
Chapter 4

Errors in Predictors

The regression model Y � Xβ � ε allows for Y being measured with error by having the ε term, but what if
the X is measured with error? In other words, what if the X we see is not the X used to generate Y?

Consider the simple regression � xi � yi � for i � 1 ������� n.

yi
� ηi

� εi

xi
� ξi

� δi

where the errors ε and δ are independent. Suppose the true underlying relationship is

ηi
� β0

� β1ξi

but we only see � xi � yi � . Putting it together, we get

yi
� β0

� β1xi
� � εi � β1δi �

Suppose we use least squares to estimate β0 and β1. Let’s assume Eεi
� Eδi

� 0 and that var εi
� σ2,

var δi
� σ2

δ. Let
σ2

ξ
� ∑ � ξi � ξ̄ � 2 � n σξδ

� cov � ξ � δ �
where ξ are the true values of X and not random variables but we could (theoretically since they are not
observed) compute statistics using their values. Now β̂1

� ∑ � xi � x̄ � yi
� ∑ � xi � x̄ � 2 and after some calculation

we find that

Eβ̂1 	 β1
� σ2

ξ
� σξδ �

� σ2
ξ
� σ2

δ
� 2σξδ �

If there is no relation between ξ and δ, this simplifies to

Eβ̂1 	 β1
σ2

ξ

� σ2
ξ
� σ2

δ �
� β1

1
1 � σ2

δ
� σ2

ξ

So in general β̂1 will be biased (regardless of the sample size and typically towards zero). If σ2
δ is small

relative to σ2
ξ then the problem can be ignored. In other words, if the variability in the errors of observation

of X are small relative to the range of X then we need not be concerned. If not, it’s a serious problem and
other methods such as fitting using orthogonal rather than vertical distance in the least squares fit should be
considered.
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For prediction, measurement error in the x’s is not such a problem since the same error will apply to the
new x0 and the model used will be the right one.

For multiple predictors, the usual effect of measurement errors is to bias the β̂ in the direction of zero.
One should not confuse the errors in predictors with treating X as a random variable. For observational

data, X could be regarded as a random variable, but the regression inference proceeds conditional on a fixed
value for X . We make the assumption that the Y is generated conditional on the fixed value of X . Contrast
this with the errors in predictors case where the X we see is not the X that was used to generate the Y .

For real data, the true values of the parameters are usually never known, so it’s hard to know how well
the estimation is working. Here we generate some artificial data from a known model so we know the true
values of the parameters and we can tell how well we do: runif() generates uniform random numbers
and rnorm() generates standard normal random numbers.

Because you will get different random numbers, your results will not exactly match mine if you try to
duplicate this.

> x <- 10*runif(50)
> y <- x+rnorm(50)
> gx <- lm(y ˜ x)
> summary(gx)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1236 0.2765 -0.45 0.66
x 0.9748 0.0485 20.09 <2e-16

Residual standard error: 1.02 on 48 degrees of freedom
Multiple R-Squared: 0.894, Adjusted R-squared: 0.891
F-statistic: 403 on 1 and 48 degrees of freedom, p-value: 0

True values of the regression coeffs are 0 and 1 respectively. What happens when we add some noise to
the predictor?

> z <- x + rnorm(50)
> gz <- lm(y ˜ z)
> summary(gz)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3884 0.3248 1.2 0.24
z 0.8777 0.0562 15.6 <2e-16

Residual standard error: 1.27 on 48 degrees of freedom
Multiple R-Squared: 0.835, Adjusted R-squared: 0.832
F-statistic: 244 on 1 and 48 degrees of freedom, p-value: 0

Compare the results - notice how the slope has decreased. Now add even more noise:

> z2 <- x+5*rnorm(50)
> gz2 <- lm(y ˜ z2)
> summary(gz2)
Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.736 0.574 4.77 1.8e-05
z2 0.435 0.101 4.32 7.7e-05

Residual standard error: 2.66 on 48 degrees of freedom
Multiple R-Squared: 0.28, Adjusted R-squared: 0.265
F-statistic: 18.7 on 1 and 48 degrees of freedom, p-value: 7.72e-05

Compare again — the slope is now very much smaller. We can plot all this information in Figure 4.1.

> matplot(cbind(x,z,z2),y,xlab="x",ylab="y")
> abline(gx,lty=1)
> abline(gz,lty=2)
> abline(gz2,lty=5)
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Figure 4.1: Original x shown with “1”, with small error as “2” and with large error as “3”. The regression
lines for the no measurement error, small error and large error are shown as solid, dotted and dashed lines
respectively.

This was just one realization - to get an idea of average behavior we need to repeat the experiment (I’ll
do it 1000 times here). The slopes from the 1000 experiments are saved in the vector bc:

> bc <- numeric(1000)
> for(i in 1:1000){
+ y <- x + rnorm(50)
+ z <- x + 5*rnorm(50)
+ g <- lm(y ˜ z)
+ bc[i] <- g$coef[2]
+ }

Now look at the distribution of bc.
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> summary(bc)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.0106 0.2220 0.2580 0.2580 0.2950 0.4900

Given that the variance of a standard uniform random variable is 1/12, σ2
δ 
 25 and σ2

ξ 
 100 � 12, we’d
expect the mean to be 0.25. Remember that there is some simulation variation and the expression for the
bias is only approximation, so we don’t expect them to match exactly.


