy

where σ = ||A||
Let U1 and V1 be such that

U = [y, U1] and [x, V1] are orthogonal

where U is n by p and V is p by p. It then follows that

UT AV =

[
yT

UT
1

]
A [x, V1] =

[
yT Ax yT AV1

UT
1 Ax UT

1 AV1

]

Thus

A1 = UT AV =

[
σ wT

0 B1

]

where wT = yT AV1, B1 = UT
1 AV1 and yT Ax = σyTy = σ

If we define

z = A1

[
σ
w

]
=

[
σ wT

0 B1

] [
σ
w

]
=

[
σ2 + wTw

B1w

]

Then

||z||2 = [σ2 + wTw,wT BT
1 ]

[
σ2 + wTw

B1w

]
= (σ2 + wTw)2 + wT BT

1 B1w
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Thus
σ2 = ||A||2 = ||UT AV ||2 = ||A1||2 ≥ (σ2 + wTw)

and it follows that w = 0. Thus

UT AV =

[
σ 0T

0 B1

]

Induction now establishes the result. The orthogonality properties of U and V then
imply that

UT AV = D ⇐⇒ A = UDV T

8.5.1 Use of the SVD in Data Reduction and Reconstruction

Let Y be a data matrix consisting of n observations on p response variables. That is

Y =




y11 y12 · · · y1p

y21 y22 · · · y2p
...

...
. . .

...
yn1 yn2 · · · ynp




The singular value decomposition of Y allows us to represent Y as

Y = U1D1V
T
1

where U1 is n by p, V1 is p by p and D1 is a p by p diagonal matrix with ith diagonal
element di. We know that di ≥ 0 and we may assume that

d1 ≥ d2 ≥ · · · ≥ dp

Recall that the matrices U1 and V1 have the properties

UT
1 U1 = Ip and V T

1 V1 = Ip

so that the columns of U1 form an orthonormal basis for the column space of Y i.e.
the subspace of Rn spanned by the columns of Y. Similarly the columns of V1 form an
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orthonormal basis for the row space of Y i.e. the subspace of Rp space spanned by the
rows of Y.

The rows of Y represent points in p dimensional space and the

yi1, yi2, . . . , yip

represent the coordinates of the ith individual’s values relative to the axes of the p
original variables. Two individuals are “close” in this space if the distance (norm)
between them is “small”. In this case the two individuals have nearly the same values
on each of the variables i.e. their coordinates with respect to the original variables are
nearly equal. We refer to this subspace of Rp as individual space or observation
space.

The columns of Y represent p points in Rn and represent the observed values of a
variable on n individuals. Two points in this space are close if they have similar values
over the entire collection of observed individuals i.e. the two variables are measuring the
same thing. We call this space variable space.

The distance between individuals i and i′ is given by

||yi − yi′|| =



p∑

j=1

(yij − yi′j)
2




1/2

For any data matrix Y there is an orthogonal matrix V1 such that if Z = YV1 then the
distances between individuals are preserved i.e.

||zi − zi′|| = ||yiV1 − yi′V1|| =
[
(yi − yi′)

T V T
1 V1(yi − yi′)

]1/2
= ||yi − yi′||

Thus the original data is replaced by a new data set in which the coordinate axes of the
individuals are now the columns of Z.

We now note that
U1 = [u1,u2, · · · ,up]

where uj is the jth column vector of U1 and that

V1 = [v1,v2, · · · ,vp]
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where vj is the jth column vector of V1. Thus we can write

Y = U1DV T
1 =

p∑

j=1

d2
jujv

T
j

That is we may reconstruct Y as a sum of constants (the d2
j) times matrices which

are the outer product of vectors which span variable space (the uj) and individual
space (the vj). The interpretation of these vectors is of importance to understanding
the nature of the representaion. We note that

YYT = (U1D1V
T
1 )(V1D1U

T
1 ) = U1D

2
1U

T
1

Thus
YYT U1 = U1D

2
1

which shows that the columns of U1 are the eigenvectors of YYT with eigenvalues equal
to the d2

j .

We also note that

YTY = (V1D1U
T
1 )(U1D1V

T
1 ) = V1D

2
1V

T
1

so that
YTYV1 = V1D

2
1

Thus the columns of V1 are the eigenvalues of YTY with eigenvalues again equal to the
d2

j .

The relationship
YV1 = U1D1

shows that the columns of V1 transform an individual’s values on the original variables
to values in the new variables U1 with relative importance given by the dj

If some of the dj are zero or are approximately 0 then we can approximate Y as

Y ∼
p∑

j=1

d2
jujv

T
j

which tells us that an approximating subspace has the same dimension in variable space
or observation space. æ
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